Определение. две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости. скрещивающиеся прямые. Взаимное расположение прямых в пространстве. Задачи с прямой в пространстве Доказательство скрещивающихся прямых в пространстве

Взаимное расположение двух прямых в пространстве.

Взаимное расположение двух прямых и пространстве характеризуется следующими тремя возможностями.

    Прямые лежат в одной плоскости и не имеют общих точек — параллельные прямые.

    Прямые лежат и одной плоскости и имеют одну общую точку — прямые пересекаются.

    В пространстве две прямые могут быть расположены еще так, что не лежат ни в одной плоскости. Такие прямые называются скрещивающимися (не пересекаются и не параллельны).

ПРИМЕР:

ЗАДАЧА 434 В плоскости лежит треугольник ABC, a

В плоскости лежит треугольник ABC, a точка D не находится в этой плоскости. Точки М, N и K соответсвенно серединные точки отрезков DA, DB и DC

Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая пересекает эту плоскость и точке, которая не лежит на первой прямой, то эти прямые скрещиваются.

На рис. 26 прямая a лежит в плоскости, а прямая с пересекает в точке N. Прямые a и с — скрещивающиеся.


Теорема. Через каждую из двух скрещивающихся прямых проходит только одна плоскость, параллельная другой прямой.


На рис. 26 прямые a и b скрещиваются. Черен прямую а проведена плоскость a (альфа) || b (в плоскости B (бета) указана прямая a1 || b).



Теорема 3.2.

Две прямые, параллельные третьей, параллельны.

Это свойство называется транзитивностью параллельности прямых.

Доказательство

Пусть прямые a и b одновременно параллельны прямой c . Допустим, что a не параллельна b , тогда прямая a пересекается с прямой b в некоторой точке A , не лежащей на прямой c по условию. Следовательно, мы имеем две прямые a и b , проходящие через точку A , не лежащую на данной прямой c , и одновременно параллельные ей. Это противоречит аксиоме 3.1. Теорема доказана.

Теорема 3.3.

Через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.

Доказательство

Пусть (AB ) данная прямая, C – точка, не лежащая на ней. Прямая AC разбивает плоскость на две полуплоскости. Точка B лежит в одной из них. В соответствии с аксиомой 3.2 можно от луча С A отложить угол (ACD ), равный углу (CAB ), в другую полуплоскость. ACD и CAB – равные внутренние накрест лежащие при прямых AB и CD и секущей (AC ) Тогда в силу теоремы 3.1 (AB ) || (CD ). С учетом аксиомы 3.1. Теорема доказана.

Свойство параллельных прямых задается следующей теоремой, обратной к теореме 3.1.

Теорема 3.4.

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.

Доказательство

Пусть (AB ) || (CD ). Предположим, что ACD ≠ BAC . Через точку A проведем прямую AE так, что EAC = ACD . Но тогда по теореме 3.1 (AE ) || (CD ), а по условию – (AB ) || (CD ). В соответствии с теоремой 3.2 (AE ) || (AB ). Это противоречит теореме 3.3, по которой через точку A , не лежащую на прямой CD , можно провести единственную прямую, параллельную ей. Теорема доказана.

Рисунок 3.3.1.

На основании этой теоремы легко обосновываются следующие свойства.

    Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.

    Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180°.

Следствие 3.2.

Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.

Понятие параллельности позволяет ввести следующее новое понятие, которое в дальнейшем понадобится в 11-й главе.

Два луча называются одинаково направленными , если существует такая прямая, что, во-первых, они перпендикулярны этой прямой, во-вторых, лучи лежат в одной полуплоскости относительно этой прямой.

Два луча называются противоположно направленными , если каждый из них одинаково направлен с лучом, дополнительным к другому.

Одинаково направленные лучи AB и CD будем обозначать: а противоположно направленные лучи AB и CD –


Рисунок 3.3.2.

Признак скрещивающихся прямых.

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

Случаи взаимного расположения прямых в пространстве.

