Применение электрического тока в вакууме презентация. Ток в вакууме. А.Образуется нейтральный атом. Б. Отрицательный ион

https://accounts.google.com


Подписи к слайдам:

Презентация на тему: “ Электрический ток в растворах и расплавов электролитов ” Выполнила Базухейр Даляль Ученица 10-а класса

Электрический ток может протекать в пяти различных средах: Металлах Вакууме Полупроводниках Жидкостях Газах

Жидкости по степени электропроводности делятся на: диэлектрики (дистиллированная вода) проводники (электролиты) полупроводники (расплавленный селен)

Электрический ток в жидкостях Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Электролитами являются водные растворы неорганических кислот, солей и щелочей.

Сопротивление электролитов падает с ростом температуры, так как с ростом температуры растёт количество ионов. График зависимости сопротивления электролита от температуры.

Электролитическая диссоциация - при растворении в результате теплового движения происходят столкновения молекул растворителя и нейтральных молекул электролита. Молекулы распадаются на положительные и отрицательные ионы. Например, растворение медного купороса в воде.

Явление электролиза - это выделение на электродах веществ, входящих в электролиты; Положительно заряженные ионы (анионы) под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные ионы (катионы) - к положительному аноду. На аноде отрицательные ионы отдают лишние электроны (окислительная реакция) На катоде положительные ионы получают недостающие электроны (восстановительная).

Законы электролиза Фарадея. Законы электролиза определяют массу вещества, выделяемого при электролизе на катоде или аноде за всё время прохождения электрического тока через электролит. k - электрохимический эквивалент вещества, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.

Вывод: 1. носители заряда – положительные и отрицательные ионы; 2. процесс образования носителей заряда – электролитическая диссоциация; 3 .электролиты подчиняются закону Ома; 4.Применение электролиза: получение цветных металлов (очистка от примесей - рафинирование); гальваностегия - получение покрытий на металле (никелирование, хромирование, золочение, серебрение и т.д.); гальванопластика - получение отслаиваемых покрытий (рельефных копий).

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

ЭЛЕКТРИЧЕСКИЙ ТОК В ВАКУУМЕ

ВАКУУМ В технике и прикладной физике под вакуумом понимают среду, содержащую газ при давлениях значительно ниже атмосферного. Основным носителем электрического тока в вакууме является электрон.

Термоэлектронная эмиссия это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.

Для наблюдения термоэлектронной эмиссии может служить пустотная лампа, содержащая два электрода: один в виде проволоки из тугоплавкого материала, накаливаемый током (катод), и другой, холодный электрод, собирающий термоэлектроны (анод). Аноду чаще всего придают форму цилиндра, внутри которого расположен накаливаемый катод.

Электрическая схема для наблюдения термоэлектронной эмиссии Цепь содержит диод Д, подогреваемый катод которого соединен с отрицательным полюсом батареи Б, а анод - с ее положительным полюсом; миллиамперметр mA , измеряющий силу тока через диод Д, и вольтметр V, измеряющий напряжение между катодом и анодом. При холодном катоде тока в цепи нет, так как сильно разряженный газ (вакуум) внутри диода не содержит заряженных частиц. Если катод раскалить с помощью дополнительного источника, то миллиамперметр зарегистрирует появление тока.

Зависимость температуры Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако. В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него (т.к. электрод при потере электронов заряжается положительно). Чем выше температура металла, тем выше плотность электронного облака.

Применение Вакуумный диод Электронная лампа Электронно-лучевая трубка

Вакуумный диод это двухэлектродная (А- анод и К - катод) электронная лампа. Внутри стеклянного баллона создается очень низкое давление. Вакуумный диод обладает односторонней проводимостью. Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая ток в вакууме. Вольтамперная характеристика вакуумного диода.

