Как понять какая связь между атомами. Типы химической связи. Характеристики ковалентной связи: длина и энергия связи

Химическая связь – это сила, удерживающая друг с другом частицы, образующие вещество.

В зависимости от частиц, которые удерживают эти силы, связи подразделяются на внутримолекулярные и межмолекулярные.

Внутримолекулярные связи.

  1. Ковалентная связь.

Ковалентная связь – это общая электронная пара у двух атомов неметаллов.

Рассмотрим на примере молекулы водорода (Н 2), в которой как раз реализуется ковалентная связь.

Молекулы водорода состоит из двух атомов водорода (Н), у которых на внешнем энергетическом уровне один электрон:

Атомы стремятся полностью заполнить свои орбитали. Для этого и объединяются два атома. Они делают свои неспаренные электроны общими: и получается общая электронная пара. Электроны стали спаренными:

Эта общая электронная пара и есть ковалентная химическая связь. Ковалентная связь обозначается либо чертой, соединяющей атомы, либо двумя точками, которые обозначают общую электронную пару:

Представьте, что есть два соседа по парте. Это два атома. Им нужно нарисовать картинку, в которой есть красный и синий цвет. У них есть общая пара карандашей (один красный, другой синий) – это общая электронная пара. Оба соседа по парте пользуются этими карандашами. Таким образом эти два соседа связаны общей парой карандашей, т.е. ковалентной химической связью.

Существует два механизма образования ковалентной химической связи.

  1. Обменный механизм образования ковалентной связи.

В таком случае каждый атом предоставляет электроны для образования ковалентной связи. Этот механизм мы и рассмотрели, когда знакомились с ковалентной связью:

  1. Донорно-акцепторный механизм образования ковалентной связи.

В этом случае общая электронная пара, если можно так выразиться, неравноценная.

Один атом имеет НЭП – неподеленную электронную пару (два электрона на одной орбитали). И он предоставляет ее целиком для образования ковалентной связи. Этот атом называется донором – поскольку он предоставляет оба электрона для образования химической связи.

А второй атом имеет только свободную орбиталь. Он принимает электронную пару. Этот атом называется акцептором – он принимает оба электрона.

Классический пример – это образование иона аммония NH 4 + . Он образуется при взаимодействии иона H + и аммиака (NH 3). Катион водорода H + – это пустая s-орбиталь.

Эта частица будет акцептором.

У тома азота в аммиаке есть НЭП (неподеленная электронная пара).

Атом азота в аммиаке будет донором:

В данном случае и синий и красный карандаш принес один сосед по парте. Он «угощает» второго. И они оба пользуются карандашами.

Конкретные реакции, в которых образуется такой ион, будут рассмотрены позже в соответствующих разделах. Пока вам просто нужно запомнить принцип, по которому образуется ковалентная связь по донорно-акцепторному механизму.

Ковалентная связь бывает двух видов. Различают ковалентную полярную и неполярную связи.

Ковалентная полярная связь возникает между атомами неметаллов с разными значениями электроотрицательности. То есть между разными атомами неметаллов.

Атом с большим значением электроотрицательности будет оттягивать общую электронную пару на себя.

Ковалентная неполярная связь возникает между атомами неметаллов с одинаковыми значениями электроотрицательности. Такое условие выполняется, если связь возникает между атомами одного химического элемента-неметалла . Поскольку у разных атомов электроотрицательности могут быть очень близкими друг к другу, но все равно будут отличаться.

Общая электронная пара не будет смещаться ни к одному атому, так как каждый атом «тянет» ее с одинаковой силой: общая электронная пара будет находиться посередине.

И конечно же ковалентная связь может быть одинарной, двойной и тройной:

  1. Ионная связь.

Ионная связь возникает между атомами металла и неметалла. Поскольку у металла и неметалла большая разница в электроотрицательности, электронная пара полностью оттягивается к более электроотрицательному атому – атому неметалла.

Конфигурация полностью заполненного энергетического уровня, достигается не за счет образования общей электронной пары. Неметалл забирает себе электрон металла – заполняет свой внешний уровень. А металлу проще отдать свои электроны (у него их немного) и у него тоже полностью заполненный уровень.

Таким образом металл, отдав электроны, приобретает отрицательный заряд, становится катионом. А неметалл, получив электроны, приобретает отрицательный заря, становится анионом.

Ионная химическая связь представляет собой электростатическое притяжение катиона к аниону .

Ионная связь имеет место в солях, оксидах и гидроксидах металлов. И в других веществах, в которых атом металла связан с атомом неметалла (Li 3 N, CaH 2).

Здесь следует обратить внимание на одну важную особенность: ионная связь имеет место между катионом и анионов во всех солях . Наиболее общим образом мы описываем как связь металл-неметалл. Но необходимо понимать, что это сделано лишь для упрощения. В составе соли может и не быть атома металла. Например, в солях аммония (NH 4 Cl, (NH 4) 2 SO 4 . Ион аммония NH 4 + притягивается к аниону соли – это ионная связь.

