Квантовая теория взаимодействий. Человек и квантовая теория: существует ли то, что мы не наблюдаем. Интерпретации квантовой теории - принцип дополнительности

Фоковского пространства, описывающие всевозможные возбуждения квантового поля. Аналогом квантовомеханической волновой функции в КТП является полевой оператор (точнее, «поле» - это операторнозначная обобщённая функция , из которой только после свёртки с основной функцией получается оператор, действующий в гильбертовом пространстве состояний), способный действовать на вакуумный вектор фоковского пространства (см. вакуум) и порождать одночастичные возбуждения квантового поля. Физическим наблюдаемым здесь также соответствуют операторы, составленные из полевых операторов [стиль! ] .

Именно на квантовой теории поля базируется вся физика элементарных частиц .

При построении квантовой теории поля ключевым моментом было понимание сущности явления перенормировки .

История зарождения

Основное уравнение квантовой механики - уравнение Шрёдингера - является релятивистски неинвариантным, что видно из несимметричного вхождения времени и пространственных координат в уравнение. В 1926 году было предложено релятивистски инвариантное уравнение для свободной (безспиновой или с нулевым спином) частицы (уравнение Клейна - Гордона - Фока). Как известно, в классической механике (включая нерелятивистскую квантовую механику) энергия (кинетическая, поскольку потенциальная предполагается нулевой) и импульс свободной частицы связаны соотношением . Релятивистское соотношение энергии и импульса имеет вид . Предполагая, что оператор импульса в релятивистском случае такой же, как и в нерелятивистской области, и используя данную формулу для построения релятивистского гамильтониана по аналогии, получим уравнение Уравнение Клейна - Гордона :

или

или, кратко, используя вдобавок естественные единицы :

, где - оператор Д’Аламбера .

Однако проблема данного уравнения заключается в том, что волновую функцию здесь сложно интерпретировать как амплитуду вероятности хотя бы потому, что - как можно показать - плотность вероятности не будет положительно определенной величиной.

Несколько иное обоснование имеет уравнение Дирака , предложенное им в 1928 году. Дирак пытался получить дифференциальное уравнение первого порядка, в котором обеспечено равноправие временной координаты и пространственных координат. Поскольку оператор импульса пропорционален первой производной по координатам, то гамильтониан Дирака должен быть линейным по оператору импульса.

и с учетом формулы связи энергии и импульса, на квадрат этого оператора налагаются ограничения, а значит и на "коэффициенты" - их квадраты должны быть равны единице и они должны быть взаимно антикоммутативны. Таким образом, это точно не могут быть числовые коэффициенты. Однако, они могут быть матрицами, причем размерности не менее 4, а "волновая функция" - четырехкомпонентным объектом, получившим название биспинора . В таком случае уравнение Дирака формально имеет вид, идентичный уравнению Шредингера (с гамильтонианом Дирака).

Однако данное уравнение, впрочем как и уравнение Клейна - Гордона, имеет решения с отрицательными энергиями. Данное обстоятельство явилось причиной для предсказания античастиц , что позже и было подтверждено экспериментально (открытие позитрона). Наличие античастиц есть следствие релятивистского соотношения между энергией и импульсом.

Одновременно к концу 20-х годов был разработан формализм квантового описания многочастичных систем (включая системы с переменным числом частиц), основанного на операторах рождения и уничтожения частиц. Квантовая теория поля оказывается также основанной на этих операторах (выражается через них).

Уравнения Клейна - Гордона и Дирака следует рассматривать как уравнения для полевых операторных функций, действующих на вектор состояния системы квантовых полей, удовлетворяющих уравнению Шрёдингера.

Сущность квантовой теории поля

Лагранжев формализм

В классической механике с помощью лагранжева формализма можно описать многочастичные системы. Лагранжиан многочастичной системы равен сумме лагранжианов отдельных частиц. В теории поля аналогичную роль может играть лагранжева плотность (плотность лагранжиана) в данной точке пространства. Соответственно лагранжиан системы (поля) будет равен интегралу от плотности лагранжиана по трехмерному пространству. Действие, как и в классической механике, предполагается равным интегралу от лагранжиана по времени. Следовательно, действие в теории поля можно рассматривать как интеграл от плотности лагранжиана по четырехмерному пространству-времени. Соответственно можно применить принцип наименьшего (стационарного) действия к этому четырехмерному интегралу и получить уравнения движения для поля - уравнения Эйлера-Лагранжа . Минимальное требование к лагранжиану (лагранжевой плотности) - релятивистская инвариантность. Второе требование - лагранжиан не должен содержать производных полевой функции выше первой степени, чтобы уравнения движения получались "правильными" (соответствовали классической механике). Есть также и иные требования (локальность, унитарность и др.). Согласно теореме Нётер инвариантность действия относительно k-параметрических преобразований, приводит к k динамическим инвариантам поля, то есть к законам сохранения. В частности инвариантность действия относительно трансляций (сдвигов) приводит к сохранению 4-импульса.

Пример: Скалярное поле c лагранжианом

Уравнения движения для данного поля приводят к уравнению Клейна-Гордона . Для решения этого уравнения полезно перейти к импульсному представлению через преобразование Фурье. Из уравнения Клейна-Гордона нетрудно видеть, что коэффициенты Фурье будут удовлетворять условию

Где - произвольная функция

Дельта-функция устанавливает связь между частотой (энергией) , волновым вектором (вектором импульса) и параметром (массой) : . Соответственно для двух возможных знаков имеем два независимых решения в импульсном представлении (интеграл Фурье)

Можно показать, что вектор импульса будет равен

Следовательно, функцию можно интерпретировать как среднюю плотность частиц с масоой , импульсом и энергией . После квантования эти произведения превращаются в операторы, имеющие целочисленные собственные значения.

Квантование поля. Операторы рождения и уничтожения квантов

Квантование означает переход от полей к операторам, действующим на вектор (амплитуду) состояния Φ . По аналогии с обычной квантовой механикой вектор состояния полностью характеризует физическое состояние системы квантованных волновых полей. Вектор состояния - это вектор в некотором линейном пространстве.

Основной постулат квантования волновых полей заключается в том, что операторы динамических переменных выражаются через операторы полей таким же образом, что и для классических полей (с учетом порядка перемножения)

Для квантового гармонического осциллятора получена известная формула квантования энергии . Собственные функции, соответствующие указанным собственным значениям гамильтониана, оказываются связанными друг с другом некоторыми операторами - повышающий оператор, - понижающий оператор. Следует отметить, что эти операторы некоммутативны (их коммутатор равен единице). Применение повышающего или понижающего оператора увеличивает квантовое число n на единицу и приводит к одинаковому увеличению энергии осциллятора (эквидистантность спектра), что можно интерпретировать как рождение нового или уничтожение кванта поля с энергией . Именно такая интерпретация позволяет использовать вышеприведенные операторы, как операторы рождения и уничтожения квантов данного поля. Гамильтониан гармонического осциллятора выражается через указанные операторы следующим образом , где - оператор числа квантов поля. Как нетрудно показать - то есть, собственные значения этого оператора - число квантов. Любое n-частичное состояние поля может быть получено действием операторов рождения на вакуум

Для вакуумного состояния результат применения оператора уничтожения равен нулю (это можно принять за формальное определение вакуумного состояния).