1 слайд

2 слайд

3 слайд

Электрические свойства веществ Проводники Полупроводники Диэлектрики Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As Разные вещества имеют различные электрические свойства, однако по электрической проводимости их можно разделить на 3 основные группы: Вещества

4 слайд

5 слайд

Природа электрического тока в металлах Электрический ток в металлических проводниках никаких изменений в этих проводниках, кроме их нагревания не вызывает. Концентрация электронов проводимости в металле очень велика: по порядку величины она равна числу атомов в единице объёма металла. Электроны в металлах находятся в непрерывном движении. Их беспорядочное движение напоминает движение молекул идеального газа. Это дало основание считать, что электроны в металлах образуют своеобразный электронный газ. Но скорость беспорядочного движения электронов металле значительно больше скорости молекул в газе (она составляет примерно 105 м/с). Электрический ток в металлах

6 слайд

Опыт Папалекси-Мандельштама Описание опыта: Цель: выяснить какова проводимость металлов. Установка: катушка на стержне со скользящими контактами, присоединены к гальванометру. Ход эксперимента: катушка раскручивалась с большой скоростью, затем резко останавливалась, при этом наблюдался отброс стрелки гальванометра. Вывод: проводимость металлов - электронная. Электрический ток в металлах

7 слайд

Металлы имеют кристаллическое строение. В узлах кристаллической решетки расположены положительные ионы, совершающие тепловые колебания вблизи положения равновесия, а в пространстве между ними хаотично движутся свободные электроны. Электрическое поле сообщает им ускорение в направлении, противоположном направлению вектора напряженности поля. Поэтому в электрическом поле беспорядочно движущиеся электроны смещаются в одном направлении, т.е. движутся упорядоченно. - - - - - - - - - - Электрический ток в металлах

8 слайд

Зависимость сопротивления проводника от температуры При повышении температуры удельное сопротивление проводника возрастает. Коэффициент сопротивления равен относительному изменению сопротивления проводника при нагревании на 1К. Электрический ток в металлах

9 слайд

Собственная проводимость полупроводников Примесная проводимость полупроводников p – n переход и его свойства

10 слайд

Полупроводники Полупроводники – вещества у которых удельное сопротивление с повышением температуры уменьшается Собственная проводимость полупроводников Примесная проводимость полупроводников p – n переход и его свойства Электрический ток в полупроводниках

11 слайд

Собственная проводимость полупроводников Рассмотрим проводимость полупроводников на основе кремния Si Кремний – 4 валентный химический элемент. Каждый атом имеет во внешнем электронном слое по 4 электрона, которые используются для образования парноэлектронных (ковалентных) связей с 4 соседними атомами При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток Si Si Si Si Si - - - - - - - - Электрический ток в полупроводниках

12 слайд

Рассмотрим изменения в полупроводнике при увеличении температуры При увеличении температуры энергия электронов увеличивается и некоторые из них покидают связи, становясь свободными электронами. На их месте остаются некомпенсированные электрические заряды (виртуальные заряженные частицы), называемые дырками. Si Si Si Si Si - - - - - - + свободный электрон дырка + + - - Электрический ток в полупроводниках

13 слайд

Таким образом, электрический ток в полупроводниках представляет собой упорядоченное движение свободных электронов и положительных виртуальных частиц - дырок Зависимость сопротивления от температуры R (Ом) t (0C) металл R0 полупроводник При увеличении температуры растет число свободных носителей заряда, проводимость полупроводников растет, сопротивление уменьшается. Электрический ток в полупроводниках

14 слайд

Донорные примеси Собственная проводимость полупроводников явно недостаточна для технического применения полупроводников. Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси (легируют) , которые бывают донорные и акцепторные Si Si - - - As - - - Si - Si - - При легировании 4–валентного кремния Si 5–валентным мышьяком As, один из 5 электронов мышьяка становится свободным. As – положительный ион. Дырки нет! Такой полупроводник называется полупроводником n – типа, основными носителями заряда являются электроны, а примесь мышьяка, дающая свободные электроны, называется донорной. Электрический ток в полупроводниках

15 слайд

Акцепторные примеси Такой полупроводник называется полупроводником p – типа, основными носителями заряда являются дырки, а примесь индия, дающая дырки, называется акцепторной Если кремний легировать трехвалентным индием, то для образования связей с кремнием у индия не хватает одного электрона, т.е. образуется дырка Основа дает электроны и дырки в равном количестве. Примесь – только дырки. Si - Si - In - - - + Si Si - - Электрический ток в полупроводниках

