Расположение точек на прямой. Взаимное расположение прямой и точки. Касательная к окружности. Касание окружностей

Прямая на плоскости – необходимые сведения.

В этой статье мы подробно остановимся на одном из первичных понятий геометрии – на понятии прямой линии на плоскости. Сначала определимся с основными терминами и обозначениями. Далее обсудим взаимное расположение прямой и точки, а также двух прямых на плоскости, приведем необходимые аксиомы. В заключении, рассмотрим способы задания прямой на плоскости и приведем графические иллюстрации.

Навигация по странице.

  • Прямая на плоскости - понятие.
  • Взаимное расположение прямой и точки.
  • Взаимное расположение прямых на плоскости.
  • Способы задания прямой на плоскости.

Прямая на плоскости - понятие.

Прежде чем дать понятие прямой на плоскости, следует четко представлять себе что же представляет собой плоскость. Представление о плоскости позволяет получить, к примеру, ровная поверхность стола или стены дома. Следует, однако, иметь в виду, что размеры стола ограничены, а плоскость простирается и за пределы этих границ в бесконечность (как будто у нас сколь угодно большой стол).

Если взять хорошо заточенный карандаш и дотронуться его стержнем до поверхности «стола», то мы получим изображение точки. Так мы получаем представление о точке на плоскости .

Теперь можно переходить и к понятию прямой линии на плоскости .

Положим на поверхность стола (на плоскость) лист чистой бумаги. Для того чтобы изобразить прямую линию, нам необходимо взять линейку и провести карандашом линию на сколько это позволяют сделать размеры используемой линейки и листа бумаги. Следует отметить, что таким способом мы получим лишь часть прямой. Прямую линию целиком, простирающуюся в бесконечность, мы можем только вообразить.

К началу страницы

Взаимное расположение прямой и точки.

Начать следует с аксиомы: на каждой прямой и в каждой плоскости имеются точки.

Точки принято обозначать большими латинскими буквами, например, точки А и F . В свою очередь прямые линии обозначают малыми латинскими буквами, к примеру, прямые a и d .

Возможны два варианта взаимного расположения прямой и точки на плоскости : либо точка лежит на прямой (в этом случае также говорят, что прямая проходит через точку), либо точка не лежит на прямой (также говорят, что точка не принадлежит прямой или прямая не проходит через точку).

Для обозначения принадлежности точки некоторой прямой используют символ « ». К примеру, если точка А лежит на прямой а , то можно записать . Если точка А не принадлежит прямой а , то записывают .

Справедливо следующее утверждение: через любые две точки проходит единственная прямая.

Это утверждение является аксиомой и его следует принять как факт. К тому же, это достаточно очевидно: отмечаем две точки на бумаге, прикладываем к ним линейку и проводим прямую линию. Прямую, проходящую через две заданные точки (например, через точки А и В ), можно обозначать двумя этими буквами (в нашем случае прямая АВ или ВА ).


Следует понимать, что на прямой, заданной на плоскости, лежит бесконечно много различных точек, причем все эти точки лежат в одной плоскости. Это утверждение устанавливается аксиомой: если две точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.

Множество всех точек, расположенных между двумя заданными на прямой точками, вместе с этими точками называют отрезком прямой или просто отрезком . Точки, ограничивающие отрезок, называются концами отрезка. Отрезок обозначают двумя буквами, соответствующими точкам концов отрезка. К примеру, пусть точки А и В являются концами отрезка, тогда этот отрезок можно обозначить АВ или ВА . Обратите внимание, что такое обозначение отрезка совпадает с обозначением прямой. Чтобы избежать путаницы, рекомендуем к обозначению добавлять слово «отрезок» или «прямая».

Для краткой записи принадлежности и не принадлежности некоторой точки некоторому отрезку используют все те же символы и . Чтобы показать, что некоторый отрезок лежит или не лежит на прямой пользуются символами и соответственно. К примеру, если отрезок АВ принадлежит прямой а , можно кратко записать .