В случае N осцилляторов гамильтониан системы равен сумме гамильтонианов индивидуальных осцилляторов. Для каждого такого осциллятора можно определить свои операторы рождения . Следовательно произвольное квантовое состояние такой системы может быть описано с помощью чисел заполнения - количества операторов данного сорта k, действующих на вакуум:

Такое представление называют представлением чисел заполнения . Суть данного представления заключается в том, чтобы вместо задания функции функции от координат (координатное представление) или как функцию от импульсов (импульсное представление), состояние системы характеризуется номером возбужденного состояния - числом заполнения.

Можно показать, что, например, скалярное поле Клейна-Гордона может быть представлено как совокупность осцилляторов. Разлагая полевую функцию в бесконечный ряд Фурье по трехмерному вектору импульса можно показать, что из уравнения Клейна-Гордона следует, что амплитуды разложения удовлетворяют классическому дифференциальному уравнению второго порядка для осциллятора с параметром (частотой) . Рассмотрим ограниченный куб и наложим условие периодичности по каждой координате с периодом .Условие периодичности приводит к квантованию допустимых импульсов и энергии осциллятора:

Операторы поля, операторы динамических переменных

Фоковское представление

Квантование по Бозе-Эйнштейну и Ферми-Дираку. Связь со спином.

Коммутационные соотношения Бозе-Эйнштейна основаны на обычном коммутаторе (разность "прямого" и "обратного" произведения операторов), а коммутационные соотношения Ферми-Дирака - на антикоммутаторе (сумма "прямого" и "обратного" произведения операторов). Кванты первых полей подчиняются статистике Бозе-Эйнштейна и называются бозонами , а кванты вторых подчиняются статистике Ферми-Дирака и называются фермионами . Квантование полей по Бозе-Эйнштейну оказывается непротиворечивым для частиц с целым спином, а для частиц с полуцелым спином непротиворечивым оказывается квантование по Ферми-Дираку. Таким образом, фермионы являются частицами с полуцелым спином, а бозоны - с целым.

S-матричный формализм. Диаграммы Фейнмана

Проблема расходимостей и пути их решения

Аксиоматическая квантовая теория поля

См. также

Литература

  • Квантовая теория поля - Физическая энциклопедия (гл. редактор А. М. Прохоров).
  • Ричард Фейнман , «Характер физических законов» - М., Наука, 1987 г., 160 с.
  • Ричард Фейнман, «КЭД - странная теория света и вещества» - М., Наука, 1988 г., 144 с.
  • Боголюбов Н. Н. , Ширков Д. В. Введение в теорию квантованных полей . - М .: Наука, 1984. - 600 с.
  • Вентцель Г. Введение в квантовую теорию волновых полей. - М .: ГИТТЛ, 1947. - 292 с.
  • Ициксон К., Зюбер Ж.-Б. Квантовая теория поля. - М .: Мир, 1984. - Т. 1. - 448 с.
  • Райдер Л. Квантовая теория поля. - М .: Мир, 1987. - 512 с.
Основные разделы
Общая (физическая) акустика Геометрическая акустика Психоакустика Биоакустика Электроакустика Гидроакустика Ультразвуковая акустика Квантовая акустика (акустоэлектроника) Акустическая фонетика (Акустика речи)
Прикладная акустика Архитектурная акустика (Строительная акустика) Аэроакустика Музыкальная акустика Акустика транспорта Медицинская акустика Цифровая акустика
Смежные направления Акустооптика
Прикладная физика Физика плазмы Физика атмосферы Лазерная физика Физика ускорителей
Связанные науки Агрофизика Физическая химия Математическая физика Космология Астрофизика Геофизика Биофизика Метрология Материаловедение
См. также

Основные положения квантовой теории поля: 1). Вакумное состояние. Нерелятивистская квантовая механика позволяет изучать поведение неизменного числа элементарных частиц. Квантовая теория поля учитывает рождение и поглощение или уничтожение элементарных частиц. Поэтому квантовая теория поля содержит два оператора: оператор рождения и оператор уничтожения элементарных частиц. Согласно квантовой теории поля невозможно состояние, когда нет ни поля, ни частиц. Вакуум – это поле, в своем наинизшем энергетическом состоянии. Для вакуума хар-ны не самостоятельные, наблюдаемые частицы, а виртуальные частицы, которые возникают, а через некоторое исчезают. 2.) Виртуальный механизм взаимодействия элементарных частиц. Элементарные частицы взаимодействуют с друг другом по следством полей, но если частица не изменяет своих параметров, она не может испустить или поглотить настоящий квант взаимодействия, такой энергии и импульса и на такое время и расстояние, которое определяются соотношениями ∆E∙∆t≥ħ, ∆рх∙∆х≥ħ(постоянная кванта) соотношение неопределенностей. Природа виртуальных частиц такова, что они возникнут через некоторое время, исчезают или поглощаются. Амер. Физик Фейнман разработал графический способ изображения взаимодействия элементарных частиц с виртуальными квантами:

Испускание и поглощение виртуального кванта свободной частицы

Взаимодействие двух элемен. частиц по средствам одного виртуального кванта.

Взаимодействие двух элемен. частиц по средствам двух виртуального кванта.

На данных рис. Графич. изображение частиц, но не их траекторий.