Откровенно говоря, нет никакой ионной связи. Ионная связь – это всего лишь крайняя степень ковалентной полярной связи. У любой связи есть свой процент «ионности» – это зависит от разности электроотрицательностей. Но в школьной программе, а тем более в требованиях ЕГЭ ионная и ковалентная связь – это совершенно два разных понятия, которые нельзя смешивать.

  1. Металлическая связь.

Все великолепие металлической связи можно понять лишь вместе с металлической кристаллической решеткой. Поэтому металлическую связь мы рассмотрим позже, когда будем разбирать кристаллические решетки.

Все, что пока нужно знать – это то, что металлическая связь реализуется в простых веществах – металлах.

Межмолекулярные связи.

Межмолекулярные связи гораздо слабее внутримолекулярных, так как в них не замешана общая электронная пара.

  1. Водородные связи .

Водородные связи возникают в вещества, в которых атом водорода связан с атомом с высоким значением электроотрицательности (F, O, Cl, N).

В таком случае связь с атомов водорода становится сильнополярной. Электронная пара смещается от атома водорода к более электроотрицательному атому. Из-за этого смещения, на водороде появляется частичный положительный заряд (δ+), а на электроотрицательном атоме частичный отрицательный заряд (δ-).

Например, в молекуле фтороводорода:

К δ+ одной молекулы притягивается δ- другой молекулы. Это и есть водородная связь. Графически на схеме она обозначается пунктирной линией:

Молекула воды может образовывать четыре водородные связи:

Водородные связи обусловливают более низкие температуры кипения и плавления веществ, между молекулами которых они возникают. Сравните сероводород и воду. В воде есть водородные связи – она жидкость при нормальных условиях, а сероводород – газ.

  1. Силы Ван-дер-Ваальса .

Это очень слабые межмолекулярные взаимодействия. Принцип возникновения такой же, как и у водородных связей. Очень слабые частичные заряды возникают при колебаниях общей электронной пары. И возникают сиюминутные силы притяжения между этими зарядами.

Впервые словосочетания и способу связи словосочетаний начинают изучать в 4-х классах, но более подробно их рассматривают только в 5-ом. Чаще всего дети путаются в типах подчинительной связи. Для того чтобы разобраться в типах словосочетаний, необходимо подробно рассмотреть каждый из них и разобрать примеры.

Словосочетанием называют соединение из 2-х или более слов. Эти слова связаны между собой по смыслу, а также грамматически. Особенность всех словосочетаний в том, что они включают в себя главное и зависимое слова. Способы связи словосочетаний - самая затруднительная тема для школьников в 5-ом классе. Однако, ее очень важно изучить потому, что она понадобится ученикам на протяжении всей последующей учебы в школе.

Всего лингвисты и филологи выделяют 3 способа связи главного и зависимого слов в словосочетаниях: согласование, примыкание, а также управление. Способы подчинительной связи в словосочетании легко и очень часто путают. Для того чтобы уметь определять к какому типу подчинительной связи относится словосочетание, необходимо в них разобраться и подробно рассмотреть все примеры.

Тип связи согласование

Способ связи согласование в словосочетании встречается довольно часто. Согласование - это такой при котором зависимое слово согласуется с главным в падеже, числе и роде. Это значит, что оба слова являются изменяемыми, но при всем этом изменяются одинаково. Словосочетание с типом согласование может состоять из существительного, которое обычно играет роль главного слова, согласующегося с прилагательным или порядковым числительным, причастием, местоимением.

Примеры словосочетаний со связью согласование

Рассматривая способы связи словосочетаний, необходимо приводить и подробно разбирать все примеры, для того, чтобы хорошо усвоить материал. Все примеры нужно списывать в тетрадь, делать тщательный разбор, работать с карандашом. Только в этом случае материал будет хорошо усвоен и крепко запомнится. Первым делом, чтобы понять на практике, что такое согласование, необходимо разобрать словосочетания со связью. Примеры:

  • Существительное + прилагательное:

Красивый дом (дом какой? красивый). "Дом" - это главное слово, так как от него задается вопрос "какой?". "Красивый" - это зависимое слово в словосочетании.

Лягушка зеленая (лягушка какая? зеленая). "Лягушка" - это главное слово, так как от него задается вопрос к зависимому.

  • Существительное + порядковое числительное:

Пятый этаж (этаж какой? пятый). Оба слова согласованы в числе, роде, а также падеже. Зависимым словом является порядковое числительное "пятый", так как к нему задается вопрос от главного.

С сотым покупателем (с покупателем каким? сотым). Главным словом является "покупатель", от него задается вопрос к порядковому числительному "сотый".

  • Существительное + причастие:

Разбросанные вещи (вещи какие? разбросанные). Зависимым словом здесь будет являться причастие "разбросанные", так как к нему задается вопрос от главного.

Листва опавшая (листва какая? опавшая). Главным словом является "листва", потому что от него задается вопрос.

  • Существительное + местоимение:

С вашей мамой (с мамой чьей? вашей). И зависимое, и главное слова согласованы между собой в роде, числе и падеже. Главным словом будет являться существительное, потому что от него задается вопрос к местоимению.

