Темная материя. Создали карту распределения темной материи Темной материи не существует

Большая часть материи, составляющей Вселенную, надежно скрыта от наших глаз.

Составляя у себя в голове наглядное представление о строении галактики, мы, вероятно, видим перед собой спирали из звезд, вращающиеся в черной космической пустоте. Имея очень мощный телескоп, мы бы могли и реально рассмотреть отдельные звезды, составляющие рукава спиральных галактик, поскольку они излучают достаточное количество света и других волн. Смогли бы мы «рассмотреть» и темные области внутри галактик — облака межзвездной пыли и газа, поглощающие, а не испускающие свет.

Однако в течение XX столетия астрофизики постепенно пришли к заключению, что в видимых и ставших привычными образах галактик содержится не более 10% от реально содержащейся во Вселенной материи. Примерно на 90% Вселенная состоит из материи, форма которой остается для нас тайной, поскольку наблюдать ее мы не можем, и по совокупности вся эта темная материя получила название темной материи . (Иногда еще говорят о недостающей массе, однако этот термин нельзя назвать удачным, поскольку в такой терминологии её лучше было бы, вероятно, назвать избыточной.) Впервые тайные откровения подобного рода в далеком 1933 году озвучил швейцарский астроном Фриц Цвики (Fritz Zwicky, 1898-1974). Именно он указал, что скопление галактик в созвездии Волосы Вероники, судя по всему, удерживается вместе гораздо более сильным гравитационным полем, чем это можно было бы предположить, исходя из видимой массы вещества, содержащегося в этом галактическом скоплении, а значит большая часть материи, содержащаяся в этой области Вселенной, остается незримой для нас.

В 1970-е годы Вера Рубин, научная сотрудница Института Карнеги (Вашингтон), изучала динамику галактик, характеризующихся высокой скоростью вращения вокруг их центра, — прежде всего, поведение вещества на их периферии. По всем параметрам на периферию быстро вращающихся галактик должны были — по принципу центрифуги — выбрасываться значительные массы самого легкого межзвездного газа, а именно, водорода, атомы которого теоретически должны были бы окутывать галактику паутиной микроскопических спутников. Рассмотрим, в качестве примера, нашу Солнечную систему. Ее основная масса сосредоточена в центре (на Солнце); чем дальше планета удалена от центра, тем дольше период ее обращения вокруг него. Юпитеру, например, требуется одиннадцать земных лет, чтобы совершить полный годичный оборот вокруг Солнца, поскольку он находится на значительно более удаленной от Солнца орбите и за один годичный цикл проделывает не только более долгий путь, но и движется по нему медленнее (см. Законы Кеплера). Аналогичным образом, если бы всё вещество спиральной галактики было сконцентрировано в ее рукавах, где мы наблюдаем видимые звезды, то и атомы распыленного водорода, подчиняясь третьему закону Кеплера, двигались бы всё медленнее по мере удаления от центра галактической массы. Рубин, однако же, удалось экспериментально выяснить, что на любом удалении от центра галактики водород движется с неизменной скоростью. Можно подумать, будто он «приклеен» к гигантской вращающейся сфере, состоящей из некоей невидимой материи.

Теперь-то мы знаем, что темная материя незримо присутствует не только в пределах галактик, но и во всей Вселенной, включая межгалактическое пространство. О чем мы, однако, так и не имеем никакого представления, так это о ее природе. Какая-то ее часть может оказаться обычными небесными телами, не испускающими собственного излучения, например, массивными планетами типа Юпитера. Их существование подтверждается результатами наблюдения за светимостью звезд ближайших галактик, где иногда отмечаются «провалы», которые можно отнести на счет их частичного затмения при прохождении крупных планет на пути лучей по дороге к нам. Практически, можно считать подтвержденным и существование межзвездных затмевающих тел, не обладающих собственной энергией излучения в наблюдаемом диапазоне, — они получили название «массивных компактных гало-объектов».

Однако подавляющее большинство ученых сходится на том, что масса невидимой материи Вселенной далеко не ограничивается скрытой от нас массой обычных небесных тел и распыленного вещества, а склонны добавлять к ней и совокупную массу всё еще не открытых видов элементарных частиц . Их принято называть массивными частицами слабого взаимодействия (МЧСВ). Они никак не проявляют себя во взаимодействии со световым и прочим электромагнитным излучением. Их поиск сегодня — это своего рода возобновление, казалось бы, давно утратившего актуальность поиска «светоносного эфира» (см. Опыт Майкельсона—Морли). Идея состоит в том, что если наша Галактика действительно со всех сторон облачена сферической оболочкой МЧСВ, Земля, в силу своего движения, должна постоянно находиться под воздействием «ветра скрытых частиц», пронизывающих ее аналогично тому, как даже в самую безветренную погоду автомобиль обдувается встречными воздушными потоками. Рано или поздно одна из частиц такого «темного ветра» вступит во взаимодействие с одним из земных атомов и возбудит колебания, необходимые для ее регистрации сверхчувствительным прибором, в котором он покоится. Лаборатории, проводящие подобные эксперименты, уже сообщают о том, что получены первые намеки на подтверждение реального существования шестимесячного полупериода колебания частоты регистрации сигналов об аномальных событиях подобного ряда, а именно этого и следовало ожидать, поскольку полгода Земля движется по околосолнечной орбите навстречу ветру скрытых частиц, а в следующие полгода ветер дует «вдогонку» и частицы залетают на Землю реже.

