Сюрприз: угадайте, какой элемент во Вселенной на третьем месте по распространенности? Гелий заставили создать устойчивое химическое соединение Тайны благородных газов

Молекула литий-гелия LiHe - одна из самых хрупких известных молекул. Её размер более, чем в десять раз, превосходит размер молекул воды.

Условное строение атомов гелия (слева) и лития (справа).
© The University of Birmingham

Как известно, нейтральные атомы и молекулы могут образовывать друг с другом более менее устойчивые связи тремя способами. Во-первых, при помощи ковалентных связей, когда два атома разделяют одну или несколько общих электронных пар. Ковалентные связи - самые сильные из трёх. Характерная энергия их разрыва равна обычно нескольким электрон-вольтам.

Заметно слабее ковалентных водородные связи. Это притяжение, возникающее между связанным атомом водородом и электроотрицательным атомом другой молекулы (обычно таким атомом является кислород или азот, реже фтор). Несмотря на то, что энергия водородных связей в сотни раз меньше, чем ковалентных, именно они во многом определяют физические свойства воды, а также играют важнейшую роль в органическом мире.

И наконец, самым слабым является так называемое ван-дер-ваальсовое взаимодействие. Иногда его также называют дисперсным. Оно возникает в результате диполь-дипольного взаимодействия двух атомов или молекул. При этом диполи могут как быть изначально свойственны молекулам (например, дипольный момент есть у воды), так и индуцироваться в результате взаимодействия.

Условная схема, поясняющая, как возникают дисперсионные силы.
© The University of Akron

Характерная энергия ван-дер-ваальсовой связи - единицы кельвин (электрон-вольт, упоминавшийся выше, соответствует приблизительно 10 000 кельвин). Самой слабой из ван-дер-ваальсовых является связь между двумя индуцированными диполями. Если имеется два неполярных атома, то в результате теплового движения у каждого из них имеется некий осциллирующий случайным образом дипольный момент (электронная оболочка как бы немного дрожит относительно ядра). Эти моменты, взаимодействуя друг с другом, в результате преимущественно имеют такие ориентации, чтобы два атома начали притягиваться.

Наиболее инертным из всех атомов является гелий. Он не вступает в ковалентные связи ни с одним другим атомом. При этом и величина его поляризуемости очень мала, то есть и дисперсные связи ему образовывать сложно. Имеется, однако, одно важное обстоятельство. Электроны в атоме гелия настолько сильно связаны ядром, что его можно, не опасаясь возникновения отталкивающих сил, подносить очень близко к другим атомам - вплоть до расстояния порядка радиуса этого атома. Дисперсные же силы растут с уменьшением дистанции между атомами очень быстро - обратно пропорционально шестой степени расстояния!

Отсюда родилась идея: если сблизить два атома гелия друг с другом, то между ними всё-таки возникнет хрупкая ван-дер-ваальсова связь. Это, действительно удалось реализовать в середине 1990-х, хотя и потребовало значительных усилий. Энергия такой связи составляет всего 1 мК, и молекула He₂ была зарегистрирована в незначительных количествах в сверхохлаждённых струях гелия.

При этом свойства молекулы He₂ во многом уникальны и необычны. Так, например, её размер составляет... около 5 нм! Для сравнения, размер молекулы воды - около 0,1 нм. При этом минимум потенциальной энергии молекулы гелия приходится на значительно меньшее расстояние - около 0,2 нм - однако, большую часть времени - около 80% - атомы гелия в молекуле проводят в режиме туннелирования, то есть в области, где в рамках классической механики они находиться не могли бы.

Приблизительно так выглядит молекула гелия.
Среднее расстояние между атомами намного превосходит их размеры.
© Institut für Kernphysik, J. W. Goethe Universität

Следующий по размерам после гелия атом - это литий, поэтому после получения молекулы гелия, естественным стало изучение возможности зафиксировать связь между гелием и литием. В 2013 году, наконец, учёным удалось сделать и это. У молекулы литий-гелия LiHe энергия связи повыше, чем у гелий-гелия - 34±36 мК, а расстояние между атомами наоборот поменьше - около 2,9 нм. Однако и в этой молекуле атомы большую часть времени находятся в классически запрещённых состояниях под энергетическим барьером. Интересно, что потенциальная яма для молекулы LiHe настолько мала, что она может существовать только в одном колебательном энергетическом состоянии, являющемся правда расщеплённым из-за спина атома ⁷Li дублетом. Её константа вращения же настолько велика (около 40 мК), что возбуждение вращательного спектра приводит к разрушению молекулы.

Потенциалы обсуждаемых молекул (сплошные кривые) и квадрат модуля волновых функций атомов в них (штриховые кривые). Отмечены также точки PM - минимум потенциала, OTP - внешняя точка разворота для низшего энергетического уровня, MIS - средневзвешенное расстояние между атомами.
© Brett Esry/Kansas State University

Пока что полученные результаты интересны исключительно с фундаментальной точки зрения. Однако уже вызывают интерес для смежных областей науки. Так, гелиевые кластеры из многих частиц могут стать инструментом изучения эффектов запаздывания в вакууме Казимира. Изучение гелий-гелиевого взаимодействия важно и для квантовой химии, которая могла бы на этой системе тестировать свои модели. И, конечно, не вызывает сомнений, что учёные придумают и другие интересные и важные приложения для таких экстравагантных объектов как молекулы He₂ и LiHe.

Мы привыкли жить в изменяющемся мире. Меняются модели сотовых телефонов, правительства, климат. Даже Вселенная и то постоянно расширяется. Однако и новые гаджеты, и премьер-министры состоят из одних и тех же элементов, которые мы помним по таблице на стене кабинета химии, но редко задумываемся над тем, как они возникли. На ранних стадиях эволюции во Вселенной не было большинства тех элементов, из которых состоим мы с вами, а в самые первые мгновения ее существования — ни одного из них.

Наша Вселенная родилась очень горячей и сразу начала расширяться и остывать. Высокая плотность и температура делают невозможным существование сколько-нибудь сложных образований. Поэтому в очень молодой Вселенной нет не только привычных нам атомов, не только их ядер, но даже самое простое ядро, водородное, то есть одиночный протон, не может долго существовать. Вещество Вселенной являет собой кипящий «суп» из элементарных частиц и квантов излучения, которые непрерывно превращаются друг в друга согласно знаменитой формуле теории относительности E = mc 2 .

Чтобы протон мог чувствовать себя «спокойно», Вселенной надо остыть до температуры, когда энергия частиц становится меньше массы протона. Только с этого момента имеет смысл говорить о «химическом составе», и поначалу он более чем прост: это чистый водород. Помимо протонов в плотном веществе присутствуют также электроны и нейтроны, содержание определяется условиями равновесия: при столкновении протонов и электронов рождаются нейтроны, которые потом самопроизвольно распадаются на протоны и электроны, столкновение нейтрона и позитрона (античастица электрона) дает протон. Также в этих реакциях испускаются нейтрино, но они для нас сейчас не важны.

Затем в истории Вселенной наступает эпизод, в котором условия напоминают нынешнее состояние вещества в недрах звезд и водород может превращаться в более тяжелые элементы. Начинается первичный нуклеосинтез — образование тяжелых элементов из более легких. Но длится это недолго — всего несколько минут. Плотность и температура вещества быстро убывают, что приводит к резкому замедлению ядерных реакций. Поэтому успевают появиться лишь гелий и незначительное количество дейтерия, лития и бериллия.