Такой мужчина (мужчина какой? такой). Главным словом будет являться "мужчина", потому что именно от него задается вопрос к зависимому.

  • Местоимение + существительное (причастие или субстантивированное прилагательное):

С кем-то веселым (с кем-то каким? веселым). Главным словом будет являться местоимение, так как от него задается вопрос к зависимому.

В чем-то красивом (в чем-то каком? красивом). Главным словом является местоимение, потому что вопрос к зависимому прилагательному задается от него.

  • Существительное (субстантивированное прилагательное) + прилагательное:

Белая ванная (ванная какая? белая). Главным словом будет являться потому что от него задается вопрос. Прилагательное "белая"- зависимым.

Загорелый отдыхающий (отдыхающий какой? загорелый). "Отдыхающий" будет являться главным словом, так как вопрос исходит от него, а "загорелый" - зависимым.

Тип связи управление

Способы связи словосочетаний, как известно, бывают трех типов. Управление - это еще один способ связи. Чаще всего именно с ним возникают путаница и проблемы у школьников. Для того чтобы их не было, необходимо рассмотреть этот тип связи несколько подробней.

Способ связи в словосочетании управление - это такой при котором зависимое слово употребляется в том падеже, которого требует главное слово (только косвенные падежи, то есть все, кроме именительного). В управлении у детей чаще возникают проблемы, потому что бывает трудно различить управление среди других типов. Этому типу связи стоит уделить особое внимание и поработать над ним более усердно. Нужно запомнить, что все типы связи словосочетаний требуют большой практики и запоминания теории.

Примеры словосочетаний со связью управление

Рассмотрим примеры словосочетаний, построенных на связи управление:

  • В связи словосочетаний "управление", чаще всего главное слово является глаголом, а зависимое слово - существительным:

Посмотреть киноленту (посмотреть что? киноленту). Главным словом является глагол "посмотреть". От него задается вопрос "что?" к существительному "киноленту". Нельзя сказать "посмотреть кинолента", потому что это будет речевой ошибкой. В этом словосочетании зависимое слово употребляется в падеже, которое требует от него главное.

Бегу в джинсах (бегу в чем? в джинсах). Глагол "бегу" является главным словом, а "в джинсах" - зависимым.

  • Словосочетания со связью управление могут состоять и из прилагательного и местоимения:

Согласен с ним (согласен с кем? с ним). От краткого прилагательного "согласен" задается вопрос к местоимению, это значит, что оно главное.

Уверен в ней (уверен в ком? в ней). Краткое прилагательное является главным словом, а местоимение, к которому задается вопрос, зависимым.

  • Способы связи словосочетаний могут осуществляться так, что главным словом будет прилагательное, а зависимым существительное.

Красный от мороза (красный от чего? от мороза). Прилагательное "красный" является главным в этом словосочетании, а существительное "мороза" - зависимым.

Злой на дочь (злой на кого? на дочь). Слово "дочь" является зависимым, потому что к нему задают вопрос от зависимого.

  • Два существительных также могут являться составляющими словосочетания:

Враг народу (враг кому? народу). Существительное "враг" является главным, так как от него задается вопрос к зависимому "народу".

Ложка из серебра (ложка из чего? из серебра). Существительное "ложка" является главным, а слово "серебра" - зависимым.

  • Числительное может быть главным в словосочетании, а существительное - зависимым.

Три капли (три чего? капли). "Три" - это главное слово, а "капли" - зависимое.

Двенадцать месяцев (двенадцать чего? месяцев). Числительное является главным словом, а существительное зависимым.

  • Наречие бывает главным словом в словосочетании со связью управление, а существительное - зависимым:

Слева от дома (слева от чего? от дома).

Вниз по улице (вниз по чему? по улице).

  • Встречаются словосочетания, где главным словом является деепричастие, а зависимым - существительное:

Следя за ними (следя за кем? за ними). Деепричастие является главным словом, потому что вопрос к зависимому исходит от него.

Обращаясь к статье (обращаясь к чему? к статье). Существительное в дательном падеже в данном словосочетании является зависимым словом, потому что к нему задается вопрос от деепричастия "обращаясь".

Тип связи примыкание

Способ связи в словосочетании примыкание - это завершающая ступень изучения типов связи словосочетания. В словосочетании со связью примыкание оба слова, и зависимое, и главное, присоединяются друг к другу лишь только по смыслу. Главное слово является неизменяемым.

Примеры словосочетаний со связью примыкание

Для того чтобы понять, как осуществляется связь примыкание, необходимо подробно разобрать всевозможные примеры:

  • + инфинитив глагола:

Возможность остаться (возможность что сделать? остаться). Известно, что связь примыкание осуществляется только по смыслу. Существительное "возможность" является главным словом, тогда как "остаться" является зависимым, потому что к нему задается вопрос.

Другие примеры: решение встретить, желание уйти, наука мыслить, стремление учиться. Во всех словосочетаниях главным словом будет существительное, а зависимым - инфинитив.