3.) Спин – является важнейшей хар-кой квантовых объектов. Это собственный момент импульса частицы и если момент импульса волчка совпадает с направление оси вращения, то спин не определяет какого- то определенного выделенного направления. Спин задает направленность, но вероятностным образом. Спин существует в форме, которой нельзя придать наглядный вид. Спин обозначается s=I∙ħ, причем I принимает как целочисленные значения I=0,1,2,…, так и получисленные значения I = ½, 3/2, 5/2,… В классической физике одинаковые частицы пространственно не различны, т.к. занимают одну и туже область пространства, вероятность нахождения частицы какой-либо области пространства определяется квадратом модуля волновой функции. Волновая функция ψ, является характеристикой всех частиц. ‌‌. соответствует симметричности волновых функций, когда частицы 1 и 2 тождественны и их состояния одинаковы. случай антисимметричности волновых функций, когда частицы 1 и 2 тождественны друг другу, но различаются по одному из квантовых параметров. Например: спином. Согласно принципу запрета Пауля, частицы, обладающие полуцелым спином, не могут находиться в одном и том же состоянии. Этот принцип позволяет описать структуру электронных оболочек атомов и молекул. Те частицы, которые обладают целым спином, называются бозонами. I =0 у Пи-мезонов; I =1 у фотонов; I = 2 у гравитонов. Частицы, обладающие получисленным спином, называются фермионами . У электрона, позитрона, нейтрона, протона I = ½. 4) Изотопический спин. Масса нейтрона всего лишь на 0,1% больше массы протона, если абстрагироваться (не учитывать) электрический заряд, то можно считать эти две частицы двумя состояниями одной и той же частицы, нуклона. Аналогично имеются - мезоны, но это не три самостоятельные частицы, а три состояния одной и той же частицы, которые называются просто Пи – мезоном. Для учета сложности или мультиплетности частиц вводится параметр, который называется изотопическим спином. Он определяется из формулы n = 2I+1, где n – число состояний частицы, например для нуклона n=2, I=1/2. Проекцией изоспина обозначаются Iз = -1/2; Iз = ½, т.е. протон и нейтрон образуют изотопический дублет. Для Пи – мезонов число состояний = 3, т. е n=3, I =1, Iз=-1, Iз=0, Iз=1. 5) Классификация частиц: важнейшей хар-кой элементарных частиц является масса покоя, по этому признаку частицы делятся на барионы (пер. тяжелый), мезоны (от греч. Средний), лептоны (от греч. легкий). Барионы и мезоны по принципу взаимодействия относятся еще к классу адронов (от греч. сильный), поскольку эти частицы участвуют в сильном взаимодействии. К барионам относятся: протоны, нейтроны, гипероны из названных частиц стабильным является только протон, все барионы – фермионы, мезоны являются бозонами, являются не стабильными частицами, участвуют во всех типах взаимодействий, так же как и барионы, к лептонам относятся: электрон, нейтрон, эти частицы являются фермионами, не участвуют в сильных взаимодействиях. Особо выделяется фотон, который не относится к лептонам, а также не относится к классу адронам. Его спин = 1, а масса покоя = 0. Иногда в особый класс выделяют кванты взаимодействия, мезон – квант слабого взаимодействия, глюон – квант гравитационного взаимодействия. Иногда в особый класс выделяют кварки, обладающие дробным электрическим зарядом равен 1/3 или 2/3 электрического заряда.6) Типы взаимодействия. В 1865 году была создана теория электромагнитного поля (Максвелла). В 1915 году была создана теория гравитационного поля Эйнштейном. Открытия сильных и слабых взаимодействий относится к первой трети 20 века. Нуклоны крепко связаны в ядре между собой сильными взаимодействиями, которые названы сильными. В 1934 году Ферме создал первую достаточно адекватную экспериментальным исследованием теорию слабых взаимодействий. Эта теория возникла после открытия радиоактивности, пришлось предположить, что в ядрах атома возникают незначительные взаимодействия, которые приводят к самопроизвольному распаду тяжелых химических элементов как уран, при этом излучаются - лучи. Ярким примером слабых взаимодействий являются проникновение частиц нейтронов сквозь землю в то время, как у нейтронов проникающая способность намного скромнее, они задерживаются свинцовым листом, толщиной нескольких сантиметров. Сильные: электромагнитные. Слабые: гравитационные = 1: 10-2: 10-10:10-38. Отличие электромаг. и гравит. Взаимодействий, в том, что они плавно убывают с увеличением расстояния. Сильные и слабые взаимодействия ограничены очень малыми расстояниями: 10-16 см для слабых, 10-13 см для сильных. Но на расстояние < 10-16 см слабые взаимодействия уже не являются малоинтенсивными, на расстоянии 10-8 см господствуют электромагнитные силы. Адроны взаимодействуют с помощью кварков. Переносчиками взаимодействия между кварками являются глюоны. Сильные взаимодействия появляются на расстояниях 10-13 см, т. Е. глюоны являются короткодействующими и способны долететь такие расстояния. Слабые взаимодействия осуществляются с помощью полей Хиггса, когда взаимодействие переносится с помощью квантов, которые называются W+,W- - бозоны, а также нейтральные Z0 – бозоны(1983 год). 7) Деление и синтез атомных ядер. Ядра атомов состоят из протонов, которые обозначаются Z и нейтронов N, общее число нуклонов обозначается буквой – А. А= Z+N. Чтобы вырвать нуклон из ядра необходимо затратить энергию, поэтому полная масса и энергия ядра меньше суммы асс и энергий всех его составляющих. Разность энергии называется энергия связи: Есв=(Zmp+Nmn-M)c2 энергия связи нуклонов ядре – Есв. Энергия связи, проходящая на один нуклон, называется удельная энергия связи (Есв/А). Максимальное значение удельная энергия связи принимает для ядер атомов железа. У элементов следующих после железа происходит нарастание нуклонов, и каждый нуклон приобретает все больше соседей. Сильные же взаимодействия являются короткодействующими, это приводит к тому, что при росте нуклонов и при значительном росте нуклонов хим. элемент стремится к распаду (естеств. радиоактивности). Запишем реакции, в которых происходит выделение энергии: 1. При делении ядер с большим числом нуклонов : n+U235→ U236→139La+95Mo+2n медленно движущийся нейтрон поглощается U235(ураном) в результате образуется U236 , который делится на 2 ядра La(лаптам) и Мо(молибден), которые разлетаются с большими скоростями и образуются 2 нейтрона, которые способны вызвать 2 такие реакции. Реакция принимает цепной хар-тер для того чтобы масса исходного топлива достигала критической массы.2. Реакция синтеза легких ядер .d2+d=3H+n, если бы люди сумели обеспечить устойчивый синтез ядер, то они избавили бы себя от энергетических проблем. Дейтерий, содержащийся в воде океана, представляет неисчерпаемый источник дешевого ядерного топлива, и синтезу легких элементов не сопутствует интенсивные радиоактивные явления, как при делении ядер урана.

а) Предпосылки квантовой теории

В конце XIX века выявилась несостоятельность попыток создать теорию излучения черного тела на основе законов классической физики. Из законов классической физики следовало, что вещество должно излучать электромагнитные волны при любой температуре, терять энергию и понижать температуру до абсолютного нуля. Иными словами. тепловое равновесие между веществом и излучением было невозможно. Но это находилось в противоречии с повседневным опытом.

Более детально это можно пояснить следующим образом. Существует понятие абсолютно черного тела - тела, поглощающего электромагнитное излучение любой длины волны. Спектр его излучения определяется его температурой. В природе абсолютно черных тел нет. Наиболее точно абсолютно черному телу соответствует замкнутое непрозрачное полое тело с отверстием. Любой кусок вещества при нагревании светится и при дальнейшем повышении температуры становится сначала красным, а затем - белым. Цвет от вещества почти не зависит, для абсолютно черного тела он определяется исключительно его температурой. Представим такую замкнутую полость, которая поддерживается при постоянной температуре и которая содержит материальные тела, способные испускать и поглощать излучения. Если температура этих тел в начальный момент отличалась от температуры полости, то со временем система (полость плюс тела) будет стремиться к термодинамическому равновесию, которое характеризуется равновесием между поглощаемой и измеряемой в единицу времени энергией. Г.Кирхгоф установил, что это состояние равновесия характеризуется определенным спектральным распределением плотности энергии излучения, заключенного в полости, а также то, что функция, определяющая спектральное распределение (функция Кирхгофа), зависит от температуры полости и не зависит ни от размеров полости или ее форм, ни от свойств помещенных в нее материальных тел. Так как функция Кирхгофа универсальна, т.е. одинакова для любого черного тела, то возникло предположение, что ее вид определяется какими-то положениями термодинамики и электродинамики. Однако попытки такого рода оказались несостоятельными. Из закона Д.Рэлея следовало, что спектральная плотность энергии излучения должна монотонно возрастать с увеличением частоты, но эксперимент свидетельствовал об ином: вначале спектральная плотность с увеличением частоты возрастала, а затем падала. Решение проблемы излучения черного тела требовало принципиально нового подхода. Он был найден М.Планком.