Все начинается с самой простой реакции: протон объединяется с нейтроном, образуя ядро дейтерия — тяжелого водорода. Получив дейтерий, природа продолжает «играть в конструктор», пока это позволяют плотность и температура. Если дейтерий взаимодействует с протоном, получится гелий-3 — легкий изотоп гелия, содержащий два протона и один нейтрон, а если с нейтроном — тритий, сверхтяжелый изотоп водорода (один протон, два нейтрона). Как видим, в ядерные реакции частицы всегда вступают парами. Все дело в том, что процессы, требующие одновременного взаимодействия нескольких частиц, крайне маловероятны, подобно тому, как маловероятно случайно встретить в метро сразу двоих бывших одноклассников, которые, не сговариваясь, оказались в одном месте. Нетрудно догадаться, что на следующем этапе гелий-3 присоединяет еще один нейтрон (или тритий — протон), и образуется ядро гелия-4, состоящее из двух протонов и двух нейтронов, — одно из самых устойчивых во Вселенной.

Это ядро испускается во многих реакциях и даже получило у физиков специальное название — альфа-частица. Во многих случаях ядро гелия рассматривают как частицу, забывая на время о сложном внутреннем строении. Казалось бы, гелий-4 может и дальше присоединять протоны и нейтроны, но не тут-то было! На пути дальнейшего усложнения встают два серьезных препятствия: в природе нет устойчивых ядер с массой 5 и 8 единиц, то есть состоящих из пяти и восьми нуклонов (протонов и нейтронов). В любом сочетании пяти протонов и нейтронов одна из частиц оказывается лишней и выбрасывается из ядра, которое упорно хочет остаться альфа-частицей. И даже если попробовать объединить сразу шесть нуклонов по одной из схем «гелий-3 + тритий», «гелий-3 + гелий-3», «гелий-4 + дейтерий», все равно, как правило, образуется гелий-4, а лишняя пара нуклонов отторгается.

Перепрыгнуть этот барьер можно, только если гелий-4 сольется с ядром трития и гелия-3. Тогда рождаются соответственно литий-7 или бериллий-7. Но эти реакции идут неохотно, поскольку электрический заряд у ядер гелия вдвое больше, чем у водорода. Одинаково заряженные частицы отталкиваются, и, чтобы слить их друг с другом, нужна более высокая энергия столкновения, то есть более высокая температура. Между тем быстрое расширение в первые минуты после Большого взрыва сопровождается падением температуры и плотности вещества — Вселенная перестает быть «сама себе звездой». В итоге лития и бериллия образуется очень мало. Дальше процесс синтеза не идет — на «штурм» второго барьера (неустойчивость ядра из 8 нуклонов) практически нет охотников. А без этого не добраться до углерода — самого важного для существования жизни атома.

Всего несколько минут есть у Вселенной, чтобы поиграть в конструктор из протонов и нейтронов. Когда игра заканчивается, три четверти массы приходится на обычный водород, а четверть — на гелий-4 (поэтому все остальные элементы астрономы называют тяжелыми, а то и вовсе «металлами»). Еще остается очень небольшое количество дейтерия, гелия-3 и лития (тритий и бериллий-7 неустойчивы и вскоре распадаются). Определяя их содержание, можно получить очень важную информацию о первых минутах жизни Вселенной, но из таких материалов никакой алхимик не сделает не то что гомункулуса, но и камень (даже не философский, а самый обыкновенный). Но мы-то ведь существуем! И Земля есть. Значит, должны быть в природе какие-то тигли, в которых образуются и углерод, и кислород, и кремний. Надо только немного подождать — каких-нибудь несколько десятков миллионов лет...

Звездный тигель

После долгих «темных веков» во Вселенной зажигаются первые звезды. В их недрах при температуре около 10 миллионов градусов и плотности в несколько раз выше, чем у самого плотного металла на Земле, снова возникают условия для игры в алхимический конструктор — начинается звездный нуклеосинтез. Первое время эта игра весьма похожа на ту партию, что разыгрывалась сразу после рождения Вселенной. И все же некоторые отличия имеются. В звездном веществе вначале почти нет свободных нейтронов (в свободном состоянии они живут всего лишь около 15 минут), и поэтому дейтерий образуется при столкновении двух протонов. Один из них в процессе слияния превращается в нейтрон, испуская позитрон — положительно заряженную античастицу электрона, — чтобы избавиться от лишнего заряда. В отсутствие нейтронов из дейтерия не образуется тритий. Дейтерий довольно быстро соединяется с еще одним протоном и превращается в гелий-3. Прямой переход от него к гелию-4 путем захвата нейтрона, как в ранней Вселенной, невозможен, но тут имеется ряд обходных путей.

Два ядра гелия-3 могут, столкнувшись, образовать крайне неустойчивое ядро бериллия-6 (4 протона + 2 нейтрона), которое мгновенно разваливается на гелий-4 и пару протонов. Другой вариант сложнее: в реакциях гелия-3 и гелия-4 рождаются ядра бериллия и лития с атомным весом 7. Однако, присоединяя еще один протон, они становятся неустойчивыми (помните — все ядра из 8 нуклонов крайне нестабильны) и сразу разваливаются на два ядра гелия-4. В общем, все дороги ведут в Рим.

Итогом любого из этих процессов становится превращение четырех протонов в одно ядро гелия-4. Важно, что масса ядра гелия-4 немного (примерно на 0,7%) меньше массы четырех протонов. Куда исчезает излишек массы? В соответствии все с той же формулой E = mc 2 он превращается в энергию. Именно за счет этого, как говорят физики, дефекта массы и светят звезды. И, что немаловажно, звездный термоядерный реактор умеет сам себя регулировать: если выделяется слишком много энергии, звезда немного расширяется, вещество охлаждается и скорость реакции, которая очень сильно зависит от температуры, снижается. Если же энергии мало, то происходит обратный процесс. В итоге звезда стабильно поддерживает температуру на уровне, соответствующем достаточно низкому темпу реакций. Поэтому звезды (по крайней мере, некоторые из них) живут достаточно долго, чтобы хватило времени для биологической эволюции и появления столь высокоорганизованных существ, как мы с вами.

В конце концов запасы водорода в звезде исчерпываются. Надо двигаться дальше, а мы помним, что это непросто, поскольку не существует стабильных ядер с массой 5 и 8. Но природа находит выход. Вспоминая встречу одноклассников в метро, можно сказать, что хотя случайно столкнуться сразу троим крайне маловероятно, но если встретились двое и какое-то время едут вместе, то шансы, что по пути к ним добавится третий, увеличиваются. Нечто подобное происходит при ядерном горении гелия. В начале две альфа-частицы, сливаясь, образуют неустойчивое ядро бериллия-8. Жизнь его чрезвычайно коротка, 3.10 -16 с (это меньше одной миллионной от одной миллиардной секунды), но при достаточно высокой плотности и температуре даже этого крошечного интервала хватает, чтобы иногда в реакцию с бериллием успела вступить еще одна альфа-частица. И — вуаля! — углерод-12 собственной персоной!