16 слайд

17 слайд

Дистиллированная вода не проводит электрического тока. Опустим кристалл поваренной соли в дистиллированную воду и, слегка перемешав воду, замкнем цепь. Мы обнаружим, что лампочка загорается. При растворении соли в воде появляются свободные носители электрических зарядов. Электрический ток в жидкостях

18 слайд

Как возникают свободные носители электрических зарядов? При погружении кристалла в воду к положительным ионам натрия, находящимся на поверхности кристалла, молекулы воды притягиваются своими отрицательными полюсами. К отрицательным ионам хлора молекулы воды поворачиваются положительными полюсами. Электрический ток в жидкостях

19 слайд

Электролитическая диссоциация – это распад молекул на ионы под действием растворителя. Подвижными носителями зарядов в растворах являются только ионы. Жидкий проводник, в котором подвижными носителями зарядов являются только ионы, называют электролитом. Электрический ток в жидкостях

20 слайд

Как проходит ток через электролит? Опустим в сосуд пластины и соединим их с источником тока. Эти пластины называются электродами. Катод -пластина, соединенная с отрицательным полюсом источника. Анод - пластина, соединенная с положительным полюсом источника. Электрический ток в жидкостях

21 слайд

Под действием сил электрического поля положительно заряженные ионы движутся к катоду, а отрицательные ионы к аноду. На аноде отрицательные ионы отдают свои лишние электроны, а на катоде положительные ионы получают недостающие электроны. Электрический ток в жидкостях

22 слайд

Электролиз На катоде и аноде выделяются вещества, входящие в состав раствора электролита. Прохождение электрического тока через раствор электролита, сопровождающееся химическими превращениями вещества и выделением его на электродах, называется электролизом. Электрический ток в жидкостях

23 слайд

Закон электролиза Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит: m = kQ = kIt. Это закон электролиза. Величину k называют электрохимическим эквивалентом. Опыты Фарадея показали, что масса выделившегося при электролизе вещества зависит не только от величины заряда, но и от рода вещества. Электрический ток в жидкостях

24 слайд

25 слайд

Газы в нормальном состоянии являются диэлектриками, так как состоят из электрически нейтральных атомов и молекул и поэтому не проводят электричества. Изолирующие свойства газов объясняются тем, что атомы и молекулы газов в естественном состоянии являются нейтральными незаряженными частицами. Отсюда ясно, что для того, чтобы сделать газ проводящим, нужно тем или иным способом внести в него или создать в нем свободные носители заряда – заряженные частицы. При этом возможны два случая: либо эти заряженные частицы создаются действием какого-нибудь внешнего фактора или вводятся в газ извне – несамостоятельная проводимость, либо они создаются в газе действием самого электрического поля, существующего между электродами – самостоятельная проводимость. Электрический ток в газах Электрический ток в газах

26 слайд

Проводниками могут быть только ионизированные газы, в которых содержатся электроны, положительные и отрицательные ионы. Ионизацией называется процесс отделения электронов от атомов и молекул. Ионизация возникает под действием высоких температур и различных излучений (рентгеновских, радиоактивных, ультрафиолетовых, космических лучей), вследствие столкновения быстрых частиц или атомов с атомами и молекулами газов. Образовавшиеся электроны и ионы делают газ проводником электричества. Процессы ионизации: электронный удар термическая ионизация фотоионизация Электрический ток в газах

27 слайд

Типы самостоятельных разрядов В зависимости от процессов образования ионов в разряде при различных давлениях газа и напряжениях, приложенных к электродам, различают несколько типов самостоятельных разрядов: тлеющий искровой коронный дуговой Электрический ток в газах

28 слайд

Тлеющий разряд Тлеющий разряд возникает при низких давлениях (в вакуумных трубках). Для разряда характерна большая напряженность электрического поля и соответствующее ей большое падение потенциала вблизи катода. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами. Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой Электрический ток в газах

    Слайд 1

    В вакууме отсутствуют заряженные частиц, а следовательно, он является диэлектриком. Т.е. необходимо создать определенные условия, которые помогут получить заряженные частицы. Свободные электроны есть в металлах. При комнатной температуре они не могут покинуть металл, т. к. удерживаются в нем силами кулоновского притяжения со стороны положительных ионов. Для преодоления этих сил электрону необходимо затратить определенную энергию, которая называется работой выхода. Энергию, большую или равную работе выхода, электроны могут получить при разогреве металла до высоких температур. Сделали ученики 10 А Иван Трифонов Павел Романко