Позволил поцеловать (позволил что? поцеловать). Оба члена словосочетания являются глаголами. Главным словом будет глагол "позволил", а зависимым - инфинитив "поцеловать".

Другие примеры: любит гулять, пришел посмеяться, хочет придти, решил прочитать. Во всех данных примерах зависимым словом будет инфинитив, а главным - глагол.

Должен уйти (должен что сделать? уйти). Главным словом является краткое прилагательное "должен", а зависимым, к которому задается вопрос, инфинитив.

Другие примеры: направо свернуть, рад видеть, готов ответить. Во всех приведенных примерах главным словом будет являться краткое прилагательное, а зависимым - инфинитив.

  • Существительное + наречие:

Поворот направо (поворот куда? направо). Главным словом является существительное "поворот", а зависимым наречие "направо".

Виды словосочетаний по главному слову

Пройдя способы подчинительной связи в словосочетании, переходят к изучению темы видов словосочетаний по главному слову. Всего выделяют 3 группы словосочетаний по главному слову.

Именные словосочетания

Именные словосочетания - это такие словосочетания, в которых главным словом является существительное, местоимение, прилагательное или числительное. Примеры именных словосочетаний: розовый слон (главное слово - существительное), пять капель (главное слово - числительное), рад стараться (главное слово - краткое прилагательное), ей хорошо (главное слово - местоимение).

Глагольные словосочетания

Глагольные словосочетания - это такие словосочетания, в которых главным словом, как правило, является уйти далеко, говорить ложь, зайти повидаться, идти радостно (главные слова в данных словосочетаниях являются глаголами).

Наречные словосочетания

Наречными словосочетаниями являются такие словосочетания, в которых главным словом является наречие. Примеры наречных словосочетаний: всегда хорошо, совершенно секретно, далеко от России (главные слова в данных словосочетаниях являются наречиями).

Типы связи словосочетаний легко запомнить, если часто практиковаться, а также выучить необходимую теорию.

Ковалентная связь – это связь между двумя атомами за счет образования общей электронной пары.

Ковалентная неполярная связь эта связь между атомами с равной

электроотрицательностью. Например: Н 2 , О 2 , N 2 , Cl 2 и т. д. Дипольный момент таких связей равен нулю.

Ковалентная полярная связь эта связь между атомами с различной электроотрицательностью. Зона перекрывания электронных облаков смещается в сторону более электроотрицательного атома.

Например, Н–Cl (Н б+ →Cl б–).

Ковалентная связь обладает свойствами:

- насыщаемости – способности атома образовывать количество химических связей, соответствующих его валентности;

- направленности – перекрытие электронных облаков происходит в направлении обеспечивающем максимальную плотность перекрытия.

Ионная связь это связь между противоположно заряженными ионами. Её можно рассматривать как крайний случай ковалентной полярной связи. Такая связь возникает при большой разнице электроотрицательностей атомов,

образующих химическую связь. Например, в молекуле NaF разница

электроотрицательностей составляет 4,0 0,93 = 3,07, что приводит к практически полному переходу электрона от натрия к фтору:

Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщаемости. В силу этого иoннaя связь не обладает направленностью и насыщаемостью.

Металлическая связь это связь положительно заряженных ионов металла со свободными электронами .

Большинство металлов обладает рядом свойств, имеющих общий характер и отличающихся от свойств других веществ. Такими свойствами являются сравнительно высокие температуры плавления, способность к отражению света, высокая тепло- и электропроводность. Это является следствием образования между атомами металлов особого вида связи – металлической связи.

У атомов металлов валентные электроны слабо связаны со своими ядрами и могут легко отрываться от них. В результате этого в кристаллической решетке металла появляются положительно заряженные ионы металла и «свободные» электроны, электростатическое взаимодействие которых обеспечивает химическую связь.

Водородная связь это связь посредством атома водорода, связанного с высокоэлектроотрицательным элементом .

Атом водорода, связанный с высокоэлектроотрицательным элементом (фтором, кислородом, азотом и др.), отдает практически полностью электрон с валентной орбитали. Образовавшаяся свободная орбиталь может взаимодействовать с неподеленной парой электронов другого электроотрицательного атома, в результате возникает водородная связь. На примере молекул воды и уксусной кислоты водородная связь показана штриховыми линиями:

Эта связь значительно слабее других химических связей (энергия ее образования 10÷40 кДж/моль). Водородные связи могут возникать как между различными молекулами, так и внутри молекулы.

Исключительно важную роль водородная связь играет в таких неорганических веществах, как вода, плавиковая кислота, аммиак и т.д., а также в биологических макромолекулах.

170133 0

Каждый атом обладает некоторым числом электронов.

Вступая в химические реакции, атомы отдают, приобретают, либо обобществляют электроны, достигая наиболее устойчивой электронной конфигурации. Наиболее устойчивой оказывается конфигурация с наиболее низкой энергией (как в атомах благородных газов). Эта закономерность называется "правилом октета" (рис. 1).

Рис. 1.