МЧСВ представляют собой пример того, что принято называть холодной темной материей, поскольку они тяжелые и медленные. Предполагается, что они играли важную роль на стадии формирования галактик ранней Вселенной . Некоторые ученые считают также, что, по крайней мере, часть темной материи пребывает в состоянии быстрых слабовзаимодействующих частиц, таких как нейтрино, представляющих собой пример горячей темной материи. Главная проблема тут в том, что до формирования атомов, то есть на протяжении примерно первых 300 000 лет после большого взрыва, Вселенная пребывала в протоплазменном состоянии. Любое ядро привычной нам материи распадалось, не успев сформироваться, под мощнейшими энергиями бомбардировки со стороны перегретых частиц раскаленной, сверхплотной, непрозрачной плазмы. После того, как Вселенная расширилась до некоторой степени прозрачности разделяющего вещество пространства, начали, наконец, формироваться легкие атомные ядра. Но, увы, к этому моменту Вселенная расширилась уже настолько, что силы гравитационного притяжения не могли противодействовать кинетической энергии разлета осколков большого взрыва, и всё вещество, по идее, должно было бы разлететься, не дав сформироваться устойчивым галактикам, которые мы наблюдаем. В этом состоял так называемый галактический парадокс , ставивший под сомнение саму теорию Большого взрыва .

Однако, если во всем пространстве объемного большого взрыва обычная материя была перемешана со скрытыми частицами темной материи, после взрыва темная материя, будучи перемешанной с явной, как раз и могла послужить тем самым сдерживающим элементом. По причине наличия огромного числа скрытых тяжелых частиц она первой стянулась под воздействием сил гравитационного притяжения в будущие ядра галактик, оказавшиеся стабильными по причине отсутствия взаимодействия между МЧСВ и мощным центростремительным энергетическим излучением взрыва. Таким образом, к моменту формирования ядер атомов темная материя успела оформиться в галактики и скопления галактик, а уже на них начали собираться под воздействием гравитационного поля высвобождающиеся элементы обычной материи. В рамках такой модели обычная материя стянулась к сгусткам темной материи подобно сухим листьям, затягиваемым в водовороты на темной поверхности быстрой реки. Есть о чем задуматься, не правда ли? Не только мы, но и вся наша галактика, и весь зримый материальный мир могут оказаться всего лишь пеной на поверхности странной вселенской игры в прятки.

Vera Cooper Rubin, р. 1928

Американский астроном. Родилась в Филадельфии. Образование и докторскую степень получила в Университете г. Джорджтаун (штат Вашингтон, США). С 1954 года работает в Институте Карнеги, Вашингтон, занимаясь изучением строения галактик, прежде всего, спиральных, и, особенно, строением и движением их рукавов. Именно она открыла, что скорость вращения протяженных газовых облаков в рукавах спиральных галактик не убывает по мере удаления от центра, а, напротив, возрастает, и это дает нам первое убедительное подтверждение существования темной материи в отдельно взятых галактиках.

Тёмная материя Вселенной — никто её не видел, не измерил, никто не знает что это такое, но на существовании тёмной материи настаивает львиная доля физиков и астрофизиков. Потому что без существования тёмной материи у астрофизиков не получается объяснить множество процессов во Вселенной.

То есть, либо тёмная материя есть, либо наша Вселенная устроена совсем иначе и надо пересматривать физические теории. Естественно, учёным астрономам удобнее принять, что тёмная материя существует. Во-первых так удобнее с точки зрения математики. Во-вторых, академикам не надо признавать своих просчётов. Но, я не об этом… 🙂

Правы ли бунтари, которые опровергают существование тёмной материи — время покажет. Лично меня радует то, что исследования не стоят на месте, а физические теории не превратились в догмы. Потому что очень хочется всё-же увидеть прорыв в том застое, который наблюдается в фундаментальной науке последние лет пятьдесят… ни подпространственных прыжков, ни машины времени… 🙂

Вот и сейчас, просматривая ленту , мне на глаза попались сразу два независимых сообщения на тему опровержения существования тёмной материи.

Астрономы из Санкт-Петербурга Николай и Елена Питьевы проанализировали данные 677 тысяч измерений движений тел Солнечной системы за последние 100 лет. Это данные измерений как с поверхности Земли, так и с космических аппаратов. Изучалось движение планет, их крупнейших спутников и траектории 301 астероида. Согласно выводам петербургских астрономов, тёмная материя не оказывает влияния на движение изученных тел Солнечной системы. По крайней мере, это влияние не выходит за рамки погрешностей измерений и вычислений.
Насколько я понял, такие отклонения обязаны быть, если сравнить измеренные траектории этих тел с теми траекториями, которые должны были быть у этих тел на основании только их массы и скорости, то есть без учёта влияния тёмной материи.
Официально статья пока не опубликована, но уже есть препринты и она принята для публикации в «Письмах в Астрономический журнал».

Вторая работа сделана астрономом доктором Хонгшенг Чжао (Hongsheng Zhao) из Университета Сент-Эндрюс. Он применил модифицированную теорию гравитации MOND к движению нашей галактики Млечный Путь с её спутниками и галактики . MOND предложена в 1983 году Мордехаем Милгромом из Института Вейцмана и описывает поведение гравитации в больших масштабах иначе, нежели это должно быть по теориям Ньютона и Эйнштейна. До сих пор не было убедительных доказательств её правильности.