  1. Возможны четыре различных случая расположения двух прямых в пространстве:


    – прямые скрещивающиеся, т.е. не лежат в одной плоскости;

    – прямые пересекаются, т.е. лежат в одной плоскости и имеют одну общую точку;

    – прямые параллельные, т.е. лежат в одной плоскости и не пересекаются;

    – прямые совпадают.


    Получим признаки этих случаев взаимного расположения прямых, заданных каноническими уравнениями



    где — точки, принадлежащие прямым и соответственно, a — направляющие векторы (рис.4.34). Обозначим через вектор, соединяющий заданные точки.

    Перечисленным выше случаям взаимного расположения прямых и соответствуют следующие признаки:


    – прямые и скрещивающиеся векторы не компланарны;


    – прямые и пересекаются векторы компланарны, а векторы не коллинеарны;


    – прямые и параллельные векторы коллинеарны, а векторы не коллинеарны;


    – прямые и совпадают векторы коллинеарны.


    Эти условия можно записать, используя свойства смешанного и векторного произведений. Напомним, что смешанное произведение векторов в правой прямоугольной системе координат находится по формуле:



    и пересекаются определитель равен нулю, а вторая и третья его строки не пропорциональны, т.е.

    – прямые и параллельные вторая и третья строки определителя пропорциональны, т.е. а первые две строки не пропорциональны, т.е.


    – прямые и совпадают все строки определителя пропорциональны, т.е.


Доказательство признака скрещивающихся прямых.

Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти две прямые скрещиваются.

Доказательство

Пусть a принадлежит α, b пересекается α = A, A не принадлежит a (чертеж 2.1.2). Допустим, что прямые a и b не скрещивающиеся, то есть они пересекаются. Тогда существует плоскость β, которой принадлежат прямые a и b. В этой плоскости β лежат прямая a и точка A. Поскольку прямая a и точка A вне ее определяют единственную плоскость, то β = α. Но b водит β и b не принадлежит α, следовательно, равенство β = α невозможно.

прямые l1 и l2 называются скрещивающимися, если они не лежат в одной плоскости. Пусть а и b - направляющие векторы этих прямых, а точки M1 и M2 принадлежат соответственно прямым и l1 и l2

Тогда векторы а, b, M1M2> не компланарны, и поэтому их смешанное произведение не равно нулю, т. е. (а, b, M1M2>) =/= 0.Верно и обратное утверждение:если (а, b, M1M2>) =/= 0, то векторы а, b, M1M2> не компланарны, и, следовательно, прямые l1 и l2 не лежат в одной плоскости, т. е. скрещиваются.Таким образом, две прямые скрещиваются тогда и только тогда, когда выполнено условие(а, b, M1M2>) =/= 0, где а и b - направляющие векторы прямых, а M1 и M2 - точки, принадлежащие соответственно данным прямым. Условие(а, b, M1M2>) = 0 является необходимым и достаточным условием того, что прямые лежат в одной плоскости. Если прямые заданы своими каноническими уравнениями

то а = (а1; а2; а3), b = (b1; b2;b3), М1 (x1; у1; z1), М2(х2; у2; z2) и условие (2) записывается следующим образом:

Расстояние между скрещивающимися прямыми

это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

26.Определение эллипса, каноническое уравнение. Вывод канонического уравнения. Свойства.

Эллипсом называется геометрическое место точек плоскости, для которых сумма расстояний до двух фокусированных точек F1 и F2 этой плоскости, называемых фокусами есть величина постоянная.При этом не исключается совпадение фокусов эллипсиса.Если вокусы совпадают то эллипсис представляет собой окружность.Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением (каноническое уравнение эллипса):

Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат.

Если же в правой части стоит единица со знаком минус, то получившееся уравнение:

описывает мнимый эллипс. Изобразить такой эллипс в действительной плоскости невозможно.Обозначим фокусы через F1 и F2,а расстояние между ними через 2с, а сумму расстояний от произ­вольной точки эллипса до фокусов - через 2а

Для вывода уравнения эллипса выберем систему координат Оху так, чтобы фокусы F1 и F2 лежали на оси Ох, а начало координат совпадало с серединой отрезка F1F2. Тогда фокусы будут иметь следующие координаты:иПусть М(х;у) - произвольная точка эллипса. Тогда, согласно опре­делению эллипса, т. е.