Затем уже углерод может захватывать альфа-частицы, давая кислород. Таким образом, два основных элемента, необходимых для появления жизни, рождаются в звездах. Превращение углерода в кислород идет настолько эффективно, что последнего во Вселенной оказывается даже несколько больше углерода. Если бы параметры ядерных частиц были чуть иными, то почти весь углерод «перегорал» бы в кислород, что делало бы жизнь в той форме, которую мы знаем, крайне редкой или даже невозможной. Может быть, в каких-то других вселенных частицы устроены несколько иначе и там углерода мало, но тогда там нет и наблюдателей (по крайней мере, подобных нам).

Ядра, элементы и изотопы

Протоны и нейтроны (собирательно их называют нуклонами) не являются в строгом смысле слова элементарными частицами. Они состоят из трех кварков, накрепко связанных сильным ядерным взаимодействием. Разбить нуклон на отдельные кварки невозможно: требуемой для этого энергии достаточно для рождения новых кварков, которые, объединившись с осколками исходного нуклона, вновь образуют составные частицы. Сильное взаимодействие не полностью замкнуто внутри нуклонов, а действует еще и на небольшом расстоянии от них. Если два нуклона, скажем, протон и нейтрон, сблизятся почти вплотную, ядерные силы свяжут их вместе и появится составное атомное ядро — в данном случае дейтерий (тяжелый водород). Соединяя вместе разное число протонов и нейтронов, можно получить все многообразие ядер, но далеко не каждое из них будет устойчивым. Ядро, в котором слишком много протонов или нейтронов, разваливается на части, даже не успев толком образоваться. Физикам известно более трех тысяч сочетаний протонов и нейтронов, способных хотя бы некоторое время продержаться вместе. Есть ядра, которые живут лишь краткую долю секунды, другие — десятки лет, а есть и такие, что способны ждать своего часа миллиарды лет. И лишь несколько сотен ядер считаются стабильными — их распад никогда не наблюдался. Химики обычно не столь дотошны, как физики, и различают не любые два ядра, а только разные элементы, то есть ядра с разным числом протонов. Собственно, химики вообще в ядро не заглядывают, а изучают лишь поведение электронов, окружающих его в спокойной обстановке. Их число как раз равно числу протонов, что делает атомы электрически нейтральными. Всего на сегодня известно 118 элементов, но только 92 из них обнаружены в природной среде, остальные получены искусственно на ядерных реакторах и ускорителях. Большинство элементов представлено ядрами с разным числом нейтронов. Такие вариации называют изотопами. У некоторых элементов известно до сорока изотопов, при упоминании их различают, указывая число нуклонов в ядре. Например, уран-235 и уран-238 — два изотопа 92-го элемента урана со 143 и 146 нейтронами соответственно. Большинство изотопов каждого элемента (а у некоторых и все) неустойчивы и подвержены радиоактивному распаду. Это делает изотопный состав важным источником информации об истории вещества. Например, по соотношению радиоактивных изотопов и продуктов их распада определяют возраст органических остатков, горных пород, метеоритов и даже некоторых звезд. Впрочем, и соотношение стабильных изотопов тоже может о многом рассказать. Например, климат Земли в далеком прошлом определяют по изотопам кислорода-16 и -18 в отложениях антарктических льдов: молекулы воды с тяжелым изотопом кислорода менее охотно испаряются с поверхности океана, и их становится больше при теплом климате. Для любых таких изотопных исследований принципиально, чтобы изучаемый образец с момента возникновения не обменивался веществом с окружающей средой.

Игры для взрослых

Одиночные звезды в два раза легче нашего Солнца , останавливаются на этапе синтеза гелия. Более тяжелые звезды производят углерод и кислород, и только самые большие, превосходящие 10 солнечных масс, могут в конце жизни продолжить игру в элементы. После истощения запасов гелия их внутренние области сжимаются, разогреваются, и в них начинается «горение» углерода. Два ядра углерода, соединяясь, дают неон и альфа-частицу. Или натрий и протон. Или магний и нейтрон. Появившиеся протоны и нейтроны тоже не пропадают зря. Они идут в дело, превращая углерод в азот, кислород и, далее, за счет захвата альфа-частиц в неон, кремний, магний и алюминий. Таким образом, нам уже есть из чего сделать впоследствии твердь земную.

После углерода вне очереди начинает «гореть» неон, причем делает он это «неправильным» образом: вместо того, чтобы сразу слиться с каким-нибудь другим ядром и увеличить свою массу, ядра неона под действием особо энергичных гамма-квантов распадаются на кислород и альфа-частицу. А затем получаемые альфа-частицы, взаимодействуя с другими ядрами неона, дают магний. Так что в итоге на два ядра неона возникают одно кислородное и одно магниевое.

После истощения запасов неона ядро звезды становится кислородно-магниевым, оно снова поджимается, температура растет и игра продолжается. Теперь ядра кислорода, попарно сливаясь, превращаются в кремний или серу. Кроме того, появляется немного аргона, кальция, хлора и других элементов.

Следующий на очереди — кремний. Напрямую два ядра кремния слиться не могут — из-за большого заряда слишком велико электрическое отталкивание между ними. Поэтому начинает идти множество разных реакций с участием альфа-частиц. Термин «горение кремния» достаточно условен, поскольку разных каналов реакций в самом деле много. На этой стадии возникают разные элементы вплоть до железа.

Железо (и близкий к нему никель) выделяется из всех элементов тем, что у него максимальная энергия связи. Нуклоны нельзя упаковать эффективнее: и на то, чтобы разбить ядро железа на части, и на то, чтобы создать из него более тяжелые ядра, требуется затратить энергию. Поэтому первое время было непонятно, как может образование элементов в звездах идти дальше железа, и существование во Вселенной тяжелых ядер, как, например, у золота или урана, оставалось совершенно необъяснимым. Подход к объяснению был найден в середине 1950-х годов, когда были предложены сразу два механизма образования в звездах элементов тяжелее железа. Оба они основываются на способности ядер захватывать нейтроны.

Великие медленные короли

Первый из этих механизмов получил название медленного захвата нейтронов, или s-процесса (от англ. slow — «медленный»). Он протекает в конце жизни звезд с массой от 1 до 3 солнечных, когда они достигают стадии красного гиганта. Причем идет этот процесс не в плотном горячем ядре звезды, а в слоях, лежащих выше. У таких относительно легких звезд стадия гиганта имеет большую продолжительность, измеряемую десятками миллионов лет, и этого хватает для существенного преобразования вещества.

Отраженная в названии медлительность s-процесса связана с тем, что он протекает в течение длительного времени при низкой концентрации нейтронов. Однако и небольшое количество нейтронов надо откуда-то брать — никакого запаса этих частиц быть не может. В звездах-гигантах идет несколько видов реакций, в которых выделяются нейтроны. Например, углерод-13, захватив альфа-частицу, превращается в кислород-16, и при этом испускается нейтрон. Свободные нейтроны, поскольку им не мешает кулоновское отталкивание, легко проникают в ядра атомов и увеличивают их массу. Правда, если нейтронов станет слишком много, ядро потеряет устойчивость и развалится на части. Но поскольку свободных нейтронов в красных гигантах немного, у ядра есть время, чтобы относительно безболезненно ассимилировать пришельца, испустив при необходимости электрон. При этом один из нейтронов в ядре становится протоном, и заряд ядра на единицу увеличивается, что соответствует превращению одного элемента в другой — следующий по порядку в таблице Менделеева. Таким путем можно получить очень тяжелые элементы, например свинец и барий. Или технеций. В свое время открытие этого тяжелого и достаточно быстро распадающегося элемента в атмосферах красных гигантов было даже истолковано некоторыми учеными как свидетельство в пользу существования внеземных цивилизаций! На самом же деле он просто выносится из недр на поверхность за счет перемешивания вещества.