Это правило применимо ко всем типам связей . Электронные связи между атомами позволяют им формировать устойчивые структуры, от простейших кристаллов до сложных биомолекул, образующих, в конечном счете, живые системы. Они отличаются от кристаллов непрерывным обменом веществ. При этом многие химические реакции протекают по механизмам электронного переноса , которые играют важнейшую роль в энергетических процессах в организме.

Химическая связь - это сила, удерживающая вместе два или несколько атомов, ионов, молекул или любую их комбинацию .

Природа химической связи универсальна: это электростатическая сила притяжения между отрицательно заряженными электронами и положительно заряженными ядрами, определяемая конфигурацией электронов внешней оболочки атомов. Способность атома образовывать химические связи называется валентностью , или степенью окисления . С валентностью связано понятие о валентных электронах - электронах, образующих химические связи, то есть находящихся на наиболее высокоэнергетических орбиталях. Соответственно, внешнюю оболочку атома, содержащую эти орбитали, называют валентной оболочкой . В настоящее время недостаточно указать наличие химической связи, а необходимо уточнить ее тип: ионная, ковалентная, диполь-дипольная, металлическая.

Первый тип связи - ионная связь

В соответствии с электронной теорией валентности Льюиса и Косселя, атомы могут достичь устойчивой электронной конфигурации двумя способами: во-первых, теряя электроны, превращаясь в катионы , во-вторых, приобретая их, превращаясь в анионы . В результате электронного переноса благодаря электростатической силе притяжения между ионами с зарядами противоположного знака образуется химическая связь, названная Косселем «электровалентной » (теперь ее называют ионной ).

В этом случае анионы и катионы образуют устойчивую электронную конфигурацию с заполненной внешней электронной оболочкой. Типичные ионные связи образуются из катионов Т и II групп периодической системы и анионов неметаллических элементов VI и VII групп (16 и 17 подгрупп - соответственно, халькогенов и галогенов ). Связи у ионных соединений ненасыщенные и ненаправленные, поэтому возможность электростатического взаимодействия с другими ионами у них сохраняется. На рис. 2 и 3 показаны примеры ионных связей, соответствующих модели электронного переноса Косселя.

Рис. 2.

Рис. 3. Ионная связь в молекуле поваренной соли (NaCl)

Здесь уместно напомнить о некоторых свойствах, объясняющих поведение веществ в природе, в частности, рассмотреть представление о кислотах и основаниях .

Водные растворы всех этих веществ являются электролитами. Они по-разному изменяют окраску индикаторов . Механизм действия индикаторов был открыт Ф.В. Оствальдом. Он показал, что индикаторы представляют собой слабые кислоты или основания, окраска которых в недиссоциированном и диссоциированном состояниях различается.

Основания способны нейтрализовать кислоты. Не все основания растворимы в воде (например, нерастворимы некоторые органические соединения, не содержащие ‑ ОН-групп, в частности, триэтиламин N(С 2 Н 5) 3) ; растворимые основания называют щелочами .

Водные растворы кислот вступают в характерные реакции:

а) с оксидами металлов - с образованием соли и воды;

б) с металлами - с образованием соли и водорода;

в) с карбонатами - с образованием соли, СO 2 и Н 2 O .

Свойства кислот и оснований описывают несколько теорий. В соответствие с теорией С.А. Аррениуса, кислота представляет собой вещество, диссоциирующее с образованием ионов Н + , тогда как основание образует ионы ОН ‑ . Эта теория не учитывает существования органических оснований, не имеющих гидроксильных групп.

В соответствие с протонной теорией Бренстеда и Лоури, кислота представляет собой вещество, содержащее молекулы или ионы, отдающие протоны (доноры протонов), а основание - вещество, состоящее из молекул или ионов, принимающие протоны (акцепторы протонов). Отметим, что в водных растворах ионы водорода существуют в гидратированной форме, то есть в виде ионов гидроксония H 3 O + . Эта теория описывает реакции не только с водой и гидроксидными ионами, но и осуществляющиеся в отсутствие растворителя или с неводным растворителем.

Например, в реакции между аммиаком NH 3 (слабым основанием) и хлороводородом в газовой фазе образуется твердый хлорид аммония, причем в равновесной смеси двух веществ всегда присутствуют 4 частицы, две из которых - кислоты, а две другие - основания:

Эта равновесная смесь состоит из двух сопряженных пар кислот и оснований:

1) NH 4 + и NH 3

2) HCl и Сl

Здесь в каждой сопряженной паре кислота и основание различаются на один протон. Каждая кислота имеет сопряженное с ней основание. Сильной кислоте соответствует слабое сопряженное основание, а слабой кислоте - сильное сопряженное основание.

Теория Бренстеда-Лоури позволяет объяснить уникальность роли воды для жизнедеятельности биосферы. Вода, в зависимости от взаимодействующего с ней вещества, может проявлять свойства или кислоты, или основания. Например, в реакциях с водными растворами уксусной кислоты вода является основанием, а с водными растворами аммиака - кислотой.