Следует также остановиться на случае, когда три различных точки принадлежат одной прямой. В этом случае одна, и только одна точка, лежит между двумя другими. Это утверждение является очередной аксиомой. Пусть точки А , В и С лежат на одной прямой, причем точка В лежит между точками А и С . Тогда можно говорить, что точки А и С находятся по разные стороны от точки В . Также можно сказать, что точки В и С лежат по одну сторону то точки А , а точки А и В лежат по одну сторону от точки С .

Для полноты картины заметим, что любая точка прямой делит эту прямую на две части – двалуча . Для этого случая дается аксиома: произвольная точка О , принадлежащая прямой, делит эту прямую на два луча, причем две любые точки одного луча лежат по одну сторону от точкиО , а две любые точки разных лучей – по разные стороны от точки О .

К началу страницы

Статья рассказывает о понятии прямой на плоскости. Рассмотрим основные термины и их обозначения. Поработаем со взаимным расположением прямой и точки и двух прямых на плоскости. Поговорим об аксиомах. В итоге обсудим методы и способы задания прямой на плоскости.

Прямая на плоскости – понятие

Для начала необходимо иметь четкое представление о том, что такое плоскость. Любую поверхность чего-либо можно отнести к плоскости, только от предметов она отличается своей безграничностью. Если представить, что плоскость – это стол, то в нашем случае он не будет иметь границ, а будет бесконечно огромен.

Если карандашом дотронуться до стола, останется отметина, которую можно называть «точкой». Таким образом, получим представление о точке на плоскости.

Рассмотрим понятие прямой линии на плоскости. Если провести прямую на листе, то она отобразится на нем с ограниченной длиной. Мы получили не всю прямую, а только ее часть, так как на самом деле она не имеет конца, как и плоскость. Поэтому изображение прямых и плоскостей в тетради формальное.

Имеем аксиому:

Определение 1

На каждой прямой и в каждой плоскости могут быть отмечены точки.

Точки обозначают как большими, так и маленькими латинскими буквами. Например, А и D или a и d .

Для точки и прямой известны только два варианта расположения: точка на прямой, иначе говоря, что прямая проходит через нее, или точка не на прямой, то есть прямая не проходит через нее.

Чтобы обозначить, принадлежит точка плоскости или точка прямой, используют знак « ∈ ». Если в условии дано, что точка A лежит на прямой a , тогда это имеет такую форму записи A ∈ a . В случае, когда точка А не принадлежит, тогда другая запись A ∉ a .

Справедливо суждение:

Определение 2

Через любые две точки, находящиеся в любых плоскостях, существует единственная прямая, которая проходит через них.

Данное высказывание считается акисомой, поэтому не требует доказательств. Если рассмотреть это самостоятельно, видно, что при существующих двух точках имеется только один вариант их соединения. Если имеем две заданные точки А и В, то прямую, проходящую через них можно назвать данными буквами, например, прямая А В. Рассмотрим рисунок, приведенный ниже.

Прямая, расположенная на плоскости, имеет большое количество точек. Отсюда исходит аксиома:

Определение 3

Если две точки прямой лежат в плоскости, то и все остальные точки данной прямой принадлежат плоскости.

Множество точек, находящееся между двумя заданными, называют отрезком прямой. Он имеет начало и конец. Введено обозначение двумя буквами.

Если дано, что точки А и Р – концы отрезка, значит, его обозначение примет вид Р А или А Р. Так как обозначения отрезка и прямой совпадают, рекомендовано дописывать или договаривать слова «отрезок», «прямая».

Краткая запись принадлежности включает в себя использование знаков ∈ и ∉ . Для того, чтобы зафиксировать расположение отрезка относительно заданной прямой, применяют ⊂ . Если в условии дано, что отрезок А Р принадлежит прямой b , значит, и запись будет выглядеть следующим образом: А Р ⊂ b .

Случай принадлежности одновременно трех точек одной прямой имеет место быть. Это верно, когда одна точка лежит между двумя другими. Данное утверждение принято считать аксиомой. Если даны точки А, В, С, которые принадлежат одной прямой, а точка В лежит между А и С, следует, что все заданные точки лежат на одной прямой, так как лежат по обе стороны относительно точки B .