Когда жизнь такого красного гиганта подходит к концу, его ядро превращается в плотного белого карлика, а оболочка рассеивается в окружающем пространстве за счет звездного ветра или образования планетарной туманности. Тем самым межзвездная среда пополняется наработанными за время жизни звезды тяжелыми элементами, и постепенно химический состав Галактики эволюционирует за счет звездного нуклеосинтеза. К тому моменту, когда образовалась Солнечная система, этот процесс шел уже 8 миллиардов лет, и около 1% межзвездного вещества успело превратиться в тяжелые элементы, из которых, в частности, сложена наша планета.

Катализаторы звездной жизни

В массивных звездах переработка водорода в гелий идет иначе, нежели в звездах-карликах вроде Солнца. При температуре около 20 миллионов градусов работает так называемый углеродно-азотно-кислородный (CNO) цикл. Углерод в нем играет роль ядерного катализатора, а сам в реакциях не расходуется. Чтобы реакции были эффективны, его нужно совсем немного, но все же CNO-цикл возможен только в звездах современного химического состава, вещество которых уже обогатилось углеродом в ходе жизни предыдущих поколений звезд. Углерод-12 захватывает протон и превращается в азот-13, а тот, испустив позитрон, — в углерод-13. Далее, захватывая подряд два протона, он становится сначала азотом-14 и потом кислородом-15. Тот снова выбрасывает позитрон и превращается в азот-15, который, сталкиваясь с уже четвертым по счету протоном, распадается на альфа-частицу (то есть ядро гелия) и углерод-12. В итоге мы возвращаемся к исходному ядру углерода, но по пути превращаем 4 протона в ядро гелия. Правда, изредка (в одном из 880 случаев) на последнем этапе цикла азот-15 может слиться с протоном в устойчивое ядро кислорода-16. Это приводит к медленному расходованию катализатора-углерода.

Орден Феникса

Практически все атомы вашего тела в свое время побывали в недрах звезд. Многие из них пережили катастрофические взрывы сверхновых , и, более того, некоторые образовались именно в моменты таких взрывов. Мы, как феникс, родились из пепла, но из пепла звезд. Взрывы сверхновых очень важны уже потому, что это эффективный способ выбросить в космос наработанные в звезде элементы. Если итогом взрыва, как это чаще всего бывает, становится нейтронная звезда, в нее превращается только относительно небольшое ядро красного гиганта, состоящее в основном из железа и никеля. Например, при начальной массе звезды в 20 солнечных в нейтронную звезду превратится не более 7% вещества, все остальное выметается взрывом в космос и доступно для формирования новых светил.

Однако поддержанием этого космического круговорота вещества роль сверхновых не исчерпывается. Прямо во время взрыва в них могут образовываться новые элементы. Примерно 10 секунд новорожденная нейтронная звезда успевает побыть «алхимиком». Перед самым взрывом структура массивной звезды подобна луковице. Ядро окружено несколькими оболочками, состоящими из все более легких элементов. В тот самый момент, когда ядро начинает катастрофически сжиматься, превращаясь в нейтронную звезду или черную дыру, по лежащим выше слоям от центра наружу пробегает волна взрывного ядерного горения. В результате химический состав вещества сильно сдвигается в сторону тяжелых элементов.

Считается, что наиболее эффективно обогащают Вселенную тяжелыми элементами звезды с массами от 12 до 25 солнечных. Их железное ядро окружает мощная кремниево-кислородная оболочка, которая после сброса дает элементы от натрия до германия (включая железо). В более массивных звездах слишком много вещества, состоящего из тяжелых элементов, проваливается внутрь черной дыры, и наружу ускользают только достаточно легкие. Звезды поменьше, с массами в 8—12 солнечных, не обладают такой оболочкой, и поэтому элементов группы железа в них образуется мало. Зато... появляются много более тяжелые элементы.

Свежий нейтринный ветер

Когда чудовищные силы гравитации сжимают уставшее сопротивляться ядро звезды, ядра атомов буквально спрессовываются друг с другом. Носящиеся между ними электроны, оказавшись в ловушке, вдавливаются в ядра и сливаются с протонами, превращая их в нейтроны. При этом выделяются нейтрино — трудноуловимые частицы, которые обычно легко пронизывают всю толщу звезды и уходят в космос. Однако в момент образования нейтронной звезды их становится так много, что пренебрегать ими уже нельзя.

Возникает так называемый нейтринный ветер. Подобно тому как давление света в массивных звездах приводит к истеканию вещества в виде звездного ветра, нейтрино увлекают протоны и нейтроны. Даже если вначале нейтронов было не слишком много, они появляются в результате реакций между протонами и нейтрино. В веществе образуется избыток нейтронов, которые могут проникать в ядра, формируя все более и более тяжелые изотопы. Из-за огромного потока нейтронов ядра ими буквально переполняются, отчего становятся крайне нестабильными и начинают очень быстро избавляться от избыточной нейтронизации — нейтроны в них превращаются в протоны. Но едва только это происходит, как новые волны нейтронов опять доводят ядра «до предела».

Вся эта вакханалия, длящаяся лишь несколько секунд, получила название r-процесса (от англ. rapid — «быстрый»). Ее итогом становятся ядра всех масс вплоть до самых тяжелых. Например, для выявления последствий r-процесса часто ищут следы такого редкого элемента, как европий, поскольку он, вероятнее всего, рождается только с помощью этого механизма. В r-процессе образуются, например, платина и актиноиды — тяжелые радиоактивные элементы, к которым относится, в частности, уран. Относительное содержание изотопов последнего, равно как и тория, часто используют для оценки возраста звезд.

Также в ветре новорожденной нейтронной звезды могут идти реакции с участием заряженных частиц — протонов и ядер гелия, — увлеченных потоком нейтрино. Так образуются цирконий, серебро, йод, молибден, палладий и многие другие элементы. Теория всех этих процессов очень сложна, поскольку одновременно требуется учитывать множество эффектов, среди которых не все еще полностью ясны. Причем речь тут не только об астрофизических эффектах, но и о неопределенностях в рамках ядерной физики — далеко не все параметры идущих на данном этапе реакций точно определены.

Продолжаются и споры ученых относительно того, может ли этот сценарий претендовать на полноту: способен ли он объяснить рождение тяжелых элементов в наблюдаемых нами пропорциях. Поэтому исследования в этой области идут полным ходом, и, возможно, нас еще ждут интересные открытия. Например, обсуждаются сценарии, в которых вещество, захваченное в сверхсильных магнитных полях новорожденных магнитаров (намагниченных нейтронных звезд), позволяет производить тяжелые элементы в r-процессе. Для проверки подобных идей требуются сложные трехмерные расчеты на суперкомпьютерах, которые еще только предстоит произвести.

Гомункулус

И вот наконец по прошествии миллиардов лет в гигантской реторте Вселенной сложились условия для того, чтобы смог появиться гомункулус. Жизнь, какой мы ее знаем, не могла бы возникнуть в течение первого миллиарда лет после Большого взрыва — тогда просто не было в достаточном количестве многих необходимых элементов.