Согласно исследованиям доктора Чжао, эти две галактики столкнулись не три миллиарда лет назад, как предполагают астрономы, а гораздо раньше — десять миллиардов лет назад. Если бы классические теории Ньютона и Эйнштейна были верны, то галактики уже в то время слились бы в одну супергалактику, а не разлетелись бы в стороны после столкновения.
Если предположить, что тёмной материи не существует , то согласно его исследованиям, становится понятно, почему наши галактики столкнулись и разлетелись вновь, разбросав в стороны свои «осколки» в виде карликовых галактик-спутников. Огромная масса тёмной материи склеила бы наши галактики в одну и не дала бы им разлететься.
Кстати, классические теории не могут объяснить и странности в распределении карликовых галактик-спутников вокруг Млечного Пути и Андромеды.

  • Перевод

Прямо у вас под носом может существовать невидимая цивилизация

Хотя мы знаем, что обычная материя отвечает всего за 1/20 энергии Вселенной и 1/6 энергии, переносимой материей (а всё остальное отходит на счёт тёмной энергии), мы считаем обычную материю очень важной составной частью. За исключением космологов, почти все люди концентрируются на обычной материи, хотя она, с энергетической точки зрения, не так уж и важна.

Обычная материя больше дорога нам, разумеется, потому, что мы из неё состоим – как и весь осязаемый мир, в котором мы живём. Но также мы интересуемся ею из-за богатого разнообразия её взаимодействий. Взаимодействия обычной материи включают электромагнитное, слабое и сильное – они помогают материи формировать сложные плотные системы. Не только звёзды, но и камни, океаны, растения и животные существуют благодаря негравитационным силам природы, ответственным за взаимодействия. Так же, как на гуляку больше влияет алкоголь, чем остальные составляющие пива, так и обычная материя, хотя и переносящая малую часть энергетической плотности, влияет на себя и окружение гораздо заметнее, чем нечто, просто пролетающее мимо.

Знакомую нам видимую материю можно рассматривать как привилегированный процент – точнее, 15% - материи. В бизнесе и политике 1% людей влияет на решения и правила, а оставшиеся 99% популяции обеспечивают инфраструктуру и поддержку – обслуживают здания, поддерживают работоспособность городов, доставляют еду. Так же и обычная материя влияет почти на всё, что мы отмечаем, а тёмная материя, в её изобилии и повсеместности, помогает создавать скопления и галактики, обеспечивает формирование звёзд, но мало влияет на наше непосредственное окружение.

Близкими нам структурами управляет обычная материя. Она отвечает за движение наших тел, за энергетические источники, питающие нашу экономику, за экран компьютера или бумагу, на которой вы это читаете, и практически за всё, что вы можете себе представить. Если что-то взаимодействует так, что это можно измерить, оно достойно внимания, поскольку оно сможет оказывать влияние на наше окружение.

Обычно у тёмной материи нет такого интересного влияния и структуры. Предполагается, что тёмная материя – это клей, удерживающий галактики и их скопления, находящийся в аморфных облаках. Но что, если это не так, и только наша предвзятость – и неведение, корень предвзятости – служит причиной нашего неверного представления?

В Стандартной модели есть шесть типов кварков, три типа заряженных лептонов (включая электрон), три вида нейтрино, частицы, отвечающие за все силы, а также новообретённый бозон Хиггса. Что, если мир тёмной материи, может и не настолько, но тоже разнообразный? В этом случае взаимодействия тёмной материи будут пренебрежимыми, но небольшая её часть будет взаимодействовать с силами, напоминающие силы обычной материи. Богатая и сложная структура частиц и сил Стандартной модели отвечает за множество интересных феноменов. Если у тёмной материи есть взаимодействующий компонент, он тоже может оказаться влиятельным.

Если бы мы были существами, состоящими из тёмной материи, было бы неправильным полагать, что все частицы обычной материи одинаковы. Возможно, люди, состоящие из обычной материи, делают ту же ошибку. Учитывая сложность СМ физики частиц, описывающей простейшие из известных нам компонентов материи, кажется странным предполагать, что вся тёмная материя состоит только из одного вида частиц. Почему бы не предположить, что некая её часть подвержена своим собственным взаимодействиям?

В таком случае, точно так же, как обычная материя состоит из разных типов частиц, и все эти фундаментальные составные части взаимодействуют через разные комбинации зарядов, у тёмной материи также будут разные составные части – и хотя бы один тип таких частиц будет участвовать в негравитационных взаимодействиях. Нейтрино в СМ не подвергаются влиянию электрической силы или сильного взаимодействия, в отличие от шести типов кварков.

Точно также, возможно, один тип частиц тёмной материи слабо или вообще не взаимодействует ни с чем, кроме как посредством гравитации, но какие-нибудь 5% от частиц испытывают другие взаимодействия. На основе изучения обычной материи можно сказать, что такой вариант более вероятен, чем обычное предположение о наличии одной слабовзаимодействующей частицы.