Это, по сути, и есть уравнение эллипса.

27.Определение гиперболы, каноническое уравнение. Вывод канонического уравнения. Свойства

Гиперболой называется геометрическое место точек плоскости, для которой абсолютная величина разности расстояния до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.Пусть M(x;y) – произвольная точка гиперболы. Тогда согласно определению гиперболы |MF 1 – MF 2 |=2a или MF 1 – MF 2 =±2a,

28.Определение параболы, каноническое уравнение. Вывод канонического уравнения. Свойства . Параболой называется ГМТ плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой, также расположенной в рассматриваемой плоскости. F – фокус параболы; фиксированная прямая – директриса параболы. r=d,

r=; d=x+p/2; (x-p/2) 2 +y 2 =(x+p/2) 2 ; x 2 -xp+p 2 /4+y 2 =x 2 +px+p 2 /4;y 2 =2px;

Свойства : 1.Парабола имеет ось симметрии(ось параболы); 2.Вся

парабола расположена в правой полуплоскости плоскости Oxy при p>0, и в левой

если p<0. 3.Директриса параболы, определяемая каноническим уравнением, имеет уравнение x= -p/2.

"

В этой статье сначала дадим определение угла между скрещивающимися прямыми и приведем графическую иллюстрацию. Далее ответим на вопрос: «Как найти угол между скрещивающимися прямыми, если известны координаты направляющих векторов этих прямых в прямоугольной системе координат»? В заключении попрактикуемся в нахождении угла между скрещивающимися прямыми при решении примеров и задач.

Навигация по странице.

Угол между скрещивающимися прямыми - определение.

К определению угла между скрещивающимися прямыми будем подходить постепенно.

Сначала напомним определение скрещивающихся прямых: две прямые в трехмерном пространстве называются скрещивающимися , если они не лежат в одной плоскости. Из этого определения следует, что скрещивающиеся прямые не пересекаются, не параллельны, и, тем более, не совпадают, иначе они обе лежали бы в некоторой плоскости.

Приведем еще вспомогательные рассуждения.

Пусть в трехмерном пространстве заданы две скрещивающиеся прямые a и b . Построим прямые a 1 и b 1 так, чтобы они были параллельны скрещивающимся прямым a и b соответственно и проходили через некоторую точку пространства M 1 . Таким образом, мы получим две пересекающиеся прямые a 1 и b 1 . Пусть угол между пересекающимися прямыми a 1 и b 1 равен углу . Теперь построим прямые a 2 и b 2 , параллельные скрещивающимся прямым a и b соответственно, проходящие через точку М 2 , отличную от точки М 1 . Угол между пересекающимися прямыми a 2 и b 2 также будет равен углу . Это утверждение справедливо, так как прямые a 1 и b 1 совпадут с прямыми a 2 и b 2 соответственно, если выполнить параллельный перенос, при котором точка М 1 перейдет в точку М 2 . Таким образом, мера угла между двумя пересекающимися в точке М прямыми, соответственно параллельными заданным скрещивающимся прямым, не зависит от выбора точки М .

Теперь мы готовы к тому, чтобы дать определение угла между скрещивающимися прямыми.

Определение.

Угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.

Из определения следует, что угол между скрещивающимися прямыми также не будет зависеть от выбора точки M . Поэтому в качестве точки М можно взять любую точку, принадлежащую одной из скрещивающихся прямых.

Приведем иллюстрацию определения угла между скрещивающимися прямыми.

Нахождение угла между скрещивающимися прямыми.

Так как угол между скрещивающимися прямыми определяется через угол между пересекающимися прямым, то нахождение угла между скрещивающимися прямыми сводится к нахождению угла между соответствующими пересекающимися прямыми в трехмерном пространстве.

Несомненно, для нахождения угла между скрещивающимися прямыми подходят методы, изучаемые на уроках геометрии в средней школе. То есть, выполнив необходимые построения, можно связать искомый угол с каким-либо известным из условия углом, основываясь на равенстве или подобии фигур, в некоторых случаях поможет теорема косинусов , а иногда к результату приводит определение синуса, косинуса и тангенса угла прямоугольного треугольника.