Каждая частичка нашего тела прошла через космическое горнило. Часть атомов водорода могла остаться неизменной со времени «первых трех минут», но основная доля составляющих его элементов появилась в звездах на стадии устойчивого термоядерного горения. Многие ядра возникли во время вспышек сверхновых. Другие — были выброшены звездами в виде кружева планетарных туманностей. Возможно, крохотная доля ядер связана со столкновениями космических лучей с веществом межзвездного газа, когда идут интереснейшие «реакции скалывания», в которых быстрая частица выбивает ядра легких элементов. Для появления человека понадобилась целая «лаборатория» космического алхимика.

Состав вещества во Вселенной продолжает медленно изменяться и в наши дни: усилиями триллионов звезд доля элементов тяжелее гелия постепенно растет. Наблюдения показывают, что у звезд с большей «металличностью», то есть содержанием элементов тяжелее гелия, выше вероятность возникновения планетных систем. А значит, химическая эволюция Вселенной пока благоприятствует появлению разумных существ, сделанных из «звездного вещества». И все же стоит помнить, что подобной переработке подвергается лишь малая часть материи во Вселенной. В целом же водород так и останется самым распространенным ее элементом, просто потому, что далеко не все вещество сможет попасть в звезды (например, у межгалактического газа нет такой перспективы). Если же вспомнить, что и это вещество составляет от силы пять процентов на фоне колоссальной массы темной материи и темной энергии, то вы почувствуете, насколько же невероятно повезло в этом тому комочку вещества, который смог оглянуться по сторонам и оценить величие окружающего мироздания.

Литий

Гелий

Гелий занимает вторую позицию в таблице Менделеева после водорода. Атомная масса гелия - 4,0026. Он представляет собой инертный газ без цвета. Его плотность - 0,178 грамм на литр. Сжижается гелий труднее всех известных газов лишь при температуре минус 268,93 градуса Цельсия и практически не отвердевает. Охлажденный до минус 270,98 градуса Цельсия гелий приобретает сверхтекучесть. Образуется гелий чаще всего в результате распада крупных атомов. На Земле он распространен в малых количествах, но на Солнце, где идет интенсивный распад атомов, гелия очень много. Все эти данные являются как бы паспортными и хорошо известны.

Займемся топологий гелия, и для начала определим его размеры. Учитывая, что атомная масса гелия в четыре раза больше водородной, а атом водорода в 1840 раз тяжелее электрона, получим массу атома гелия равной 7360 электронам; следовательно, общее количество эфирных шариков в атоме гелия составляет приблизительно 22 000; длина шнура атома и диаметр исходного тора соответственно равны 7360 и 2300 эфирным шарикам. Чтобы зримо представить соотношение толщины шнура исходного тора атома гелия и его диаметра, изобразим на листе бумаги ручкой окружность диаметром в 370 миллиметров, и пусть след от ручки имеет ширину в одну треть миллиметра; полученная окружность даст нам указанное представление. Один электрон (строенные эфирные шарики) будет занимать на нарисованной окружности всего лишь 0,15 миллиметров.

Скручивание исходного тора в законченную форму атома гелия происходит следующим образом. Сначала окружность сплющивается в овал, потом - в форму гантели, далее - в восьмерку, а затем петли восьмерки развертываются так, что возникает перехлест. Между прочим, перехлест у более крупных атомов не образуется, и объясняется это тем, что длина шнура у атома гелия пока еще не большая, и при стремлении средних точек шнура сблизиться - края (петли) вынуждены развернуться. Далее края изогнутся и начнут сближаться.

До этого момента топология атома гелия, как мы видим, схожа с топологией атома изотопа водорода - трития, но если у трития не хватало сил на замыкание краев (не хватало длины его шнура), то у гелия петли надвигаются одна на другую и таким образом замыкаются. Для того, чтобы убедиться в надежности соединения петель, достаточно проследить за расположением их присасывающих сторон: у внутренней петли она будет снаружи, а у внешней - изнутри.

Топологию атомов очень удобно представлять в виде проволочных моделей; для этого достаточно использовать в меру упругую, но достаточно пластичную проволоку. Атом водорода изобразится в виде обычного кольца. Увеличим длину куска проволоки в четыре раза (во столько раз атом гелия тяжелее атома водорода), свернем его в кольцо, спаяем концы и продемонстрируем процесс скручивания атома гелия. При скручивании мы должны постоянно помнить, что радиусы гибки не должны быть меньше радиуса кольца, представляющего собой атом водорода; это как бы условие, задаваемое упругостью шнура - торовых оболочек. (В натуре, напомним, минимальный радиус равнялся 285 эфирным шарикам.) Принятый минимальный радиус гибки определяет топологию всех атомов; и еще: следствием одинаковых радиусов гибки будут одинаковые размеры присасывающих петель (своего рода - их стандартизация), и поэтому-то они образуют устойчивую валентность, выраженную в способности соединять различные атомы между собой. Если бы петли имели различные размеры, их соединение было бы проблематичным.



Доводя процесс скручивания проволочной модели атома гелия до конца, мы обнаружим, что соединенные внахлест петли надвинуты одна на другую не до упора. Точнее говоря, они предпочли бы закрутиться еще дальше, но не пускает упругость шнура, то есть условие минимального радиуса. И при всякой попытке петель продвинуться навстречу еще дальше упругость шнура отбросит их назад; отскочив, они снова устремятся вперед, и снова упругость отбросит их назад; при этом атом гелия будет то съеживаться, то распускаться, то есть возникает пульсация. Пульсация, в свою очередь, породит стоячее тепловое поле вокруг атома и сделает его пушистым; так мы пришли к выводу, что гелий - газ.

На основании топологии можно объяснить и прочие физические и химические характеристики гелия. О его инертности, например, говорит то, что его атомов нет ни открытых присасывающих петель, ни присасывающих желобов: он не способен вообще соединяться с другими атомами, поэтому - всегда атомарен и практически не отвердевает. Цвета гелий не имеет потому, что у его атомов нет прямых “звучащих” участков шнуров; а сверхтекучесть у него возникает вследствие всякого отсутствия вязкости (слипание атомов), округлой формы и малого размера атома.

Как и у водорода, у гелия атомы не имеют одного размера: одни из них больше, другие - меньше, а в общем они занимают почти все весовое пространство от водорода (трития) до следующего за гелием лития; менее прочные изотопы гелия, конечно, давно уже распались, но и существующих в настоящее время можно насчитать не одну сотню.

В таблице Менделеева гелий лучше располагать не в конце первого периода - в одном ряду с водородом, а в начале второго периода перед литием, потому что его атом, как и атомы всего этого периода, представляет собой одиночную конструкцию (одиночный клубочек), в то время как атом следующего инертного газа неона выглядит уже в виде спаренной конструкции, похожей по этому признаку на атомы третьего периода.

Литий занимает третий номер в таблице Менделеева; его атомная масса равна 6,94; он относится к щелочным металлам. Литий - самый легкий из всех металлов: его плотность составляет 0,53 грамма в сантиметре кубическом. Он серебристо-белого цвета, с ярким металлическим блеском. Литий мягок и легко режется ножом. На воздухе он быстро тускнеет, соединяясь с кислородом. Температура плавления лития равна 180,5 градуса Цельсия. Известны изотопы лития с атомными весами 6 и 7. Первый изотоп используется для получения тяжелого изотопа водорода - трития; другой изотоп лития используется в качестве теплоносителя в котлах ядерных реакторов. Таковы общие физико-химические данные лития.