Планк в 1900 г. сформулировал постулат, согласно которому вещество может испускать энергию излучения только конечными порциями, пропорциональными частоте этого излучения (см. раздел "Возникновение атомной и ядерной физики"). Данная концепция привела к изменению традиционных положений, лежащих в основе классической физики. Существование дискретности действия указывало на взаимосвязь между локализацией объекта в пространстве и времени и его динамическим состоянием. Л. де Бройль подчеркивал, что "с точки зрения классической физики эта связь представляется совершенно необъяснимой и гораздо более непонятной по следствиям, к которым она приводит, чем связь между пространственными переменными и временем, установленная теорией относительности." Квантовой концепции в развитии физики было суждено сыграть огромную роль.

Следующим шагом в развитии квантовой концепции было расширение А.Эйнштейном гипотезы Планка, что позволило ему объяснить закономерности фотоэффекта, не укладывающиеся в рамки классической теории. Сущность фотоэффекта заключается в испускании веществом быстрых электронов под действием электромагнитного излучения. Энергия испускаемых электронов при этом от интенсивности поглощаемого излучения не зависит и определяется его частотой и свойствами данного вещества, но от интенсивности излучения зависит число испускаемых электронов. Дать объяснение механизму освобождаемых электронов не удавалось, поскольку в соответствии с волновой теорией световая волна, падая на электрон, непрерывно передает ему энергию, причем ее количество в единицу времени должно быть пропорционально интенсивности волны, падающей на него. Эйнштейн в 1905 году высказал предположение о том, что фотоэффект свидетельствует о дискретном строении света, т.е. о том, что излучаемая электромагнитная энергия распространяется и поглощается подобно частице (названной затем фотоном). Интенсивность падающего света при этом определяется числом световых квантов, падающих на один квадратный сантиметр освещаемой плоскости в секунду. Отсюда число фотонов, которые испускаются единицей поверхности в единицу времени. должно быть пропорционально интенсивности освещения. Многократные опыты подтвердили это объяснение Эйнштейна, причем не только со светом, но и с рентгеновскими и гамма-лучами. Эффект А.Комптона, обнаруженный в 1923 году, дал новые доказательства существования фотонов - было обнаружено упругое рассеяние электромагнитного излучения малых длин волн (рентгеновского и гамма-излучения) на свободных электронах, которое сопровождается увеличением длины волны. Согласно классической теории, при таком рассеянии длина волны не должна меняться. Эффект Комптона подтвердил правильность квантовых представлений об электромагнитном излучении как о потоке фотонов - он может рассматриваться как упругое столкновение фотона и электрона, при котором фотон передает электрону часть своей энергии, а потому его частота уменьшается, а длина волны увеличивается.

Появились и другие подтверждения фотонной концепции. Особенно плодотворной оказалась теория атома Н.Бора (1913 г.), выявившая связь строения материи с существованием квантов и установившая, что энергия внутриатомных движений может меняться также лишь скачкообразно. Таким образом, признание дискретной природы света состоялось. Но ведь по сути своей это было возрождение отвергнутой ранее корпускулярной концепции света. Поэтому вполне естественно возникли проблемы: как совместить дискретность структуры света с волновой теорией (тем более, что волновая теория света подтверждалась целым рядом экспериментов), как совместить существование кванта света с явлением интерференции, как явления интерференции объяснить с позиции квантовой концепции? Таким образом, возникла потребность в концепции, которая увязывала бы корпускулярный и волновой аспекты излучения.

б) Принцип соответствия

Для устранения трудности, возникшей при использовании классической физики для обоснования устойчивости атомов (вспомним, что потеря энергии электроном приводит к его падению на ядро), Бор предположил, что атом в стационарном состоянии не излучает (см. предыдущий раздел). Это означало, что электромагнитная теория излучения для описания электронов, движущихся по стабильным орбитам, не годится. Но квантовая концепция атома, отказавшись от электромагнитной концепции, не могла объяснить свойства излучения. Возникла задача: попытаться установить определенное соответствие между квантовыми явлениями и уравнениями электродинамики с целью понять, почему классическая электромагнитная теория дает верное описание явлений большого масштаба. В классической теории движущийся в атоме электрон излучает непрерывно и одновременно свет разных частот. В квантовой же теории электрон, находящийся внутри атома на стационарной орбите, наоборот, не излучает - излучение кванта происходит лишь в момент перехода с одной орбиты на другую, т.е. излучение спектральных линий определенного элемента является дискретным процессом. Таким образом, налицо два совершенно различных представления. Можно ли их привести в соответствие и если да, то в какой форме?

Очевидно, что соответствие с классической картиной возможно лишь при одновременном испускании всех спектральных линий. В то же время очевидно, что с квантовой позиции излучение каждого кванта является актом индивидуальным, а поэтому для получения одновременного испускания всех спектральных линий необходимо рассматривать целый большой ансамбль атомов одинаковой природы, в котором осуществляются различные индивидуальные переходы, приводящие к испусканию различных спектральных линий конкретного элемента. В этом случае понятие интенсивности различных линий спектра необходимо представлять статистически. Для определения интенсивности индивидуального излучения кванта необходимо рассматривать ансамбль большого числа одинаковых атомов. Электромагнитная теория позволяет дать описание макроскопических явлений, а квантовая теория тех явлений, в которых важную роль играют множество квантов. Поэтому вполне вероятно, что результаты, полученные квантовой теорией, будут стремиться к классическим в области множества квантов. Согласование классической и квантовой теорий и следует искать в этой области. Для вычисления классических и квантовых частот необходимо выяснить, совпадают ли эти частоты для стационарных состояний, которые отвечают большим квантовым числам. Бор выдвинул предположение о том, что для приближенного вычисления реальной интенсивности и поляризации можно использовать классические оценки интенсивностей и поляризаций, экстраполируя на область малых квантовых чисел то соответствие, которое было установлено для больших квантовых чисел. Данный принцип соответствия нашел подтверждение: физические результаты квантовой теории при больших квантовых числах должны совпадать с результатами классической механики, а релятивистская механика при малых скоростях переходит в классическую механику. Обобщенная формулировка принципа соответствия может быть выражена как утверждение, согласно которому новая теория, которая претендует на более широкую область применимости по сравнению со старой, должна включать в себя последнюю как частный случай. Использование принципа соответствия и придание ему более точной формы способствовали созданию квантовой и волновой механики.

К концу первой половины XX века в исследованиях природы света сложились две концепции - волновая и корпускулярная, которые остались не в состоянии преодолеть разделяющий их разрыв. Возникла настоятельная потребность создать новую концепцию, в которой квантовые идеи должны лечь в ее основу, а не выступать в роли некого "довеска". Реализация этой потребности была осуществлена созданием волновой механики и квантовой механики, которые по сути составили единую новую квантовую теорию - различие заключалось в используемых математических языках. Квантовая теория как нерелятивистская теория движения микрочастиц явилась самой глубокой и широкой физической концепцией, объясняющей свойства макроскопических тел. В качестве ее основы были положены идея квантования Планка-Эйнштейна-Бора и гипотеза о волнах материи де Бройля.