Однако очень удобно решать задачу нахождения угла между скрещивающимися прямыми методом координат. Именно его и рассмотрим.

Пусть в трехмерном пространстве введена Oxyz (правда, во многих задачах ее приходится вводить самостоятельно).

Поставим перед собой задачу: найти угол между скрещивающимися прямыми a и b , которым соответствуют в прямоугольной системе координат Oxyz некоторые уравнения прямой в пространстве .

Решим ее.

Возьмем произвольную точку трехмерного пространства М и будем считать, что через нее проходят прямые a 1 и b 1 , параллельные скрещивающимся прямым a и b соответственно. Тогда искомый угол между скрещивающимися прямыми a и b равен углу между пересекающимися прямыми a 1 и b 1 по определению.

Таким образом, нам осталось найти угол между пересекающимися прямыми a 1 и b 1 . Чтобы применить формулу для нахождения угла между двумя пересекающимися прямыми в пространстве нам нужно знать координаты направляющих векторов прямых a 1 и b 1 .

Как же мы их можем получить? А очень просто. Определение направляющего вектора прямой позволяет утверждать, что множества направляющих векторов параллельных прямых совпадают. Следовательно, в качестве направляющих векторов прямых a 1 и b 1 можно принять направляющие векторы и прямых a и b соответственно.

Итак, угол между двумя скрещивающимися прямыми a и b вычисляется по формуле
, где и - направляющие векторы прямых a и b соответственно.

Формула для нахождения косинуса угла между скрещивающимися прямыми a и b имеет вид .

Позволяет найти синус угла между скрещивающимися прямыми, если известен косинус: .

Осталось разобрать решения примеров.

Пример.

Найдите угол между скрещивающимися прямыми a и b , которые определены в прямоугольной системе координат Oxyz уравнениями и .

Решение.

Канонические уравнения прямой в пространстве позволяют сразу определить координаты направляющего вектор этой прямой – их дают числа в знаменателях дробей, то есть, . Параметрические уравнения прямой в пространстве также дают возможность сразу записать координаты направляющего вектора – они равны коэффициентам перед параметром, то есть, - направляющий вектор прямой . Таким образом, мы располагаем всеми необходимыми данными для применения формулы, по которой вычисляется угол между скрещивающимися прямыми:

Ответ:

Угол между заданными скрещивающимися прямыми равен .

Пример.

Найдите синус и косинус угла между скрещивающимися прямыми, на которых лежат ребра AD и BC пирамиды АВСD , если известны координаты ее вершин: .

Решение.

Направляющими векторами скрещивающихся прямых AD и BC являются векторы и . Вычислим их координаты как разность соответствующих координат точек конца и начала вектора:

По формуле мы можем вычислить косинус угла между указанными скрещивающимися прямыми:

Теперь вычислим синус угла между скрещивающимися прямыми:

Ответ:

В заключении рассмотрим решение задачи, в которой требуется отыскать угол между скрещивающимися прямыми, а прямоугольную систему координат приходится вводить самостоятельно.

Пример.

Дан прямоугольный параллелепипед ABCDA 1 B 1 C 1 D 1 , у которого АВ=3 , АD=2 и AA 1 =7 единиц. Точка E лежит на ребре АА 1 и делит его в отношении 5 к 2 считая от точки А . Найдите угол между скрещивающимися прямыми ВЕ и А 1 С .

Решение.

Так как ребра прямоугольного параллелепипеда при одной вершине взаимно перпендикулярны, то удобно ввести прямоугольную систему координат, и определить угол между указанными скрещивающимися прямыми методом координат через угол между направляющими векторами этих прямых.

Введем прямоугольную систему координат Oxyz следующим образом: пусть начало координат совпадает с вершиной А , ось Ox совпадает с прямой АD , ось Oy - с прямой АВ , а ось Oz – с прямой АА 1 .

Тогда точка В имеет координаты , точка Е - (при необходимости смотрите статью ), точка А 1 - , а точка С - . По координатам этих точек мы можем вычислить координаты векторов и . Имеем , .