Топологию атомов лития начнем опять же с уяснения размеров исходного тора. Теперь мы знаем, что у каждого химического элемента, и в том числе у лития, существует большое количество изотопов, измеряемое сотнями и тысячами; поэтому размеры атомов будем указывать от … и до …. Но что значат эти пределы? Можно ли их определить точно? Или они указываются приблизительно? И каково количественное соотношение изотопов? Сразу скажем: однозначных ответов на поставленные вопросы нет; всякий раз необходимо внедряться в конкретную топологию атомов. Разберемся в этих вопросах на примере лития.

Как мы заметили, переход от протия к гелию с точки зрения топологии происходит планомерно: с увеличением размера исходного тора –постепенно изменяется окончательная конфигурация атомов. Но физические и, особенно, химические свойства атомов при переходе от протия к гелию изменяются более чем существенно, скорее - радикально: от всеобщей притягательности протия до полной инертности гелия. Где, на каком изотопе это произошло?

Подобные скачки свойств связаны с размерными скачками изотопов. Большой атом водорода (тритий), приобретающий очертания атома гелия, оказывается радиоактивным, то есть непрочным. Вызвано это тем, что его загнутые края петель не достигают друг друга, и можно представить, как они трепыхаются, устремленные навстречу. Они напоминают руки двух людей в расходящихся лодках, бессильно стремящихся дотянуться и сцепиться. Внешнее эфирное давление будет давить на консоли трепыхающихся петель атомов так сильно, что это до добра не доведет; получив со стороны даже небольшое дополнительное сдавливание, консоли отломятся - не выдержат крутого изгиба шнура, и атом разрушится; так оно и происходит. Поэтому можно сказать, что среди изотопов на границах существующих физико-химических переходов наблюдаются провалы: там изотопов просто нет.

Подобный провал существует между гелием и литием: если атом - уже не гелий, но еще не литий, то он непрочен, и его уже давно в земных условиях нет. Поэтому изотоп лития с атомным весом, равным шести, то есть с длиной шнура тора в 11 эфирных шариков, встречается очень редко и, как было сказано, используется для получения трития: его легко разорвать, укоротить и получить в результате изотоп водорода.

Таким образом, мы, вроде, определились с наименьшими размерами атома лития: это - 11 связанных электронов. Что же касается его верхнего предела, то тут возникает некоторая загвоздка: дело в том, что, согласно топологии, атом лития не имеет особых отличий от атома следующего за ним бериллия (мы в этом скоро убедимся), и между изотопами того и другого элементов нет никакого провала. Поэтому пока не станем указывать верхний предел размера атома лития.

Проследим за формообразованием атома лития. Исходная окружность только что возникшего микрозавихрения с указанными выше размерами будет стремится превратится в овал; только у лития овал - очень длинный: приблизительно в 8 раз длиннее диаметра концевого закругления (будущей петли); это - очень вытянутый овал. Начало свертывания атома лития похоже на такое же начало у больших атомов водорода и у гелия, но дальше происходит отклонение: восьмерка с перехлестом, то есть с разворотом петель, не возникает; дальнейшее сближение длинных сторон (шнуров) овала до полного их соприкосновения сопровождается одновременным загибом концов навстречу друг другу.

Почему не образуется восьмерка с перехлестом? Прежде всего потому, что овал очень длинный, и даже его полный прогиб в гантелю до соприкосновения шнуров в середине не вызывает их сильных изгибов; поэтому потенция разворота крайних петель - очень слабая. А во-вторых, развороту в какой-то степени противодействует начавшийся загиб концов овала. Другими словами: активный момент сил, стремящийся развернуть концевые петли, очень мал, а момент сопротивления развороту - большой.

Для наглядности воспользуемся резиновыми кольцами, например теми, что применяются в уплотнениях машин. Если пережимать кольцо малого диаметра, то оно обязательно свернется в восьмерку с перехлестом; а если выбрать кольцо большого диаметра, то его пережим до полного соприкосновения шнуров разворот концевых петель не вызывает. К слову: эти резиновые кольца также очень удобны для моделирования топологии атомов; если, конечно, имеется их широкий набор.

Загиб концов овала вызывается, как мы уже знаем, возмущением эфира между ними: чуть-чуть стронувшись с идеально прямого положения, они уже вынуждены будут сближаться до полного соприкосновения. Значит, в разные стороны концы отгибаться не могут. Но с направлением загиба у них есть выбор: либо так, что присасывающие стороны концевых петель окажутся снаружи, либо - изнутри. Первый вариант более вероятен, та как момент от сил отталкивания вращающихся оболочек шнура от прилегающего эфира на внешних точках петель будет больше, чем на внутренних.

Сближающиеся боковые стороны овала очень скоро войду в соприкосновение, смычка шнуров распространится от центра к концам и остановится только тогда, когда на концах окончательно сформируются петли с минимально допустимыми радиусами изгиба. Одновременно происходящие загибы и взаимное сближение этих петель приводят к столкновению их вершин, после чего в дело вступают их присасывающие стороны: петли, присасываясь, ныряют вглубь; и завершается процесс формирования конфигурации атома лития тем, что сместившиеся петли упираются своими вершинами в спаренные шнуры ровно по центру конструкции. Отдаленно такая конфигурация атома напоминает сердечко или, точнее, яблоко.

Напрашивается сам собой первый вывод: атом лития начинается тогда, когда вершины спарившихся первичных петель, нырнувшие внутрь конструкции, дотянутся до шнуров середины атома. А до того был еще не литий, а какой-то иной элемент, которого теперь уже нет в природе; его атом был крайне неустойчив, очень сильно пульсировал, был поэтому пушистым и относился к газам. Но и атом самого начального изотопа лития (мы его определили состоящим из 11 000 связанных электронов) тоже получается не очень прочным: радиусы изгиба его петель - предельные, то есть упругие шнуры изогнуты до предела, и при всяком внешнем воздействии они готовы лопнуть. У более крупных атомов это слабое место устраняется.

Представляя по результатам топологии образ атома лития, можно оценить то, что получилось. Две первичные петли замкнулись и нейтрализовались, также нейтрализованными оказались вторичные петли по обе стороны от первичных. Спаренные шнуры создали желоб, и этот желоб идет по всему контуру атома - он как бы замкнут в кольцо, - и его присасывающая сторона оказалась снаружи. Отсюда следует, что атомы лития могут соединяться и между собой и с другими атомами только с помощью своих присасывающих желобов; петлевое молекулярное соединение атом лития образовать не может.

Сильно выпуклые присасывающие желоба атомов лития могут соединяться между собой только на коротких участках (теоретически - в точках), и поэтому пространственная конструкция из соединившихся между собой атомов лития получается очень рыхлой и разреженной; отсюда - малая плотность лития: он почти в два раза легче воды.