в) Волновая механика

Ее основные идеи появились в 1923-1924 гг., когда Л. де Бройлем была высказана мысль о том, что электрон должен обладать и волновыми свойствами, навеянная аналогией со светом. К этому времени представления о дискретной природе излучения и существовании фотонов уже достаточно укрепились, поэтому для полного описания свойств излучения надо было поочередно представлять его то как частицу, то как волну. А поскольку Эйнштейн уже показал, что дуализм излучения связан с существованием квантов, то естественно было поставить вопрос о возможности обнаружения подобного дуализма и в поведении электрона (и вообще материальных частиц). Гипотеза де Бройля о волнах материи получила подтверждение обнаруженным в 1927 г. явлением дифракции электронов: оказалось, что пучок электронов дает дифракционную картину. (Позже будет обнаружена дифракция и у молекул.)

Исходя из идеи де Бройля о волнах материи, Э.Шредингер в 1926 г. вывел основное уравнение механики (которую он назвал волновой), позволяющее определить возможные состояния квантовой системы и их изменение во времени. Уравнение содержало так называемую волновую функцию y (пси-функцию), описывающую волну (в абстрактном, конфигурационном пространстве). Шредингер дал общее правило преобразования данных классических уравнений в волновые, которые относятся к многомерному конфигурационному пространству, а не реальному трехмерному. Пси-функция определяла плотность вероятности нахождения частицы в данной точке. В рамках волновой механики атом можно было представить в виде ядра, окруженного своеобразным облаком вероятности. С помощью пси-функции определяется вероятность присутствия электрона в определенной области пространства.

г) Квантовая (матричная) механика.

Принцип неопределенности

В 1926 г. В.Гейзенберг разрабатывает свой вариант квантовой теории в виде матричной механики, отталкиваясь при этом от принципа соответствия. Столкнувшись с тем, что при переходе от классической точки зрения к квантовой нужно разложить все физические величины и свести их к набору отдельных элементов, соответствующих различным возможным переходам квантового атома, он пришел к тому, чтобы каждую физическую характеристику квантовой системы представлять таблицей чисел (матрицей). При этом он сознательно руководствовался целью построить феноменологическую концепцию, чтобы исключить из нее все, что невозможно наблюдать непосредственно. В этом случае нет никакой необходимости вводить в теорию положение, скорость или траекторию электронов в атоме, поскольку мы не можем ни измерять, ни наблюдать эти характеристики. В расчеты следует вводить лишь те величины, которые связаны с реально наблюдаемыми стационарными состояниями, переходами между ними и сопровождающими их излучениями. В матрицах элементы были расположены в строки и столбцы, причем каждый из них имел два индекса, один из которых соответствовал номеру столбца, а другой - номеру строки. Диагональные элементы (т.е. элементы, индексы которых совпадают) описывают стационарное состояние, а недиагональные (элементы с разными индексами) - описывают переходы из одного стационарного состояния в другое. Величина же этих элементов связывается с величинами, характеризующими излучение при данных переходах, полученными с помощью принципа соответствия. Именно таким способом Гейзенберг строил матричную теорию, все величины которой должны описывать лишь наблюдаемые явления. И хотя наличие в аппарате его теории матриц, изображающих координаты и импульсы электронов в атомах, оставляет сомнение в полном исключении ненаблюдаемых величин, Гейзенберту удалось создать новую квантовую концепцию, составившую новую ступень в развитии квантовой теории, суть которой состоит в замене физических величин, имеющих место в атомной теории, матрицам - таблицам чисел. Результаты, к которым приводили методы, используемые в волновой и матричной механике, оказались одинаковыми, поэтому обе концепции и входят в единую квантовую теорию как эквивалентные. Методы матричной механики, в силу своей большей компактности часто быстрее приводят к нужным результатам. Методы волновой механики, как считается, лучше согласуется с образом мышления физиков и их интуицией. Большинство физиков при расчетах пользуется волновым методом и использует волновые функции.

Гейзенберг сформулировал принцип неопределенности, в соответствии с которым координаты и импульс не могут одновременно принимать точные значения. Для предсказания положения и скорости частицы важно иметь возможность точно измерять ее положение и скорость. При этом чем точнее измеряется положение частицы (ее координаты), тем менее точными оказываются измерения скорости.

Хотя световое излучение состоит из волн, однако в соответствии с идеей Планка, свет ведет себя как частица, ибо излучение и поглощение его осуществляется в виде квантов. Принцип неопределенности же свидетельствует о том, что частицы могут вести себя как волны - они как бы "размазаны" в пространстве, поэтому можно говорить не об их точных координатах, а лишь о вероятности их обнаружения в определенном пространстве. Таким образом, квантовая механика фиксирует корпускулярно-волновой дуализм - в одних случаях удобнее частицы считать волнами, в других, наоборот, волны частицами. Между двумя волнами-частицами можно наблюдать явление интерференции. Если гребни одной волны совпадают с впадинами другой волны, то они гасят друг друга, а если гребни и впадины одной волны совпадают с гребнями и впадинами другой волны, то они усиливают друг друга.

д) Интерпретации квантовой теории.

Принцип дополнительности

Возникновение и развитие квантовой теории привело к изменению классических представлений о структуре материи, движении, причинности, пространстве, времени, характере познания и т.д., что способствовало коренному преобразованию картины мира. Для классического понимания материальной частицы было характерно резкое ее выделение из окружающей среды, обладание собственным движением и местом нахождения в пространстве. В квантовой теории частица стала представляться как функциональная часть системы, в которую она включена, не имеющая одновременно координат и импульса. В классической теории движение рассматривалось как перенос частицы, остающейся тождественно самой себе, по определенной траектории. Двойственный характер движения частицы обусловил необходимость отказа от такого представления движения. Классический (динамический) детермизм уступил место вероятностному (статистическому). Если ранее целое понималось как сумма составляющий частей, то квантовая теория выявила зависимость свойств частицы от системы, в которую она включена. Классическое понимание познавательного процесса было связано с познанием материального объекта как существующего самого по себе. Квантовая теория продемонстрировала зависимость знания об объекте от исследовательских процедур. Если классическая теория претендовала на завершенность, то квантовая теория с самого начала развертывалась как незавершенная, основывающаяся на ряде гипотез, смысл которых вначале был далеко не ясен, а поэтому ее основные положения получали разное истолкование, разные интерпретации.

Разногласия выявились прежде всего по поводу физического смысла двойственности микрочастиц. Де Бройль вначале выдвинул концепцию волны-пилота, в соответствии с которой волна и частица сосуществуют, волна ведет за собой частицу. Реальным материальным образованием, сохраняющим свою устойчивость, является частица, поскольку именно она обладает энергией и импульсом. Волна, несущая частицу, управляет характером движения частицы. Амплитуда волны в каждой точке пространства определяет вероятность локализации частицы рядом с этой точкой. Шредингер проблему двойственности частицы решает по сути путем ее снятия. Для него частица выступает как чисто волновое образование. Иначе говоря, частица есть место волны, в котором сосредоточена наибольшая энергия волны. Интерпретации де Бройля и Шредингера представляли собой по сути попытки создать наглядные модели в духе классической физики. Однако это оказалось невозможным.