Осталось применить формулу для нахождения угла между скрещивающимися прямыми по координатам направляющих векторов:

Ответ:

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Лекция: Пересекающиеся, параллельные и скрещивающиеся прямые; перпендикулярность прямых

Пересекающиеся прямые


Если на плоскости имеются несколько прямых, то они либо рано или поздно пересекутся произвольно, либо под прямым углом, или же будут параллельными. Давайте же разберемся с каждым случаем.


Пересекающимися можно назвать те прямые, у которых будет хотя бы одна точка пересечения.

Вы спросите, почему хотя бы одна, не может же прямая пересечь другую прямую две или три раза. Вы правы! Но прямые могут полностью совпасть друг с другом. В таком случае общих точек будет бесконечное множество.

Параллельность


Параллельными можно назвать те прямые, которые никогда не пересекутся, даже на бесконечности.

Иными словами, параллельные – это те, у которых нет ни одной общей точки. Обратите внимание на то, что данное определение справедливо только в том случае, если прямые находятся в одной плоскости, если же они не имеют общих точек, находясь в разных плоскостях, то они считаются скрещивающимися.

Примеры параллельных прямых в жизни: два противоположных края экрана монитора, линии в тетрадях, а также многие другие части вещей, имеющих квадратную, прямоугольную и другие формы.


Когда хотят показать на письме, что одна прямая параллельная второй, то используют следующее обозначение a||b. Данная запись говорит, что прямая а параллельна прямой b.


При изучении данной темы важно понять еще одно утверждение: через некоторую точку на плоскости, которая не принадлежит данной прямой, можно провести единственную параллельную прямую. Но обратите внимание, снова поправка – на плоскости. Если рассматривать трехмерное пространство, то можно провести бесконечное множество прямых, которые не будут пересекаться, но будут скрещивающимися.

Утверждение, которое было описано выше, называется аксиомой о параллельности прямых .


Перпендикулярность


Прямые можно назвать только в том случае перпендикулярными , если они пересекаются под углом, равным 90 градусов.

В пространстве через некоторую точку на прямой можно провести бесконечное множество перпендикулярных прямых. Однако, если речь идет о плоскости, то через одну точку на прямой можно провести единственную перпендикулярную прямую.


Скрещенные прямые. Секущая

Если некоторые прямые пересекаются в некоторой точке под произвольным углом, их можно назвать скрещивающимися .

У любых скрещивающихся прямых есть вертикальные углы и смежные.


Если у углов, которые образованы двумя скрещивающимися прямыми, одна сторона общая, то они называются смежными:

Смежные углы в сумме дают 180 градусов.

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ Большой Энциклопедический словарь

    скрещивающиеся прямые - прямые в пространстве, не лежащие в одной плоскости. * * * СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ, прямые в пространстве, не лежащие в одной плоскости … Энциклопедический словарь

    Скрещивающиеся прямые - прямые в пространстве, не лежащие в одной плоскости. Через С. п. можно провести параллельные плоскости, расстояние между которыми называется расстоянием между С. п. Оно равно кратчайшему расстоянию между точками С. п … Большая советская энциклопедия

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ - прямые в пространстве, не лежащие в одной плоскости. Углом между С. п. наз. любой из углов между двумя параллельными им прямыми, проходящими через произвольную точку пространства. Если а и b направляющие векторы С. п., то косинус угла между С. п … Математическая энциклопедия

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ - прямые в пространстве, не лежащие в одной плоскости … Естествознание. Энциклопедический словарь

    Параллельные прямые - Содержание 1 В Евклидовой геометрии 1.1 Свойства 2 В геометрии Лобачевского … Википедия

    Ультрапаралельные прямые - Содержание 1 В евклидовой геометрии 1.1 Свойства 2 В геометрии Лобачевского 3 См. также … Википедия

    РИМАНА ГЕОМЕТРИЯ - э л л и п т и ч е с к а я г е о м е т р и я, одна из неевклидовых геометрий, т. е. геометрич, теория, основанная на аксиомах, требования к рых отличны от требований аксиом евклидовой геометрии. В отличие от евклидовой геометрии в Р. г.… … Математическая энциклопедия