Литий - металл; его металлические свойства вытекают из особенностей форм его атомов. Можно сказать по-другому: те особые свойства лития, которые обусловлены особыми формами его атомов и которые делают его непохожим физически и химически на другие вещества, названы металлическими; рассмотрим часть из них:

  • электропроводность: она возникает по той причине, что атомы имеют кольцеобразную форму из спаренных шнуров, создающих присасывающие желоба, открытые наружу, охватывающие атомы по контуру и замыкающиеся сами на себе; электроны, прилипшие к этим желобам, могут беспрепятственно перемещаться по ним (напомним еще раз; что трудности возникают при отрыве электронов от атомов); а так как атомы соединяются между собой теми же желобами, то у электронов есть возможность перескакивать с атома на атом, то есть смещаться по телу;
  • теплопроводность: упруго-изогнутые шнуры атома образуют чрезвычайно жесткую упругую конструкцию, которая практически не поглощает низкочастотные крупноамплитудные (тепловые) удары соседних атомов, а передает их дальше; и если бы не было в толще атомов всевозможных нарушений в их контактах (дислокаций), то тепловая волна распространялась бы с огромной скоростью;
  • блеск: высокочастотные малоамплитудные удары световых волн эфира легко отражаются от напряженно изогнутых шнуров атомов и уходят прочь, подчиняясь законам волнового отражения; у атома лития нет прямых участков шнуров, поэтому у него нет собственного “звучания”, то есть нет собственного цвета - литий поэтому серебристо-белый с сильным блеском на срезах;
  • пластичность: округлые атомы лития могут соединяться между собой как угодно; они могут, не разрываясь, обкатываться друг по другу; и это выражается в том, что тело из лития может менять свою форму, не теряя своей целостности, то есть быть пластичным (мягким); в результате литий режется без особого труда ножом.

На примере отмеченных физических особенностей лития можно уточнить само понятие металла: металл есть вещество, состоящее из атомов с круто изогнутыми шнурами, образующими контурные присасывающие желоба, открытые наружу; атомы ярко выраженных (щелочных) металлов не имеют открытых присасывающих петель и прямых или плавно изогнутых участков шнуров . Поэтому литий в нормальных условиях не может соединиться с водородом, так как атом водорода представляет собой петлю. Их соединение может быть только гипотетическим: при глубоком холоде, когда водород отвердевает, его молекулы могут соединяться с атомами лития; но по всему видно, что их сплав был бы таким же мягким, как сам литий.

Заодно уточним понятие пластичности: пластичность металлов определяется тем, что их округлые атомы могут обкатываться друг по другу, изменяя взаиморасположение, но не теряя контакты между собой .

Бериллий занимает четвертую позицию в таблице Менделеева. Его атомная масса равна 9,012. Он представляет собой светло-серый металл с плотностью 1,848 грамма в кубическом сантиметре и температурой плавления 1284 градуса Цельсия; он - твердый и в то же время хрупкий. Конструкционные материалы на основе бериллия обладают одновременно и легкостью, и прочностью, и стойкостью к высоким температурам. Сплавы бериллия, будучи в 1,5 раза легче алюминия, тем не менее прочнее многих специальных сталей. Свою прочность они сохраняют до температуры 700 … 800 градусов Цельсия. Бериллий стоек к радиации.

По своим физическим свойствам, как видно, бериллий сильно отличается от лития, но по топологии атомов они почти не различимы; отличие лишь в том, что атом бериллия как бы “сшит с запасом”: если атом лития напоминает тесный костюм школьника на взрослом человеке, то атом бериллия, наоборот, - просторный костюм взрослого на фигуре ребенка. Избыточная длинна шнура атома бериллия при одинаковой конфигурации его с литием образует более пологие очертания с радиусами изгибов, превышающими минимальные критические. Такой “запас” кривизны у атомов бериллия позволяет их деформировать вплоть до выхода на предел изгибов шнуров.

Топологическое сходство атомов лития и бериллия говорит о том, что четкой границы между ними нет; и невозможно сказать, какой наибольший размер имеет атом лития и какой наименьший - атом бериллия. Ориентируясь только на табличный атомный вес (а он усредняет все значения), можно считать, что шнур среднего по размерам атома бериллия состоит приблизительно из 16 500 связанных электронов. Верхний предел размеров атомов изотопов бериллия упирается в минимальный размер атома следующего элемента - бора, конфигурация которого резко отличается.

Запас по радиусам кривизны шнуров атомов бериллия сказывается в первую очередь на соединении их между собой в момент затвердевания металла: они примыкают друг к другу уже не короткими (точечными) участками как у лития, а длинными границами; контуры атомов как бы подстраиваются друг под друга, деформируясь и прилегая друг к другу максимально возможным образом; поэтому такие соединения очень прочны. Свою упрочняющую способность атомы бериллия проявляют и в соединениях с атомами других металлов, то есть в сплавах, в которых бериллий используется в качестве присадок к тяжелым металлам: заполняя пустоты и присасываясь своими гибкими желобами к атомам основного металла, атомы бериллия скрепляют их как клей, делая сплав очень прочным. Отсюда следует, что прочность металлов определяется длинами слипшихся участков присасывающих желобов атомов : чем длиннее эти участки, тем прочнее металл. Разрушение металлов происходит всегда по поверхности с самыми короткими слипшимися участками.

Запас по радиусам изгиба шнуров атомов бериллия позволяет им деформироваться без изменения соединений между собой; в результате деформируется все тело; это уже - упругая деформация. Упругая она потому, что в любом исходном состоянии атомы имеют наименее напряженные формы, а при деформации вынуждены терпеть некоторые “неудобства”; и стоит только деформирующей силе исчезнуть, как атомы возвратятся в свои исходные менее напряженные состояния. Следовательно, упругость металла определяется избытком длин шнуров его атомов, позволяющим их деформировать без изменения участков взаимного соединения .

С упругостью бериллия связана его жаропрочность; она выражается в том, что тепловые движения атомов могут происходить в пределах упругих деформаций, не вызывающих изменение соединений атомов между собой; поэтому в общемжаропрочность металла определяется , как и упругость, избытком длин шнуров его атомов . Снижение прочности металла при высоком нагреве объясняется тем, что тепловые движения его атомов уменьшают участки соединений их между собой; а когда эти участки полностью исчезают, происходит плавление металла.

Упругости бериллия сопутствует его хрупкость. Хрупкость может рассматриваться в общем случае как антипод пластичности: если пластичность выражается в возможности атомов изменять свои взаиморасположения с сохранением соединяющих участков, то хрупкость выражается, в первую очередь, в том, что у атомов такой возможности нет. Всякое взаимное смещение атомов хрупкого материала может происходить только при полном разрыве их связей; у этих атомов нет иных вариантов соединений. У упругих материалов (у металлов) хрупкость характеризуется еще и тем, что она - как бы прыгающая: возникшая в результате чрезмерных напряжений трещина с быстротой молнии распространяется по всему сечению тела. Для сравнения: кирпич под ударами молотка может крошиться (это - тоже хрупкость), но не раскалываться. “Прыгающая” хрупкость бериллия объясняется тем, что его атомы соединены между собой не лучшим образом, и все они напряжены; и стоит только нарушиться одной какой-то связи, как граничные атомы стремительно начнут “выпрямляться” в ущерб соединений со своими соседями; связи последних также начнут разрушаться; и этот процесс примет цепной характер. Следовательно,хрупкость упругих металлов зависит от степени деформаций соединенных между собой атомов и от отсутствия возможности изменения связей между ними .

Радиационная стойкость бериллия объясняется все тем же запасом в размерах его атомов: шнур атома бериллия имеет возможность спружинить под жестким радиационным ударом, не доходя до своей критической кривизны, и тем самым сохраниться неразрушенным.

И тем же можно объяснить светло-серый цвет бериллия и отсутствие у него яркого металлического блеска, такого, например, как у лития: световые волны эфира, падая на нежесткие шнуры поверхностных атомов бериллия, поглощаются ими, и только часть из волн отражается и создает рассеянный свет.