Гейзенбергом была предложена интерпретация квантовой теории, исходя (как было показано ранее) из того, что физика должна пользоваться только понятиями и величинами, основанными на измерениях. Гейзенберг поэтому и отказался от наглядного представления движения электрона в атоме. Макроприборы не могут дать описание движения частицы с одновременной фиксацией импульса и координат (т.е. в классическом смысле) по причине принципиально неполной контролируемости взаимодействия прибора с частицей - в силу соотношения неопределенностей измерение импульса не дает возможности определить координаты и наоборот. Иначе говоря, по причине принципиальной неточности измерения предсказания теории могут иметь лишь вероятностный характер, причем вероятность является следствием принципиальной неполноты информации о движении частицы. Это обстоятельство привело к выводу о крушении принципа причинности в классическом смысле, предполагавшим предсказание точных значений импульса и координаты. В рамках квантовой теории, таким образом, речь идет не об ошибках наблюдения или эксперимента, а о принципиальном недостатке знаний, которые и выражаются с помощью функции вероятности.

Интерпретация квантовой теории, осуществленная Гейзенбергом, была развита Бором и получила название копенгагенской. В рамках данной интерпретации основным положением квантовой теории выступает принцип дополнительности, означающий требование применять для получения в процессе познания целостной картины изучаемого объекта взаимоисключающие классы понятий, приборов и исследовательских процедур, которые используются в своих специфических условиях и взаимозаполняют друг друга. Данный принцип напоминает соотношение неопределенностей Гейзенберга. Если речь идет об определении импульса и координаты как взаимоисключающих и взаимодополняющих исследовательских процедур, то для отождествления этих принципов есть основания. Однако смысл принципа дополнительности шире, чем соотношения неопределенностей. Для того, чтобы объяснить устойчивость атома, Бор соединил в одной модели классические и квантовые представления о движении электрона. Принцип дополнительности, таким образом, позволил классические представления дополнить квантовыми. Выявив противоположность волновых и корпускулярных свойств света и не найдя их единства, Бор склонился к мысли о двух, эквивалентных друг другу, способах описания - волновом и корпускулярном - с последующем их совмещением. Так что точнее говорить о том, что принцип дополнительности выступает развитием соотношения неопределенности, выражающих связи координаты и импульса.

Ряд ученых истолковали нарушение принципа классического детерминизма в рамках квантовой теории в пользу индетернизма. В действительности же здесь принцип детерминизма изменял свою форму. В рамках классической физики, если в начальный момент времени известны положения и состояние движения элементов системы, можно полностью предсказать ее положение в любой будущий момент времени. Все макроскопические системы были подчинены этому принципу. Даже в тех случаях, когда приходилось вводить вероятности, всегда предполагалось, что все элементарные процессы строго детернизированы и что только их большое число и беспорядочность поведения заставляет обращаться к статистическим методам. В квантовой теории ситуация принципиально иная. Для реализации принципов детернизации здесь необходимо знать координаты и импульсы, и это соотношением неопределенности запрещается. Использование вероятности здесь имеет иной смысл по сравнению со статистической механикой: если в статистической механике вероятности использовались для описания крупномасштабных явлений, то в квантовой теории вероятности, наоборот, вводятся для описания самих элементарных процессов. Все это означает, что в мире крупномасштабных тел действует динамический принцип причинности, а в микромире - вероятностный принцип причинности.

Копенгагенская интерпретация предполагает, с одной стороны, описание экспериментов в понятиях классической физики, а с другой - признание этих понятий неточно соответствующими действительному положению вещей. Именно эта противоречивость и обусловливает вероятность квантовой теории. Понятия классической физики составляют важную составную часть естественного языка. Если мы не будем использовать этих понятий для описания проводимых экспериментов, то мы не сможем понять друг друга.

Идеалом классической физики является полная объективность знания. Но в познании мы используем приборы, а тем самым, как говорит Гейнзерберг, в описание атомных процессов вводится субъективный элемент, поскольку прибор создан наблюдателем. "Мы должны помнить, что то, что мы наблюдаем, - это не сама природа, а природа, которая выступает в том виде, в каком она выявляется благодаря нашему способу постановки вопросов научная работа в физике состоит в том, чтобы ставить вопросы о природе на языке, которым мы пользуемся, и пытаться получить ответ в эксперименте, выполненном с помощью имеющихся у нас в распоряжении средств. При этом вспоминаются слова Бора о квантовой теории: если ищут гармонии в жизни, то никогда нельзя забывать, что в игре жизни мы одновременно и зрители, и участники. Понятно, что в нашем научном отношении к природе наша собственная деятельность становится важной там, где нам приходится иметь дело с областями природы, проникнуть в которые можно только благодаря важнейшим техническим средствам"

Классические представления пространства и времени также оказалось невозможным использовать для описания атомных явлений. Вот что писал по этому поводу другой создатель квантовой теории: "существование кванта действия обнаружило совершенно непредвиденную связь между геометрией и динамикой: оказывается, что возможность локализации физических процессов в геометрическом пространстве зависит от их динамического состояния. Общая теория относительности уже научила нас рассматривать локальные свойства пространства-времени в зависимости от распределения вещества во Вселенной. Однако существование квантов требует гораздо более глубокого преобразования и больше не позволяет нам представлять движение физического объекта вдоль определенной линии в пространстве-времени (мировой линии). Теперь нельзя определить состояние движения, исходя из кривой, изображающей последовательные положения объекта в пространстве с течением времени. Теперь нужно рассматривать динамическое состояние не как следствие пространственно-временной локализации, а как независимый и дополнительный аспект физической реальности"

Дискуссии по проблеме интерпретации квантовой теории обнажили вопрос о самом статусе квантовой теории - является ли она полной теорией движения микрочастицы. Впервые вопрос таким образом был сформулирован Энштейном. Его позиция получила выражение в концепции скрытых параметров. Эйнштейн исходил из понимания квантовой теории как статистической теории, которая описывает закономерности, относящиеся к поведению не отдельной частицы, а их ансамбля. Каждая частица всегда строго локализована, одновременно обладает определенными значениями импульса и координаты. Соотношение неопределенностей отражает не реальное устройство действительности на уровне микропроцессов, а неполноту квантовой теории - просто на ее уровне мы не имеем возможности одновременно измерять импульс и координату, хотя они в действительности существуют, но как скрытые параметры (скрытые в рамках квантовой теории). Описание состояния частицы с помощью волновой функции Эйнштейн считал неполным, а потому и квантовую теорию представлял в виде неполной теории движения микрочастицы.

Бор в данной дискуссии занял противоположную позицию, исходящую из признания объективной неопределенности динамических параметров микрочастицы как причины статистического характера квантовой теории. По его мнению, отрицание Энштейном существования объективно неопределенных величин оставляет необъясненным присущие микрочастице волновые черты. Возврат к классическим представлениям движения микрочастицы Бор считал невозможным.

В 50-х гг. ХХ века Д.Бом вернулся к концепции волны-пилота де Бройля, представив пси-волну в виде реального поля, связанного с частицей. Сторонники копенгагенской интерпретации квантовой теории и даже часть ее противников позицию Бома не поддержали, однако она способствовала более углубленной проработке концепции де Бройля: частица стала рассматриваться в виде особого образования, возникающего и движущегося в пси-поле, но сохраняющего свою индивидуальность. Работы П.Вижье, Л.Яноши, разрабатывавших данную концепцию, были оценены многими физиками как слишком "классичными".