1) СН 3 СООН + Н 2 O Н 3 O + + СН 3 СОО ‑ . Здесь молекула уксусной кислоты донирует протон молекуле воды;

2) NH 3 + Н 2 O NH 4 + + ОН ‑ . Здесь молекула аммиака акцептирует протон от молекулы воды.

Таким образом, вода может образовывать две сопряженные пары:

1) Н 2 O (кислота) и ОН ‑ (сопряженное основание)

2) Н 3 О + (кислота) и Н 2 O (сопряженное основание).

В первом случае вода донирует протон, а во втором - акцептирует его.

Такое свойство называется амфипротонностью . Вещества, способные вступать в реакции в качестве и кислот, и оснований, называются амфотерными . В живой природе такие вещества встречаются часто. Например, аминокислоты способны образовывать соли и с кислотами, и с основаниями. Поэтому пептиды легко образуют координационные соединения с присутствующими ионами металлов.

Таким образом, характерное свойство ионной связи - полное перемещение нары связывающих электронов к одному из ядер. Это означает, что между ионами существует область, где электронная плотность почти нулевая.

Второй тип связи - ковалентная связь

Атомы могут образовывать устойчивые электронные конфигурации путем обобществления электронов.

Такая связь образуется, когда пара электронов обобществляется по одному от каждого атома. В таком случае обобществленные электроны связи распределены между атомами поровну. Примерами ковалентной связи можно назвать гомоядерные двухатомные молекулы Н 2 , N 2 , F 2 . Этот же тип связи имеется у аллотропов O 2 и озона O 3 и у многоатомной молекулы S 8 , а также у гетероядерных молекул хлороводорода НСl , углекислого газа СO 2 , метана СH 4 , этанола С 2 Н 5 ОН , гексафторида серы SF 6 , ацетилена С 2 Н 2 . У всех этих молекул электроны одинаково общие, а их связи насыщенные и направлены одинаково (рис. 4).

Для биологов важно, что у двойной и тройной связей ковалентные радиусы атомов по сравнению с одинарной связью уменьшены.

Рис. 4. Ковалентная связь в молекуле Сl 2 .

Ионный и ковалентный типы связей - это два предельных случая множества существующих типов химических связей, причем на практике большинство связей промежуточные.

Соединения двух элементов, расположенных в противоположных концах одного или разных периодов системы Менделеева, преимущественно образуют ионные связи. По мере сближения элементов в пределах периода ионный характер их соединений уменьшается, а ковалентный - увеличивается. Например, галогениды и оксиды элементов левой части периодической таблицы образуют преимущественно ионные связи (NaCl, AgBr, BaSO 4 , CaCO 3 , KNO 3 , CaO, NaOH ), а такие же соединения элементов правой части таблицы - ковалентные (Н 2 O, СO 2 , NH 3 , NO 2 , СН 4 , фенол C 6 H 5 OH , глюкоза С 6 H 12 О 6 , этанол С 2 Н 5 ОН ).

Ковалентная связь, в свою очередь, имеет еще одну модификацию.

У многоатомных ионов и в сложных биологических молекулах оба электрона могут происходить только из одного атома. Он называется донором электронной пары. Атом, обобществляющий с донором эту пару электронов, называется акцептором электронной пары. Такая разновидность ковалентной связи названа координационной (донорно-акцепторной , или дативной ) связью (рис. 5). Этот тип связи наиболее важен для биологии и медицины, поскольку химия наиболее важных для метаболизма d-элементов в значительной степени описывается координационными связями.

Pиc. 5.

Как правило, в комплексном соединении атом металла выступает акцептором электронной пары; наоборот, при ионных и ковалентных связях атом металла является донором электрона.

Суть ковалентной связи и ее разновидности - координационной связи - можно прояснить с помощью еще одной теории кислот и оснований, предложенной ГН. Льюисом. Он несколько расширил смысловое понятие терминов «кислота» и «основание» по теории Бренстеда-Лоури. Теория Льюиса объясняет природу образования комплексных ионов и участие веществ в реакциях нуклеофильного замещения, то есть в образовании КС.

Согласно Льюису, кислота - это вещество, способное образовывать ковалентную связь путем акцептирования электронной пары от основания. Льюисовым основанием названо вещество, обладающее неподеленной электронной парой, которое, донируя электроны, образует ковалентную связь с Льюисовой кислотой.

То есть теория Льюиса расширяет круг кислотно-основных реакций также на реакции, в которых протоны не участвуют вовсе. Причем сам протон, по этой теории, также является кислотой, поскольку способен акцептировать электронную пару.

Следовательно, согласно этой теории, катионы являются Льюисовыми кислотами, а анионы - Льюисовыми основаниями. Примером могут служить следующие реакции:

Выше отмечено, что подразделение веществ на ионные и ковалентные относительное, поскольку полного перехода электрона от атомов металла к акцепторным атомам в ковалентных молекулах не происходит. В соединениях с ионной связью каждый ион находится в электрическом поле ионов противоположного знака, поэтому они взаимно поляризуются, а их оболочки деформируются.