    Слайд 2

    При нагревании металла количество электронов с кинетической энергией, большей работы выхода, увеличивается, поэтому из металла вылетает большее количество электронов. Испускание электронов из металлов при его нагревании называют термоэлектронной эмиссией. Для осуществления термоэлектронной эмиссии в качестве оного из электродов используют тонкую проволочную нить из тугоплавкого металла (нить накала). Подключенная к источнику тока нить раскаляется и с ее поверхности вылетают электроны. Вылетевшие электроны попадают в электрическое поле между двумя электродами и начинают двигаться направленно, создавая электрический ток. Явление термоэлектронной эмиссии лежит в основе принципа действия электронных ламп: вакуумного диода, вакуумного триода. Электрический ток в вакууме Вакуумный диод Вакуумный триод

    Слайд 3

    Вакуум

    Вакуум – сильно разряженный газ, в котором длина свободного пробега частиц (от столкновения до столкновения) больше размеров сосуда - электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность;- создать эл.ток в вакууме можно, если использовать источник заряженных частиц;- действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

    Слайд 4

    Термоэлектронная эмиссия(ТЭЭ)

    Термоэлектро́ннаяэми́ссия (эффект Ричардсона, эффект Эдисона) - явление вырывания электронов из металла при высокой температуре. - это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако.В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него (т.к. электрод при потере электронов заряжается положительно).Чем выше температура металла, тем выше плотность электронного облака.

    Слайд 5

    Вакуумный диоид

    Электрический ток в вакууме возможен в электронных лампах.Электронная лампа - это устройство, в котором применяется явление термоэлектронной эмиссии.

    Слайд 6

    Подробное строение вакуумного диода

    Вакуумный диод - это двухэлектродная (А- анод и К - катод) электронная лампа.Внутри стеклянного баллона создается очень низкое давление Н - нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью. Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.

    Слайд 7

    Вольт-амперная характеристика вакуумного диода.

    Зависимость силы тока от напряжения выражена кривой ОАВСD. При испускании электронов катод приобретает положительный заряд и поэтому удерживает возле себя электроны. При отсутствии электрического поля между катодом и анодом, вылетевшие электроны образуют у катода электронное облако. По мере увеличения напряжения между анодом и катодом большее количество электронов устремляется к аноду, а следовательно сила тока увеличивается. Эта зависимость выражена участком графика ОАВ. Участок АВ характеризует прямую зависимость силы тока от напряжения, т.е. в интервале напряжений U1 - U2 выполняется закон Ома. Нелинейная зависимость на участке ВСD объясняется тем, что число электронов, устремляющихся к аноду, стает больше числа электронов, вылетающих с катода. При достаточно большом значении напряжения U3 все электроны, вылетающие с катода, достигают анода, и электрический ток достигает насыщения.

    Слайд 8

    Вольтамперная характеристика вакуумного диода.

    Вакуумный диод используется для выпрямления переменного тока. В качестве источника заряженных частиц можно использовать радиоактивный препарат, испускающий α-частицы.Под действием сил электрического поля α-частицы будут двигаться, т.е. возникнет электрический ток. Таким образом, электрический ток в вакууме может быть создан упорядоченным движением любых заряженных частиц (электронов, ионов).

    Слайд 9

    Электронные пучки

    Свойства и применение: Попадая на тела, вызывают их нагревание (электронная плавка в вакууме) Отклоняются в электрических полях; Отклоняются в магнитных полях под действием силы Лоренца; При торможении пучка, попадающего на вещество возникает рентгеновское излучение; Вызывает свечение (люминесценцию) некоторых твердых и жидких тел (люминофоров); - это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

    Слайд 10

    Электронно - лучевая трубка (ЭЛТ)

    Используются явления термоэлектронной эмиссии и свойства электронных пучков. ЭЛТ состоит из электронной пушки, горизонтальных и вертикальных отклоняющих пластин-электродов и экрана.В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами. Существуют два вида трубок:1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь эл.полем);2) с электромагнитным управлением (добавляются магнитные отклоняющие катушки).