В отечественной философской литературе советского периода копенгагенская интерпретация квантовой теории была подвергнута критике за "приверженность к позитивистским установкам" в трактовке процесса познания. Однако рядом авторов отстаивалась справедливость копенгагенской интерпретации квантовой теории. Смена классического идеала научного познания неклассическим сопровождалась пониманием того, что наблюдатель, пытаясь построить картину объекта, не может отвлечься от процедуры измерения, т.е. исследователь оказывается не в состоянии измерять параметры изучаемого объекта такими, какими они были до процедуры измерения. В.Гейзенберг, Э.Шредингер и П.Дирак положили принцип неопределенности в основу квантовой теории, в рамках которой частицы уже не имели определенных и не зависящих друг от друга импульса и координат. Квантовая теория, таким образом, внесла в науку элемент непредсказуемости, случайности. И хотя Эйнштейн не смог согласиться с этим, квантовая механика согласовывалась с экспериментом, а потому стала основой многих областей знания.

е) Квантовая статистика

Одновременно с развитием волновой и квантовой механики развивалась другая составная часть квантовой теории - квантовая статистика или статистическая физика квантовых систем, состоящих из большого числа частиц. На основе классических законов движения отдельных частиц была создана теория поведения их совокупности - классическая статистика. Аналогично этому на основе квантовых законов движения частиц была создана квантовая статистика, описывающая поведение макрообъектов в случаях когда законы классической механики не применимы для описания движения составляющих их микрочастиц - в данном случае квантовые свойства проявляются в свойствах макрообъектов. Важно иметь в виду, что под системой в данном случае понимаются лишь взаимодействующие друг с другом частицы. Квантовая система при этом не может рассматриваться как совокупность частиц, сохраняющих свою индивидуальность. Иными словами, квантовая статистика требует отказа от представления различимости частиц - это получило название принципа тождественности. В атомной физике две частицы одной природы считались тождественными. Однако эта тождественность не признавалась абсолютной. Так, две частицы одной природы можно было различать хотя бы мысленно.

В квантовой статистике возможность различить две частицы одинаковой природы полностью отсутствует. Квантовая статистика исходит из того, что два состояния системы, которые отличаются друг от друга лишь перестановкой двух частиц одинаковой природы, тождественны и неразличимы. Таким образом, основное положение квантовой статистики - принцип тождественности одинаковых частиц, входящих в квантовую систему. Этим квантовые системы отличаются от классических систем.

Во взаимодействии микрочасти важная роль принадлежит спину - собственному моменту количества движения микрочастицы. (В 1925 г. Д.Уленбеком и С.Гаудсмитом впервые было открыто существование спина у электрона). Спин д электронов, протонов, нейтронов, нейтрино и др. частиц выражается полуцелой величиной, у фотонов и пи-мезонов - целочисленной величиной (1 или 0). В зависимости от спина микрочастица подчиняется одному из двух разных типов статистики. Системы тождественных частиц с целым спином (бозоны) подчиняются квантовой статистике Бозе-Эйнштейна, характерной особенностью которой является то, что в каждом квантовом состоянии может находиться произвольное число частиц. Данный тип статистики был предложен в 1924 г. Ш.Бозе и затем усовершенствована Энштейном). В 1925 г. для частиц с полуцелым спином (фермионов) Э.Ферми и П.Дирак (независимо друг от друга) предложили другой тип квантовой статики, получивший имя Ферми-Дирака. Характерной особенностью этого типа статики является то, что в каждом квантовом состоянии может находиться произвольное число частиц. Это требование называется принципом запрета В.Паули, который был открыт в 1925 г. Статистика первого типа подтверждается при исследовании таких объектов, как абсолютно черное тело, второго типа - электронный газ в металлах, нуклоны в атомных ядрах и т.д.

Принцип Паули позволил объяснить закономерности заполнения электронами оболочек в многоэлектронных атомах, дать обоснование периодической системе элементов Менделеева. Этот принцип, выражает специфическое свойство частиц, которые ему подчиняются. И сейчас трудно понять, почему две тождественные частицы взаимно запрещают друг другу занимать одно и то же состояние. Подобного типа взаимодействия в классической механике не существует. Какова его физическая природа, каковы физические источники запрета - проблема, ждущая разрешения. Сегодня ясно одно: физическая интерпретация принципа запрета в рамках классической физики невозможна.

Важным выводом квантовой статистики является положение о том, что частица, входящая в какую-либо систему, не тождественна такой же частице, но входящей в систему другого типа или свободную. Отсюда следует важность задачи выявления специфики материального носителя определенного свойства систем.

ж) Квантовая теория поля

Квантовая теория поля представляет собой распространение квантовых принципов на описание физических полей в их взаимодействиях и взаимопревращениях. Квантовая механика имеет дело с описанием взаимодействий сравнительно малой энергии, при которых число взаимодействующих частиц сохраняется. При больших энергиях взаимодействия простейших частиц (электронов, протонов и т.д.) происходит их взаимопревращение, т.е. одни частицы исчезают, другие рождаются, причем число их меняется. Большинство элементарных частиц нестабильно, спонтанно распадается до тех пор, пока не образуются стабильные частицы - протоны, электроны, фотоны и нейтроны. При столкновениях элементарных частиц, если энергия взаимодействующих частиц достаточно велика, происходит множественное рождение частиц различного спектра. Поскольку квантовая теория поля предназначена для описания процессов при высоких энергиях, поэтому должна удовлетворять требованиям теории относительности.

Современная квантовая теория поля включает три типа взаимодействия элементарных частиц: слабые взаимодействия, обусловливающие главным образом распад неустойчивых частиц, сильные и электромагнитные, ответственные за превращение частиц при их столкновении.

Квантовая теория поля, описывающая превращение элементарных частиц, в отличие от квантовой механики, описывающей их движение, не является последовательной и завершенной, она полна трудностей и противоречий. Наиболее радикальным способом их преодоления считается создание единой теории поля, в основу которой должен быть положен единый закон взаимодействия первичной материи - из общего уравнения должен выводиться спектр масс и спинов всех элементарных частиц, а также значения зарядов частиц. Таким образом, можно сказать, что квантовая теория поля ставит задачу выработки более глубокого представления об элементарной частице, возникающей за счет поля системы других элементарных частиц.

Взаимодействие электромагнитного поля с заряженными частицами (главным образом электронами, позитронами, мюонами) изучается квантовой электродинамикой, в основе которой лежит представление о дискретности электромагнитного излучения. Электромагнитное поле состоит из фотонов, обладающих корпускулярно-волновыми свойствами. Взаимодействие электромагнитного излучения с заряженными частицами квантовая электродинамика рассматривает как поглощение и испускание частицами фотонов. Частица может испустить фотоны, а затем поглотить их.