Ошибкой людей, занимающихся связями с иностранной общественностью, бывает попытка сгрести культуру другой страны в кучу, и не учитывать того факта, что в ней может существовать разнообразие, очевидное для их собственной страны. Так же, как хороший переговорщик не предполагает преобладания одного сектора общества над другим, пытаясь сравнивать разные культуры, так и непредвзятый учёный не должен предполагать, что тёмная материя не такая интересная, как обычная, и в ней не хватает разнообразия материи, схожего с тем, что имеется в нашей.

Пишущий на научно-популярные темы Кори Пауэлл , сообщая о нашем исследовании в журнале Discover, начал со слов о том, что он «шовинист лёгкой материи» – и что все мы тоже. Он имел в виду, что мы считаем, будто знакомая нам материя более важна, и, следовательно, более сложна и интересна. Очень похожие представления были опрокинуты революцией Коперника. Но большинство людей настаивают на том, что их точка зрение и убеждённость в нашей важности соответствуют реальному миру.

Множество компонент обычной материи по-разному взаимодействуют и по-разному влияют на мир. Так может быть, и у тёмной материи есть разные частицы с различным поведением, влияющие на структуру Вселенной измеряемым образом.

Впервые начав изучать частично взаимодействующую тёмную материю, я удивился, что практически никто не задумывался о том, что предположение, согласно которому только обычная материя демонстрирует разнообразие типов частиц и взаимодействий, является высокомерным заблуждением. Некоторые физики пытались анализировать такие модели, как «зеркальная тёмная материя», в которой тёмная материя повторяет всё, что свойственно обычной. Но такие примеры экзотичны. Их последствия трудно объединить с тем, что нам известно.

Несколько физиков изучали более общение модели взаимодействия тёмной материи. Но и они предполагали, что вся тёмная материя одинакова и подвергается одинаковым взаимодействиям. Никто не допускал простой возможности, по которой, хотя большая часть тёмной материи не взаимодействует с обычной, малая её толика может это делать.

Одна из причин этого понятна. Большинство людей считают, что новый тип тёмной материи не будет влиять на большую часть наблюдаемых явлений, если это всего лишь небольшая часть от тёмной материи. Мы ещё даже не смогли пронаблюдать самый главный компонент тёмной материи, и заниматься её небольшой составляющей кажется преждевременным.

Но если вспомнить, что обычная материя переносит лишь 20% энергии от тёмной, при этом большинство из нас замечает только её, можно понять, в чём эта логика неправа. Материя, взаимодействующая через более мощные негравитационные силы, может представлять больше интереса и оказывать больше влияния, чем большая часть слабо взаимодействующей материи.

С обычной материей так и есть. Она чрезмерно влиятельна, несмотря на её малое количество, поскольку она сжимается в плотные диски, из которых могут формироваться звёзды, планеты, Земля и жизнь. Заряженный компонент тёмной материи – хоть его может и не быть так много – тоже может сжиматься и формировать диски, такие, как видимый диск в Млечном пути. Он даже может сгущаться в объекты, похожие на звёзды. Такую структуру в принципе можно пронаблюдать, и, возможно, это ещё проще сделать, чем обычная холодная тёмная материя, рассеянная в огромном сферическом гало.

Если размышлять таким образом, то количество возможностей быстро растёт. Ведь электромагнетизм – всего лишь одно из нескольких негравитационных взаимодействий, испытываемых частицами Стандартной модели. Кроме силы, привязывающей электроны к ядрам, частицы СМ испытывают слабое и сильное ядерное взаимодействие. В мире обычной материи могут существовать и другие взаимодействия, но настолько слабые на доступных нам энергиях, что их ещё никто не наблюдал. Но даже присутствие трёх негравитационных взаимодействий намекает на то, что в тёмном секторе тоже могут присутствовать негравитационные взаимодействия кроме тёмного электромагнетизма.

Возможно, на тёмную материю, кроме сил, похожих на электромагнитную, влияют и силы ядерного толка. Возможно, что из тёмной материи могут формироваться тёмные звёзды, в которых идут ядерные реакции, благодаря которым образуются структуры, ведущие себя более похожим на обычную материю образом, чем описываемая мною до сих пор тёмная материя. В таком случае в тёмном диске могут находиться тёмные звёзды, окружённые тёмными планетами, состоящими из тёмных атомов. У тёмной материи может наблюдаться та же сложность, что есть и у обычной.

Частично взаимодействующая тёмная материя представляет собой богатую почву для измышлений и вдохновляет нас на рассмотрение возможностей, к которым иначе мы бы и не обратились. Писатели и киношники могут найти все эти дополнительные силы и последствия, таящиеся в тёмном секторе, весьма заманчивыми. Они могли бы даже предположить наличие тёмной жизни, существующей параллельно с нашей. В этом случае, вместо обычных анимированных существ, сражающихся с другими анимированными существами, или, в редких случаях, работающих с ними сообща, по экрану могли бы маршировать существа из тёмной материи, которые перетянули бы на себя всё действие.

Но смотреть на это было бы не так интересно. Проблема в том, что кинематографисты столкнулись бы с трудностями при съёмках тёмной жизни, невидимой для нас. Даже если бы и существовали тёмные существа, мы не узнали бы об этом. Вы не можете знать, насколько симпатичной могла бы быть тёмная жизнь – и почти наверняка не узнаете.