Поляризуемость определяется электронной структурой, зарядом и размерами иона; у анионов она выше, чем у катионов. Наибольшая поляризуемость среди катионов - у катионов большего заряда и меньшего размера, например, у Hg 2+ , Cd 2+ , Pb 2+ , Аl 3+ , Тl 3+ . Сильным поляризующим действием обладает Н + . Поскольку влияние поляризации ионов двустороннее, она значительно изменяет свойства образуемых ими соединений.

Третий тип связи - диполь-дипольная связь

Кроме перечисленных типов связи, различают еще диполь-дипольные межмолекулярные взаимодействия, называемые также вандерваалъсовыми .

Сила этих взаимодействий зависит от природы молекул.

Выделяют взаимодействия трех типов: постоянный диполь - постоянный диполь (диполь-дипольное притяжение); постоянный диполь - индуцированный диполь (индукционное притяжение); мгновенный диполь - индуцированный диполь (дисперсионное притяжение, или лондоновские силы; рис. 6).

Рис. 6.

Диполь-дипольным моментом обладают только молекулы с полярными ковалентными связями (HCl, NH 3 , SO 2 , Н 2 O, C 6 H 5 Cl ), причем сила связи составляет 1-2 дебая (1Д = 3,338 × 10 ‑30 кулон-метра - Кл × м).

В биохимии выделяют еще один тип связи - водородную связь, являющуюся предельным случаем диполь-дипольного притяжения. Эта связь образована притяжением между атомом водорода и электроотрицательным атомом небольшого размера, чаще всего - кислородом, фтором и азотом. С крупными атомами, обладающими аналогичной электроотрицательностью (например, с хлором и серой), водородная связь оказывается значительно более слабой. Атом водорода отличается одной существенной особенностью: при оттягивании связывающих электронов его ядро - протон - оголяется и перестает экранироваться электронами.

Поэтому атом превращается в крупный диполь.

Водородная связь, в отличие от вандерваальсовой, образуется не только при межмолекулярных взаимодействиях, но и внутри одной молекулы - внутримолекулярная водородная связь. Водородные связи играют в биохимии важную роль, например, для стабилизации структуры белков в виде а-спирали, или для образования двойной спирали ДНК (рис. 7).

Рис.7.

Водородная и вандерваальсовая связи значительно слабее, чем ионная, ковалентная и координационная. Энергия межмолекулярных связей указана в табл. 1.

Таблица 1. Энергия межмолекулярных сил

Примечание : Степень межмолекулярных взаимодействий отражают показатели энтальпии плавления и испарения (кипения). Ионным соединениям требуется для разделения ионов значительно больше энергии, чем для разделения молекул. Энтальпии плавления ионных соединений значительно выше, чем молекулярных соединений.

Четвертый тип связи - металлическая связь

Наконец, имеется еще один тип межмолекулярных связей - металлический : связь положительных ионов решетки металлов со свободными электронами. В биологических объектах этот тип связи не встречается.

Из краткого обзора типов связей выясняется одна деталь: важным параметром атома или иона металла - донора электронов, а также атома - акцептоpa электронов является его размер .

Не вдаваясь в детали, отметим, что ковалентные радиусы атомов, ионные радиусы металлов и вандерваальсовы радиусы взаимодействующих молекул увеличиваются по мере возрастания их порядкового номера в группах периодической системы. При этом значения радиусов ионов - наименьшие, а вандерваальсовых радиусов - наибольшие. Как правило, при движении вниз по группе радиусы всех элементов увеличиваются, причем как ковалентные, так и вандерваальсовы.

Наибольшее значение для биологов и медиков имеют координационные (донорно-акцепторные ) связи, рассматриваемые координационной химией.

Медицинская бионеорганика. Г.К. Барашков

Благодаря которой образуются молекулы неорганических и органических веществ. Химическая связь появляется при взаимодействии электрических полей, которые создаются ядрами и электронами атомов. Следовательно, образование ковалентной химической связи связано с электрической природой.

Что такое связь

Под этим термином подразумевают результат действия двух либо более атомов, которые приводят к формированию прочной многоатомной системы. Основные виды химической связи образуются при уменьшении энергии реагирующих атомов. В процессе формирования связи атомы стараются завершить свою электронную оболочку.

Виды связи

В химии выделяют несколько видов связи: ионной, ковалентной, металлической. Ковалентная химическая связь имеет две разновидности: полярная, неполярная.

Каков механизм ее создания? Ковалентная неполярная химическая связь образуется между атомами одинаковых неметаллов, имеющих одну электроотрицательность. При этом образуются общие электронные пары.

Неполярная связь

Среди примеров молекул, у которых ковалентная химическая связь неполярного вида, можно назвать галогены, водород, азот, кислород.

Впервые эта связь была обнаружена в 1916 году американским химиком Льюисом. Сначала им была выдвинута гипотеза, а подтверждена она была только после экспериментального подтверждения.