    Слайд 11

    Электронно-лучевая трубка

    Применение: в кинескопах телевизора В осциллографах В дисплеях

    Слайд 12

Посмотреть все слайды

Урок по теме " Электрический ток в вакууме".

Цели урока: ознакомление учащихся с электронными устройствами -предшественниками полупроводниковых приборов, служащих и в настоящее время; добиться понимания учащимися явления ТЭЭ и условий его проявления; продолжить развитие внимания,логического мышления, умения выделять главное.

Оборудование: презентация, компьютер, электронно -лучевая трубка, набор электронных ламп.

Тип урока - комбинированный (рассказ учителя с использованием презентации, сам. работа с учебником, контроль полученных знаний)

План урока.

1. Сегодня на уроке.

2. Повторение предыдущей темы "Электрический ток в п/п" (по слайду).

3. Рассказ учителя о токе в вакууме по презентации.

4.Закрепление (по слайду).

5. Самостоятельная работа учащихся по закреплению и более углубленному изучению электронно - лучевой трубки и свойств электронных пучков.

6. Д.з. п. 117 -118 учебника физики 10 класса авторов Г. Я. Мякишева, Б. Б. Буховцева, Н. Н. Сотского.

Просмотр содержимого документа
«Презентация к уроку " Электрический ток в вакууме", 10 класс, базовый уровень.»

Электрический ток в вакууме

Савватеева Светлана Николаевна, учитель физики

МБОУ «Кемецкая СОШ», Бологовский район, Тверская область.


Сегодня на уроке

Вакуум – это « ничто» или « что-то»?

Вакуум – это проводник или диэлектрик?

Для чего нужен вакуум?

Как внести в вакуум носители зарядов?

Какие носители зарядов создают ток в вакууме?

В каких устройствах используется ток в вакууме?

Каково основное свойство двухэлектродной – электронной лампы?


Повторим

  • Почему с повышением температуры п/п их сопротивление уменьшается?

А. Уменьш. концентр. свободных носителей зарядов.

Б . Увелич. концентр. свободных носителей зарядов.

В. Увелич. скорость электронов.

2. В четырехвалентный кремний вводят трехвалентный индий. Каким будет

основной ток в кремнии?

А. Электронный. Б. Дырочный . В . Электронно – дырочный.

3. В чистом п/п (без примесей) дырочный ток 5 А. Чему равен электронный

Ток и общий ток?

А. 5 А,5 А . Б . 5 А, 10 А . В. 5 А,0 Г . 0 , 5 А.

4. Как изменяется концентрация свободных носителей зарядов

У металлов и п/п при их нагревании?

А. У металлов не изменяется, у п/п увеличивается.

Б. У металлов увеличивается, у п/п не изменяется.

В . У металлов и у п/п увеличивается.

Г. У металлов и у п/п уменьшается.

5. Что происходит при слиянии электронов и дырок?

А.Образуется нейтральный атом. Б. Отрицательный ион.

В. Положительный ион.



Т ЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ

  • Процесс испускания электронов сильно нагретыми металлами.
  • Интенсивность зависит от площади поверхности, температуры металла, вещества катода.

Электровакуумный диод (двухэлектродная электронная лампа)

Электрический ток в вакууме – направленное движение

электронов.


Основное свойство электровакуумного диода

Основное свойство диода – пропускает ток в одном направлении.

Ток есть, если на аноде (+ ψ ) или нет тока, если на аноде (-ψ).

Это свойство используется для выпрямления переменного тока.



Электронно – лучевая трубка – осциллограф, телевизор, дисплеи ЭВМ

Свойства электронных пучков: безъинерционны, отклоняются электрическими

И магнитными полями, вызывают свечение некоторых веществ, нагревают тела.



Закрепление

  • Ответы на вопросы слайда « Сегодня на уроке».
  • Что такое ТЭЭ и при каких условиях она происходит?
  • Что такое работа выхода?
  • Почему вакуумный диод обладает односторонней проводимостью?

5. Составить рассказ о свойствах электронных пучков и об электронно – лучевой трубке.