Хотя довольно весело размышлять о возможностях существования тёмной жизни, гораздо сложнее придумать, как её наблюдать – или хотя бы обнаружить её существование по косвенным признакам. Довольно сложно найти жизнь, состоящую из тех же компонентов, что и мы, хотя поиски внесолнечных планет идут. Но доказательства существования тёмной жизни, если она существует, будут ещё более неуловимыми, чем доказательства существования обычной жизни в удалённых мирах.

Совсем недавно нам удалось пронаблюдать гравитационные волны, исходящие от огромных чёрных дыр. У нас практически нет шанса обнаружить гравитацию тёмного существа или целой армии тёмных существ, неважно, как близко от нас они находятся.

В идеале хотелось бы как-то общаться с этим новым сектором. Но если эта новая жизнь не подвергается воздействию знакомых нам сил, этого не будет. Хотя мы разделяем с ними гравитацию, такое влияние одного объекта или жизненной формы будет слишком слабым для обнаружения. Только очень крупные объекты, типа диска в плоскости Млечного пути, могут порождать наблюдаемые эффекты.

Тёмные объекты или тёмная жизнь могут существовать очень близко к нам – но если общая масса тёмного вещества невелика, мы об этом не узнаем. Даже с современной технологией, или любой технологией, которую мы можем представить, проверить можно будет только очень специфические возможности. «Теневая жизнь», какой бы она ни была волнующей, вряд ли будет иметь осязаемые нами последствия, и может быть соблазнительной, но недостижимой возможностью. Но тёмная жизнь – это весьма вольное предположение. Фантастам не составит проблем создать её, но у Вселенной для этого есть гораздо больше препятствий. Непонятно, какие из вариантов химических взаимодействий способны поддерживать жизнь, и нам неизвестно, какая среда необходима для тех вариантов, которые способны это делать.

Тем не менее, в принципе тёмная жизнь может существовать, прямо у нас под носом. Но без более сильных взаимодействий с материей нашего мира, она может развлекаться, сражаться, быть активной или пассивной – и мы никогда не узнаем об этом. Интересно, однако, что при наличии взаимодействий в тёмном мире, связанных или не связанных с жизнью, они могут влиять на структуру измеряемым образом. И тогда мы сможем гораздо больше узнать о тёмном мире.

Статьях цикла мы рассмотрели устройство видимой Вселенной. Поговорили о ее структуре и частицах, которые формируют эту структуру. О нуклонах, играющих главную роль, поскольку именно из них состоит всё видимое вещество. О фотонах, электронах, нейтрино, а также о второстепенных актерах, занятых во вселенском спектакле, что разворачивается 14 миллиардов лет, прошедших с момента Большого взрыва. Казалось бы, рассказывать больше не о чем. Но это не так. Дело в том, что видимое нами вещество — лишь малая часть того, из чего состоит наш мир. Все остальное — нечто, о чем мы почти ничего не знаем. Это загадочное «нечто» получило название темной материи.

Если бы тени предметов зависели не от величины сих последних,
а имели бы свой произвольный рост, то, может быть,
вскоре не осталось бы на всем земном шаре ни одного светлого места.

Козьма Прутков

Что будет с нашим миром?

После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что Вселенная расширяется. Одним из вопросов, возникших в этой связи, был следующий: как долго будет продолжаться расширение и чем оно закончится? Силы гравитационного притяжения, действующие между отдельными частями Вселенной, стремятся затормозить разбегание этих частей. К чему торможение приведет — зависит от суммарной массы Вселенной. Если она достаточно велика, силы тяготения постепенно остановят расширение и оно сменится сжатием. В результате Вселенная в конце концов опять «схлопнется» в точку, из которой когда-то начала расширяться. Если же масса меньше некоторой критической массы, то расширение будет продолжаться вечно. Обычно принято говорить не о массе, а о плотности, которая связана с массой простым соотношением, известным из школьного курса: плотность есть масса, деленная на объем.

Расчетное значение критической средней плотности Вселенной примерно 10 -29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идет именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 10 30 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объема Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усредненное по всему объему Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звезд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.

Поэтому вплоть до 70-х годов XX столетия общепринятым был прогноз о вечном расширении нашего мира, которое неизбежно должно привести к так называемой тепловой смерти. Тепловая смерть — это такое состояние системы, когда вещество в ней распределено равномерно и разные ее части имеют одну и ту же температуру. Как следствие, невозможна ни передача энергии от одной части системы к другой, ни перераспределение вещества. В такой системе ничего не происходит и никогда уже не сможет произойти. Наглядной аналогией служит вода, разлитая по какой-либо поверхности. Если поверхность неровная и есть хотя бы небольшие перепады высот, вода перемещается по ней с более высоких мест на более низкие и в конце концов собирается в низинах, образуя лужи. Движение прекращается. Оставалось утешаться только тем, что тепловая смерть наступит через десятки и сотни миллиардов лет. Следовательно, еще очень-очень долго об этой мрачной перспективе можно не задумываться.

Однако постепенно стало ясно, что истинная масса Вселенной намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей.

Свидетельства существования темной материи

Первое указание на то, что с подсчетом массы Вселенной что-то не так, появилось в середине 30-х годов XX века. Швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Результат получился обескураживающим: скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления Волосы Вероники гораздо больше видимой. Но основное количество материи, присутствующей в этой области Вселенной, остается по каким-то причинам невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. Объяснение этого явления следует из теории относительности. В соответствии с ней, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. Искажение, которое вызывает скопление галактик, столь велико, что его легко заметить. В частности, по искажению изображения галактики, которая лежит за скоплением, можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. И оказывается, что она всегда во много раз больше, нежели вклад видимого вещества скопления.