Точка делит прямую на две части, называемые лучами.Имеем аксиому:

Определение 4

Любая точка O , находящаяся на прямой, делит ее на два луча, причем две любые точки одного луча лежат по одну сторону луча относительно точки O , а другие – по другую сторону луча.

Расположение прямых на плоскости может принимать вид двух состояний.

Определение 5

совпадать .

Такая возможность появляется, когда прямые имеют общие точки. Исходя из аксиомы, написанной выше, имеем, что через две точки проходит прямая и только одна. Значит, что при прохождении 2 прямых через заданные 2 точки, они совпадают.

Определение 6

Две прямые на плоскости могут пересекаться .

Данный случай показывает, что имеется одна общая точка, которую называют пересечением прямых. Вводится обозначение пересечение знаком ∩ . Если имеется форма записи a ∩ b = M , то отсюда следует, что заданные прямые a и b пересекаются в точке M .

При пересечении прямых имеем дело образовавшимся углом. Отдельному рассмотрению подвергается раздел пересечения прямых на плоскости с образованием угла в 90 градусов, то есть прямого угла. Тогда прямые называют перпендикулярными.Форма записи двух перпендикулярных прямых такая: a ⊥ b , а это значит, что прямая a перпендикулярна прямой b .

Определение 7

Две прямые на плоскости могут быть параллельны .

Только в том случае, если две заданные прямые не имеют общих пересечений, а, значит, и точек, они параллельны. Используется обозначение, которое можно записать при заданной параллельности прямых a и b: a ∥ b .

Прямая на плоскости рассматривается вместе с векторами. Особое значение придается нулевым векторам, которые лежат на данной прямой или на любой из параллельных прямых, имеют название направляющие векторы прямой. Рассмотрим рисунок, расположенный ниже.

Ненулевые векторы, расположенные на прямых, перпендикулярных данной, иначе называют нормальными векторами прямой. Подробно имеется описание в статье нормальный вектор прямой на плоскости. Рассмотрим рисунок ниже.

Если на плоскости даны 3 линии, их расположение может быть самое разное. Есть несколько вариантов их расположения: пересечение всех, параллельность или наличие разных точек пересечения. На рисунке показано перпендикулярное пересечение двух прямых относительно одной.

Для этого приводим необходимы факторы, доказывающие их взаимное расположение:

  • если две прямые параллельны третьей, тогда они все параллельны;
  • если две прямые перпендикулярны третьей, тогда эти две прямые параллельны;
  • если на плоскости прямая пересекла одну параллельную прямую, тогда пересечет и другую.

Рассмотрим это на рисунках.

Прямая на плоскости может быть задана несколькими способами. Все зависит от условия задачи и на чем будет основано ее решение. Эти знания способны помочь для практического расположения прямых.

Определение 8

Прямая задается при помощи указанных двух точек, расположенных в плоскости.

Из рассмотренной аксиомы следует, что через две точки можно провести прямую и притом только одну единственную. Когда прямоугольная система координат указывает координаты двух несовпадающих точек, тогда можно зафиксировать уравнение прямой, проходящей через две заданные точки. Рассмотрим рисунок, где имеем прямую, проходящую через две точки.

Определение 9

Прямая может быть задана через точку и прямую, которой она параллельна.

Данный способ имеет место на существование, так как через точку можно провести прямую, параллельную заданной, причем, только одну. Доказательство известно еще из школьного курса по геометрии.

Если прямая задана относительно декартовой системы координат, тогда возможно составление уравнения прямой, проходящей через заданную точку параллельно заданной прямой. Рассмотрим принцип задания прямой на плоскости.

Определение 10

Прямая задается через указанную точку и направляющий вектор.

Когда прямая задается в прямоугольной системе координат, есть возможность составления канонического и параметрического уравнений на плоскости. Рассмотрим на рисунке расположение прямой при наличии направляющего вектора.

Четвертым пунктом задания прямой имеет смысл, когда указана точка, через которую ее следует начертить, и прямая, перпендикулярная ей. Из аксиомы имеем:

Определение 11

Через заданную точку, расположенную на плоскости, пройдет только одна прямая, перпендикулярная заданной.