Плотность бериллия почти в четыре раза больше чем у лития только потому, что плотность шнуров его атомов выше: они соединяются между собой не в точках, а длинными участками. В то же время в сплошной своей массе бериллий - достаточно рыхлое вещество: он всего лишь в два раза плотнее воды.

Учёным удалось получить и зарегистрировать молекулу литий-гелия LiHe. Это одна из самых хрупких известных молекул. А её размер более, чем в десять раз, превосходит размер молекул воды.

Как известно, нейтральные атомы и молекулы могут образовывать друг с другом более менее устойчивые связи тремя способами. Во-первых, при помощи ковалентных связей, когда два атома разделяют одну или несколько общих электронных пар. Ковалентные связи - самые сильные из трёх. Характерная энергия их разрыва равна обычно нескольким электрон-вольтам.

Заметно слабее ковалентных водородные связи. Это притяжение, возникающее между связанным атомом водородом и электроотрицательным атомом другой молекулы (обычно таким атомом является кислород или азот, реже фтор). Несмотря на то, что энергия водородных связей в сотни раз меньше, чем ковалентных, именно они во многом определяют физические свойства воды, а также играют важнейшую роль в органическом мире.

И наконец, самым слабым является так называемое ван-дер-ваальсовое взаимодействие. Иногда его также называют дисперсным. Оно возникает в результате диполь-дипольного взаимодействия двух атомов или молекул. При этом диполи могут быть как изначально свойственны молекулам (например, дипольный момент есть у воды), так и индуцироваться в результате взаимодействия.

Характерная энергия ван-дер-ваальсовой связи - единицы кельвин (электрон-вольт, упоминавшийся выше, соответствует приблизительно 10 000 кельвин). Самой слабой из ван-дер-ваальсовых является связь между двумя индуцированными диполями. Если имеется два неполярных атома, то в результате теплового движения у каждого из них имеется некий осциллирующий случайным образом дипольный момент (электронная оболочка как бы немного дрожит относительно ядра). Эти моменты, взаимодействуя друг с другом, в результате преимущественно имеют такие ориентации, чтобы два атома начали притягиваться.


Наиболее инертным из всех атомов является гелий. Он не вступает в ковалентные связи ни с одним другим атомом. При этом и величина его поляризуемости очень мала, то есть и дисперсные связи ему образовывать сложно. Имеется, однако, одно важное обстоятельство. Электроны в атоме гелия настолько сильно связаны ядром, что его можно, не опасаясь возникновения отталкивающих сил, подносить очень близко к другим атомам - вплоть до расстояния порядка радиуса этого атома. Дисперсные же силы растут с уменьшением дистанции между атомами очень быстро - обратно пропорционально шестой степени расстояния!

Отсюда родилась идея: если сблизить два атома гелия друг с другом, то между ними всё-таки возникнет хрупкая ван-дер-ваальсова связь. Это, действительно удалось реализовать в середине 1990-х, хотя и потребовало значительных усилий. Энергия такой связи составляет всего 1 мК, и молекула He2 была зарегистрирована в незначительных количествах в сверхохлаждённых струях гелия.

При этом свойства молекулы He2 во многом уникальны и необычны. Так, например, её размер составляет… около 5 нм! Для сравнения, размер молекулы воды - около 0,1 нм. При этом минимум потенциальной энергии молекулы гелия приходится на значительно меньшее расстояние - около 0,2 нм - однако, большую часть времени - около 80% - атомы гелия в молекуле проводят в режиме туннелирования, то есть в области, где в рамках классической механики они находиться не могли бы.


Следующий по размерам после гелия атом - это литий, поэтому после получения молекулы гелия, естественным стало изучение возможности зафиксировать связь между гелием и литием. И вот, наконец, учёным удалось сделать и это . У молекулы литий-гелия LiHe энергия связи повыше, чем у гелий-гелия - 34±36 мК, а расстояние между атомами наоборот поменьше - около 2,9 нм. Однако и в этой молекуле атомы большую часть времени находятся в классически запрещённых состояниях под энергетическим барьером. Интересно, что потенциальная яма для молекулы LiHe настолько мала, что она может существовать только в одном колебательном энергетическом состоянии, являющемся правда расщеплённым из-за спина атома 7Li дублетом. Её константа вращения же настолько велика (около 40 мК), что возбуждение вращательного спектра приводит к разрушению молекулы.

Brett Esry/Kansas State University


Пока что полученные результаты интересны исключительно с фундаментальной точки зрения. Однако уже вызывают интерес для смежных областей науки. Так, гелиевые кластеры из многих частиц могут стать инструментом изучения эффектов запаздывания в вакууме Казимира. Изучение гелий-гелиевого взаимодействия важно и для квантовой химии, которая могла бы на этой системе тестировать свои модели. И, конечно, не вызывает сомнений, что учёные придумают и другие интересные и важные приложения для таких экстравагантных объектов как молекулы He2 и LiHe.

Литий -Гелий. Мир ядра химического элемента.

Картинка 7 из презентации «Мир химии» к урокам химии на тему «Химия»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока химии, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Мир химии.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 13988 КБ.

Скачать презентацию

Химия

«История химии» - Агрикола горное дело. (Изменяется состав, т.К. Получаются новые вещества – коррозия). Цель: знакомство с физическими и химическими явлениями, историей развития химии. Периодический закон химических элементов 1869 год. Закрепление. Реформаторы. М 6. Образование тумана. Химические. В 2. Гниение растительных остатков.

«Мир химии» - Н. Аналитическая химия. Превращение веществ, причем таких, в результате которых появляются новые вещества. Выполнил учитель Химии МОУ СОШ №24 (ст. Э. Мир соединений. Сера. Крестик и нолик в). Водород. Крестик и нолик а). Мы живем в мире веществ, построенных из атомов. В мире органики. Суворосвская) Гащенко Николай Григорьевич.

«Нанотехнологии» - Наномедицина. Фуллерены. Введение. Создание «бездефектных» высокопрочных материалов, материалов с высокой проводимостью; III. На данный момент получены у–транзистор на базе нанотрубки и нанодиод. Нанотрубки. Модель высокоплотной памяти разработана Ch. Алмазная память для компьютеров. Часть III. Характерный размер атома составляет несколько десятых нанометра.

«Аналитическая химия» - План доклада. Широкова В.И., Колотов В.П., Аленина М.В. Задачи гармонизации терминологии аналитической химии. Iupac, гост, iso. Принципы гармонизации терминологии. (Федерация Европейских химических обществ). Аналитическая химия (определение). В.И.Вернадского РАН.

«Развитие химии» - Выполнила: Уралбаева К.А. Астана, І группа. Эити Негиси. Акира Судзуки. Английские химики А. Тодд и Д. Браун обосновали базовый принцип строения РНК. Вант-Гофф Якоб Хендрик (30.8.1852 - 1.3.1911). Ричард Хек. Родился 13 августа 1918 года в Англии. Фредерик Сэнгер. Самостоятельной дисциплиной, возникшей на границе физики и химии, стала коллоидная химия.

«Предмет химии» - Твердое. Превращения веществ. Самым знаменитым алхимиком Европы был Альберт фон Больштат (Великий). Вещества, образованные атомами одного химического элемента, называются простыми. Химия изучает. Выберите признаки для следующих веществ: МЕДЬ, ЖЕЛЕЗО, ГЛИНА. Поддается обработке руками. Бесформенное. Вещество – молекула - атом.

Всего в теме 31 презентация