Через 40 лет после работ Цвикки, в 70-е годы, американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к ее периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остается почти постоянной на весьма значительном удалении от центра. Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остается почти неизменной. Поскольку плотность видимого вещества (содержащегося в звездах и межзвездном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто, чего мы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого «чего-то» было примерно в 10 раз больше, чем обычного видимого вещества. Это «нечто» получило название «темная материя» (по-английски «dark matter ») и до сих пор остается самой интригующей загадкой в астрофизике.

Еще одно важное свидетельство присутствия темной материи в нашем мире приходит из расчетов, моделирующих процесс формирования галактик, который начался примерно через 300 тысяч лет после начала Большого взрыва. Эти расчеты показывают, что силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетической энергии разлета. Вещество просто не должно было собраться в галактики, которые мы тем не менее наблюдаем в современную эпоху. Эта проблема получила название галактического парадокса, и долгое время ее считали серьезным аргументом против теории Большого взрыва. Однако если предположить, что частицы обычного вещества в ранней Вселенной были перемешаны с частицами невидимой темной материи, то в расчетах всё становится на свои места и концы начинают сходиться с концами — формирование галактик из звезд, а затем скоплений из галактик становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц темной материи и только потом, за счет сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы Вселенной. Получается, что знакомый и, казалось бы, изученный до деталей видимый мир, который мы совсем недавно считали почти понятым, — только небольшая добавка к чему-то, из чего в действительности состоит Вселенная. Планеты, звезды, галактики да и мы с вами — всего лишь ширма для громадного «нечто», о котором мы не имеем ни малейшего представления.

Фотофакт

Скопление галактик (в левой нижней части участка, обведенного кружком) создает гравитационную линзу. Она искажает форму расположенных за линзой объектов — вытягивая их изображения в одном направлении. По величине и направлению вытягивания международная группа астрономов из Южной Европейской обсерватории, возглавляемая учеными из парижского Института астрофизики, построила распределение масс, которое и показано на нижнем изображении. Как видно, в скоплении сосредоточено гораздо больше массы, нежели удается разглядеть в телескоп.

Охота на темные массивные объекты — дело небыстрое, и на фотографии результат выглядит не самым эффектным образом. В 1995 году телескоп «Хаббл» заметил, что одна из звездочек Большого Магелланова облака вспыхнула ярче. Это свечение продолжалось три с лишним месяца, но потом звезда вернулась к своему естественному состоянию. А шесть лет спустя рядом со звездой появился какой-то едва светящийся объект. Это и был холодный карлик, который, проходя на расстоянии 600 световых лет от звезды, создал гравитационную линзу, усиливающую свет. Расчеты показали, что масса этого карлика составляет всего 5-10% от массы Солнца.

Наконец, общая теория относительности однозначно связывает темп расширения Вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10 -29 граммам на кубический сантиметр. Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы Вселенной и есть темная материя. Обратите внимание, что измеренное из скорости расширения Вселенной значение плотности равно критическому. Два значения, независимо вычисленные совершенно разными способами, совпали! Если в действительности плотность Вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

Что это?

Что же мы знаем сегодня о темной материи, составляющей 95% массы Вселенной? Почти ничего. Но что-то всё же знаем. Прежде всего, нет никаких сомнений в том, что темная материя существует — об этом неопровержимо свидетельствуют факты, приведенные выше. А еще нам доподлинно известно, что темная материя существует в нескольких формах. После того как к началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть, стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во Вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино. Оставшиеся 92-95% состоят из двух частей — темной материи и темной энергии. Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабовзаимодействующие частицы (так называемая холодная темная материя). Баланс энергий в современной Вселенной представлен в таблице, а рассказ о ее трех последних графах — ниже.

Барионная темная материя

Небольшая (4-5%) часть темной материи — это обычное вещество, которое не испускает или почти не испускает собственного излучения и поэтому невидимо. Существование нескольких классов таких объектов можно считать экспериментально подтвержденным. Сложнейшие эксперименты, основанные всё на том же гравитационном линзировании, привели к открытию так называемых массивных компактных галообъектов, то есть расположенных на периферии галактических дисков. Для этого потребовалось следить за миллионами удаленных галактик в течение нескольких лет. Когда темное массивное тело проходит между наблюдателем и далекой галактикой, ее яркость на короткое время уменьшается (или увеличивается, поскольку темное тело выступает в роли гравитационной линзы). В результате кропотливых поисков такие события были выявлены. Природа массивных компактных галообъектов ясна не до конца. Скорее всего, это либо остывшие звезды (коричневые карлики), либо планетоподобные объекты, не связанные со звездами и путешествующие по галактике сами по себе. Еще один представитель барионной темной материи — недавно обнаруженный в галактических скоплениях методами рентгеновской астрономии горячий газ, который не светится в видимом диапазоне.