И последний пункт, относящийся к заданию прямой на плоскости, это при указанной точке, через которую проходит прямая, и при наличии нормального вектора прямой. При известных координатах точки, которая расположена на заданной прямой, и координатах нормального вектора есть возможность записывания общего уравнения прямой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.

2. Условие нахождения трех точек на одной прямой. Уравнение прямой. Взаимное расположение точек и прямой. Пучок прямых. Расстояние от точки до прямой

1. Пусть даны три точки А 1 (х 1 , у 1), А 2 (х 2 , у 2), А 3 (х 3 , у 3), тогда условие нахождения их на одной прямой :

либо (х 2 – х 1) (у 3 – у 1) – (х 3 – x 1) (у 2 – у 1) = 0.

2. Пусть даны две точки А 1 (х 1 , у 1), А 2 (х 2 , у 2), тогда уравнение прямой, проходящей через эти две точки :

(х 2 – х 1)(у – у 1) – (х – х 1)(у 2 – у 1) = 0 или (х – х 1) / (х 2 – х 1) = (у – у 1) / (у 2 – у 1).

3. Пусть имеются точка М (х 1 , у 1) и некоторая прямая L , представленная уравнением у = ах + с . Уравнение прямой, проходящей параллельно данной прямой L через данную точку М:

у – у 1 = а (х – х 1).

Если прямая L задана уравнением Ах + Ву + С М , описывается уравнением А (х – х 1) + В (у – у 1) = 0.

Уравнение прямой, проходящей перпендикулярно данной прямой L через данную точку М :

у – у 1 = –(х – х 1) / а

а (у – у 1) = х 1 – х .

Если прямая L задана уравнением Ах + Ву + С = 0, то параллельная ей прямая, проходящая через точку М (х 1 , у 1), описывается уравнением А (у – у 1) – В (х – х 1) = 0.

4. Пусть даны две точки А 1 (х 1 , у 1), А 2 (х 2 , у 2) и прямая, заданная уравнением Ах + Ву + С = 0. Взаимное расположение точек относительно этой прямой:

1) точки А 1 , А 2 лежат по одну сторону от данной прямой, если выражения (Ах 1 + Ву 1 + С ) и (Ах 2 + Ву 2 + С ) имеют одинаковые знаки;

2) точки А 1 , А 2 лежат по разные стороны от данной прямой, если выражения (Ах 1 + Ву 1 + С ) и (Ах 2 + Ву 2 + С ) имеют разные знаки;

3) одна или обе точки А 1 , А 2 лежат на данной прямой, если одно или оба выражения соответственно (Ах 1 + + Ву 1 + С ) и (Ах 2 + Ву 2 + С ) принимают нулевое значение.

5. Центральный пучок – это множество прямых, проходящих через одну точку М (х 1 , у 1), называемую центром пучка . Каждая из прямых пучка описывается уравнением пучка у – у 1 = к (х – х 1) (параметр пучка к для каждой прямой свой).

Все прямые пучка можно представить уравнением: l (y – y 1) = m (x – x 1), где l, m – не равные одновременно нулю произвольные числа.

Если две прямые пучка L 1 и L 2 соответственно имеют вид (А 1 х + В 1 у + С 1) = 0 и (А 2 х + В 2 у + С 2) = 0, то уравнение пучка: m 1 (А 1 х + В 1 у + С 1) + m 2 (А 2 х + В 2 у + С 2) = 0. Если прямые L 1 и L 2 пересекающиеся, то пучок центральный, если прямые параллельны, то и пучок параллельный.

6. Пусть даны точка М (х 1 , у 1) и прямая, заданная уравнением Ах + Ву + С = 0 . Расстояние d от этой точки М до прямой :


  • 1. Основные понятия. Системы координат. Прямые линии и их взаимное расположение
  • 2. Условие нахождения трех точек на одной прямой. Уравнение прямой. Взаимное расположение точек и прямой. Пучок прямых. Расстояние от точки до прямой