Ковалентная химическая связь связана с электроотрицательностью. У неметаллов она имеет высокое значение. В ходе химического взаимодействия атомов не всегда возможен перенос электронов от одного атома к другому, в результате осуществляется их объединение. Между атомами появляется подлинная ковалентная химическая связь. 8 класс обычной школьной программы предполагает детальное рассмотрение нескольких видов связи.

Вещества, имеющие данный вид связи, при нормальных условиях - жидкости, газы, а также твердые вещества, имеющие невысокую температуру плавления.

Типы ковалентной связи

Подробнее остановимся на данном вопросе. Какие выделяют типы химической связи? Ковалентная связь существует в обменном, донорно-акцепторном вариантах.

Первый тип характеризуется отдачей каждым атомом одного неспаренного электрона на образование общей электронной связи.

Электроны, объединяемые в общую связь, должны обладать противоположными спинами. В качестве примера подобного вида ковалентной связи можно рассмотреть водород. При сближении его атомов наблюдается проникновение их электронных облаков друг в друга, именуемое в науке перекрыванием электронных облаков. В результате увеличивается электронная плотность между ядрами, а энергия системы понижается.

При минимальном расстоянии ядра водорода отталкиваются, в итоге образуется некое оптимальное расстояние.

В случае донорно-акцепторного типа ковалентной связи у одной частицы есть электроны, ее называют донором. Вторая частица имеет свободную ячейку, в которой будет размещаться пара электронов.

Полярные молекулы

Как образуются ковалентные полярные химические связи? Они возникают в тех ситуациях, когда у связываемых атомов неметаллов различная электроотрицательность. В подобных случаях обобществленные электроны размещаются ближе к тому атому, у которого значение электроотрицательности выше. В качестве примера ковалентной полярной связи могут рассматриваться связи, которые возникают в молекуле бромоводорода. Здесь общественные электроны, которые отвечают за формирование ковалентной связи, ближе находятся к брому, чем к водороду. Причина подобного явления в том, что у брома электроотрицательность выше, чем у водорода.

Способы определения ковалентной связи

Как определить ковалентные полярные химические связи? Для этого необходимо знать состав молекул. Если в ней присутствуют атомы разных элементов, в молекуле существует ковалентная полярная связь. В неполярных молекулах присутствуют атомы одного химического элемента. Среди тех заданий, которые предлагаются в рамках школьного курса химии, есть и такие, которые предполагают выявление вида связи. Задания подобного типа включены в задания итоговой аттестации по химии в 9 классе, а также в тесты единого государственного экзамена по химии в 11 классе.

Ионная связь

Чем отличается ковалентная и ионная химическая связь? Если ковалентная связь характерна для неметаллов, то ионная связь образуется между атомами, имеющими существенные отличия по электроотрицательности. К примеру, это характерно для соединений элементов первой и второй групп главных подгрупп ПС (щелочных и щелочноземельных металлов) и элементов 6 и 7 групп главных подгрупп таблицы Менделеева (халькогенов и галогенов).

Она формируется в результате электростатического притяжения ионов, обладающих противоположными зарядами.

Особенности ионной связи

Так как силовые поля противоположно заряженных ионов распределяются равномерно во всех направлениях, каждый из них способен притягивать к себе противоположные по знаку частицы. Это и характеризует ненаправленность ионной связи.

Взаимодействие двух ионов, обладающих противоположными знаками, не предполагает полной взаимной компенсации индивидуальных силовых полей. Это способствует сохранению способности притягивать по остальным направлениям ионы, следовательно, наблюдается ненасыщенность ионной связи.

В ионном соединении у каждого иона есть возможность притягивать к себе некое число других, обладающих противоположных знаком, чтобы сформировать кристаллическую решетку ионного характера. В таком кристалле не существует молекул. Каждый ион окружается в веществе неким конкретным числом ионов иного знака.

Металлическая связь

Данный вид химической связи обладает определенными индивидуальными особенностями. Металлы имеют избыточное количество валентных орбиталей при недостатке электронов.

При сближении отдельных атомов происходит перекрывание их валентных орбиталей, что способствует свободному перемещению электронов из одной орбитали в другую, осуществляя между всеми атомами металла связь. Эти свободные электроны и являются основным признаком металлической связи. Она не обладает насыщенностью и направленностью, поскольку валентные электроны распределяются по кристаллу равномерно. Присутствие в металлах свободных электронов объясняет их некоторые физические свойства: металлический блеск, пластичность, ковкость, теплопроводность, непрозрачность.

Разновидность ковалентной связи

Она образуется между атомом водорода и элементом, который имеет высокую электроотрицательность. Существуют внутри- и межмолекулярные водородные связи. Эта разновидность ковалентной связи является самой непрочной, она появляется благодаря действию электростатических сил. У атома водорода небольшой радиус, и при смещении либо отдаче этого одного электрона водород становится положительным ионом, действующим на атом с большой электроотрицательностью.

Среди характерных свойств ковалентной связи выделяют: насыщаемость, направленность, поляризуемость, полярность. Каждый из этих показателей имеет определенное значение для образуемого соединения. К примеру, направленность обуславливается геометрической формой молекулы.