Небарионная темная материя

В качестве главных кандидатов на небарионную темную материю выступают так называемые WIMP (сокращение от английского Weakly Interactive Massive Particles — слабовзаимодействующие массивные частицы). Особенность WIMP состоит в том, что они почти никак не проявляют себя во взаимодействии с обычным веществом. Именно поэтому они и есть самая настоящая невидимая темная материя, и именно поэтому их чрезвычайно сложно обнаружить. Масса WIMP должна быть как минимум в десятки раз больше массы протона. Поиски WIMP ведутся во многих экспериментах в течение последних 20-30 лет, но, несмотря на все усилия, они до сих пор обнаружены не были.

Одна из идей состоит в том, что если такие частицы существуют, то Земля в своем движении вместе с Солнцем по орбите вокруг центра Галактики должна лететь сквозь дождь, состоящий из WIMP. Несмотря на то что WIMP представляет собой чрезвычайно слабо взаимодействующую частицу, какая-то очень малая вероятность провзаимодействовать с обычным атомом у нее всё же есть. При этом в специальных установках — очень сложных и дорогостоящих — может быть зарегистрирован сигнал. Количество таких сигналов должно меняться в течение года, поскольку, двигаясь по орбите вокруг Солнца, Земля меняет свою скорость и направление движения относительно ветра, состоящего из WIMP. Экспериментальная группа DAMA, работающая в итальянской подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счета сигналов. Однако другие группы пока не подтверждают этих результатов, и вопрос, по существу, остается открытым.

Другой метод поиска WIMP основан на предположении о том, что в течение миллиардов лет своего существования различные астрономические объекты (Земля, Солнце, центр нашей Галактики) должны захватывать WIMP, которые накапливаются в центре этих объектов, и, аннигилируя друг с другом, рождать поток нейтрино. Попытки детектирования избыточного нейтринного потока из центра Земли в направлении к Солнцу и к центру Галактики были предприняты на подземных и подводных нейтринных детекторах MACRO, LVD (лаборатория Гран-Сассо), NT-200 (озеро Байкал, Россия), SuperKamiokande, AMANDA (станция Скотт-Амундсен, Южный полюс), но пока не привели к положительному результату.

Эксперименты по поиску WIMP активно проводят также на ускорителях элементарных частиц. В соответствии со знаменитым уравнением Эйнштейна Е=mс 2 , энергия эквивалентна массе. Следовательно, ускорив частицу (например, протон) до очень высокой энергии и столкнув ее с другой частицей, можно ожидать рождения пар других частиц и античастиц (в том числе WIMP), суммарная масса которых равна суммарной энергии сталкивающихся частиц. Но и ускорительные эксперименты пока не привели к положительному результату.

Темная энергия

В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ. Эта Λ была чисто формальной константой, в которой сам Эйнштейн не видел никакого физического смысла. После того как было открыто расширение Вселенной, надобность в ней отпала. Эйнштейн очень жалел о своей поспешности и называл космологическую постоянную Λ своей самой большой научной ошибкой. Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения Вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность Вселенной. Эту часть скрытой массы и стали называть «темная энергия».

О темной энергии можно сказать еще меньше, чем о темной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм темной материи. В галактиках и скоплениях галактик ее столько же, сколько вне их. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения. Например, темная энергия испытывает антигравитацию: за счет ее присутствия темп расширения Вселенной растет. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

Главный кандидат на роль темной энергии — вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция. Надежды на прояснение природы темной энергии связывают прежде всего с новыми астрономическими наблюдениями. Продвижение в этом направлении, несомненно, принесет человечеству радикально новые знания, поскольку в любом случае темная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.

Итак, наш мир на 95% состоит из чего-то, о чем мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привел к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.

Но большинство физиков сейчас испытывают воодушевление. Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались. Несомненно, разрешится и загадка темной материи. И это наверняка принесет совершенно новые знания и понятия, о которых мы пока не имеем никакого представления. И возможно, мы встретимся с новыми загадками, которые, в свою очередь, также будут разгаданы. Но это будет совсем другая история, которую читатели «Химии и жизни» смогут прочесть не раньше, чем через несколько лет. А может быть, и через несколько десятилетий.

3 604

Большая часть Вселенной состоит из “материи”, которую нельзя увидеть, возможно, нематериальной, и взаимодействует с другими вещами только через силу гравитации. Ах, да, и физики не знают, что это за материя или почему ее так много во Вселенной - около четырех пятых своей массы.

Ученые называют ее темной материей.

Так где же этот таинственная материя, которая составляет такой огромный кусок нашей Вселенной, и когда ученые обнаружат ее?

Откуда мы знаем, что эта материя существует

Гипотезу темной материи впервые выдвинул швейцарский астроном Фриц Цвикки в 1930-х годах, когда понял, что его измерения масс скоплений галактик показали некоторую часть массы во Вселенной “пропавшую без вести”. Что бы ни делало галактики тяжелее, оно не испускает никакого света, ни взаимодействует ни с чем другим, кроме как через гравитацию.

Астроном Вера Рубин, в 1970-х годах, обнаружила, что вращение галактик не следует Закону движения Ньютона; звезды в галактиках (в частности Андромеда), казалось, вращаются вокруг центра с одинаковой скоростью, но те что дальше от звезды движутся медленнее. Словно что-то добавляет массу к внешней части галактики, что никто не мог видеть.

Остальные доказательства пришли из гравитационного линзирования, которое происходит, когда тяжесть крупного объекта изгибает световые волны вокруг объекта. Согласно общей теории относительности , гравитация искривляет пространство (как борец сумо может деформировать мат, на котором он стоит), так что световые лучи огибают крупные объекты, хотя свет сам по себе является безмассовым. Наблюдения показали, что там не было достаточно видимой массы, чтобы согнуть свет, как это было огибая отдельные скопления галактик - другими словами, галактики были более массивными, чем они должны быть.

Тогда есть реликтовое излучение (СМВ), “эхо” Большого взрыва и сверхновых звезд. “СМВ говорит о том, что Вселенная пространственно плоская,” – сказал Джейсон Кумар, профессор физики в университете Гавайи. “Пространственно плоская” означает, что если провести две линии через вселенную, они никогда не пересекутся, даже если эти линии были на расстоянии миллиардов световых лет в поперечнике. В круто изогнутой Вселенной, эти линии будут встречаться в какой-то точке пространства.

Сейчас идет небольшой спор среди космологов и астрономов, существует ли темная материя. Она не влияет на свет, и она не заряжена, как электроны или протоны. До сих пор она ускользает от прямого обнаружения.

“Это тайна”, – сказал Кумар. Может есть способы, которыми ученые пытались “увидеть” темную материю – либо через её взаимодействие с обычным веществами, либо через поиск частиц, которыми могла бы стать темная материя.

Чем темная материя не является

Много теорий пришли и ушли относительно того, какова темная материя. Одна из первых была достаточно логичныой: вопрос был скрыт в массивных астрофизических компактных объектах гало (MACHO), таких как нейтронные звезды, черные дыры, коричневые карлики и планеты-изгои. Они не излучают свет (или они выделяют его очень мало), поэтому они практически невидимы для телескопов.

Тем не менее, исследования галактик в поисках небольших искажений в свете звезд, производимых MACHO, проходя мимо – называемые микролинзированием – не могли бы объяснить количества темной материи вокруг галактик, или даже значительной ее части. “MACHO, кажутся столь же исключенными как всегда” – сказал Дэн Хупер, ассоциированный научный сотрудник Национальной ускорительной лаборатории Ферми в штате Иллинойс.

Темная материя не представляется облаком газа, которое в телескопы не увидеть. Диффузный газ будет поглощать свет от галактик, которые находятся дальше, и на вершине, что обычный газ будет переизлучать излучения на больших длинах волн – будет громадное излучение инфракрасного света в небе. Поскольку это не происходит, мы можем это исключить.

Чем это может быть

Слабо взаимодействующие массивные частицы (вимпы), являются одними из самых сильных соперников для объяснения темной материи. Вимпы - тяжелые частицы - примерно от 10 до 100 раз тяжелее протона, которые были созданы во время Большого взрыва, и остались в небольших количествах сегодня. Эти частицы взаимодействуют с нормальной материей через гравитацию и слабые ядерные силы. Более массивные вимпы будут двигаться медленнее сквозь пространство, и поэтому могут быть кандидатами “холодной” темной материи, в то время как более легкие будут двигаться быстрее, и быть кандидатами “теплой” темной материи.

Один из способов найти их – путем “прямого обнаружения”, как, например, эксперимент Large Underground Xenon (LUX), который является контейнером жидкого ксенона в шахте Южной Дакоты.

Другой способ увидеть вимпы может быть ускорителем частиц. Внутри ускорителей атомные ядра разбиваются со скоростью близкой к скорости света, и в процессе эта энергия столкновения превращается в другие частицы, некоторые из них оказываются новыми для науки. Пока в ускорителях частиц не обнаружено ничего, что выглядит как предполагаемая темная материя.

Другая возможность: аксионы. Эти субатомные частицы могли быть обнаружены косвенно видами излучения, которое они испускают, как они уничтожают или как они затухают в другие виды частиц или появляются в ускорителях частиц. Однако, никакого прямого доказательства аксионов, также нет.

Начиная с обнаружения тяжелых, медленных “холодных” частиц, как вимпы или аксионы, еще не привело к результатам, некоторые ученые смотрят на возможность легких, быстрее движущихся частиц, которые они вызывают “теплой” темной материей. Был возобновившийся интерес к такой модели темной материи после того, как ученые нашли доказательство неизвестной частицы, используя Обсерваторию Рентгеновского луча Чандра, в кластере Персея, группе галактик приблизительно 250 миллионов световых лет от Земли. Известные ионы в этом кластере производят определенные линии излучения рентгеновских лучей, а в 2014 году, ученые увидели новую “линию”, которая может соответствовать неизвестной легкой частице.

Если частицы темной материи легкие, ученным предстоит трудное время, чтобы обнаружить их непосредственно, сказала Трейси Слатер, физик из Массачусетского технологического института. Она предложила новые виды частиц, которые могут составлять темную материю.

“Темную материю с массой ниже приблизительно 1 ГэВ действительно трудно обнаружить со стандартными прямыми экспериментами обнаружения, потому что они работают, ища необъясненные отдачи атомарных ядер …, но когда темная материя намного легче, чем атомарное ядро, энергия отдачи очень маленькая”, – сказала Трейси Слатер.

В поисках темной материи было сделано много исследований, и если нынешние методы не помогают, будут проводится новые. Используя “жидкий” жидкий гелий, полупроводники и даже разрыв химических связей в кристаллах – являются одними из новых идей по обнаружению темной материи.