Итак, отход квантовой физики от классической заключается в отказе от того, чтобы описывать индивидуальные события, происходящие в пространстве и времени, и использовании статистического метода с его волнами вероятности. Цель классической физики заключается в описании объектов в пространстве и времени и в формировании законов, которые управляют изменением этих объектов во времени. Квантовая физика, имеющая дело с радиоактивным распадом, дифракцией, испусканием спектральных линий и тому подобными явлениями, не может удовлетвориться классическим подходом. Суждение типа "такой-то объект имеет такое-то свойство", характерное для классической механики, в квантовой физике заменяется суждением типа "такой-то объект имеет такое-то свойство с такой-то степенью вероятности". Таким образом, в квантовой физике имеют место законы, управляющие изменениями вероятности во времени, в классической же физике мы имеем дело с законами, управляющими изменениями индивидуального объекта во времени. Разные реальности подчиняются различным по характеру законам.

Квантовая физика в развитии физических идей и вообще стиля мышления занимает особое место. К числу величайших созданий человеческого ума относится, несомненно и теория относительности - специальная и общая, представляющая собой новую систему идей, объединившую механику, электродинамику и теорию тяготения и давшую новое понимание пространства и времени. Но это была теория, которая в определенном смысле была завершением и синтезом физики XIX века, т.е. она не означала полного разрыва с классическими теориями. Квантовая же теория порывала с классическими традициями, она создала новый язык и новый стиль мышления, позволяющий проникать в микромир с его дискретными энергетическими состояниями и дать его описание с помощью введения характеристик, отсутствовавших в классической физике, что в конечном счете позволило понять сущность атомных процессов. Но вместе с тем квантовая теория внесла в науку элемент непредсказуемости, случайности, чем она отличалась от классической науки.

Описывает взаимодействие элементарных частиц на основе универсального понятия квантованного физического поля. На основе данного раздела физики сформировалась классическая теория поля, которая сегодня известна как постоянная Планка.

Замечание 1

Основой изучаемой дисциплины стало представление о том, что абсолютно все элементарные частицы стали квантами соответствующих полей. Понятие квантового поля возникло на основе формирования представлений о традиционном поле, частицах, их синтезе, а также заключений в рамках квантовой теории.

Квантовая теория поля выступает в качестве теории, где есть бесконечное число степеней свободы. Их еще называют физическими полями. Острой проблемой квантовой теории стало создание единой теории, которая объединяла бы все квантовые поля. В Теории в настоящее время самыми фундаментальными полями являются поля, которые связаны с бесструктурными фундаментальными частицами. Этими микрочастицами выступают кварки и лептоны, а также поля, связанные с квантами-переносчиками четырёх фундаментальных взаимодействий. Исследования проводятся с промежуточными бозонами, глюонами и фотонами.

Частицы и поля квантовой теории

Более ста лет назад зародились основные понятия атомной физики, которые со временем получили продолжение в квантовой физике, сформулировав теорию поля. Различают двойственность классической теории. Она сформировалась в начале 20 века. Тогда частицы представлялись как маленькие комочки энергии, сформировавшие материю. Все они двигались согласно известной законам классической механики, о которых ранее подробно изложил в своих работах британский ученый Исаак Ньютон. Затем приложили руку к дальнейшим исследованиям Фарадей и Максвелл. Он сформировали законы динамики электромагнитного поля.

В это же время Планк впервые вводит в физическую науку понятие о порции, кванте, излучении для объяснения закономерностей теплового излучения. Затем физик Альберт Эйнштейн обобщил эту идею Планка о дискретности излучения. Он предположил, что такая дискретность не связывается с определенным механизмом взаимодействия излучения и веществом, а присуща на внутреннем уровне самому электромагнитному излучению. Электромагнитное излучение – это и есть кванты. Подобные теории вскоре получили экспериментальное подтверждение. На их основе были объяснены закономерности фотоэффекта.

Новые открытия и теории

Примерно 50 лет назад ряд физиков нового поколения попытались использовать аналогичный подход в описании гравитационного взаимодействия. Они не только подробно описали все процесса, происходящие в условиях планеты, но и устремили свои взгляды на проблемы возникновения Вселенной, сформулировав теорию Большого взрыва.

Квантовая теория поля стала обобщением квантовой механики. Квантовая механика, наконец, стала ключом к пониманию важнейшей проблемы атома, в том числе открыла двери перед исследованиями другими ученых в постижении загадок микромира.

Квантовая механика позволяет описывать движение электронов, протонов и иных частиц, однако не их порождение или уничтожение. Оказалось, что ее применение верно только для описания систем, в которых остается неизменно число частиц. Была доказана наиболее интересная в электродинамике задача испускания и поглощения электромагнитных волн заряженными частицами. Это соответствует порождению или уничтожению фотонов. Теория оказалась вне рамок компетенции ее исследования.

На основе первоначальных знаний стали приниматься в разработку иные теории. Так в Японии выдвинули квантовую электродинамику как наиболее перспективное и точное направление научной деятельности последних лет. В дальнейшем развитие получило направление хромодинамики и квантовая теория электрослабых взаимодействий.

Квантовая теория поля рассматривает в качестве основных следующие теории:

  • свободные поля и корпускулярно-волновой дуализм;
  • взаимодействие полей;
  • теорию возмущений;
  • расходимости и перенормировки;
  • функционального интеграла.

Квантованное свободное поле имеет запас свободной энергии и имеет возможность отдавать ее определенными частями. При уменьшении энергии поля на автоматически означает исчезновение одного фотона другой частоты. Происходит переход поля в иное состояние, при этом происходит уменьшение на одну единицу фотона. После таких последовательных переходов в итоге образуется состояние, где число фотонов равно нулю. Отдача энергии полем становится невозможной.

Поле может существовать в состоянии вакуума. Подобная теория не совсем понятна, но является полностью обоснованной с физической точки зрения. Электромагнитное поле в вакуумном состоянии не может быть поставщиком энергии, однако вакуум вообще никак не может проявить себя.

Определение 1

Физический вакуум - это состояние с необходимыми и значимыми свойствами, проявляющимися в реальных процессах.

Такое утверждение верно для других частиц. И его можно представить как низшее энергетическое положение этих частиц и их полей. Вакуумным при рассмотрении взаимодействующих полей называют низшее энергетическое состояние всей системы данных полей.

Проблемы квантовой теории поля

В квантовой электродинамике исследователи достигли немало успехов, однако не всегда удается понять, как они были показаны. Все эти успехи нуждаются в дальнейшем объяснении. Теория сильных взаимодействий стала формироваться развиваться по аналогии квантовой электродинамики. Тогда роль переносчиков взаимодействия были приписана частицам, что обладают массой покоя. Также существует проблема перенормируемости.

Она не могла рассматриваться как непротиворечивое построение, поскольку в ней появляются бесконечно огромные значения для определенных физических величин и отсутствует понимание того, что же с ними делать. Идея изменения нормировок не только объясняет исследуемые эффекты, но и придает всей теории черты логической замкнутости, устранив из нее расходимости. Ученые сталкиваются с определенными проблемами на различных стадиях исследований. Им будет посвящено немало времени на устранение, поскольку точных показателей до сих пор в квантовой теории поля не существует.

А главное, отказываемся замечать, что применимы они лишь в некоторых рутинных ситуациях и для объяснения устройства Вселенной оказываются попросту неверны.

Хотя нечто подобное уже столетия назад высказывалось восточными философами и мистиками, в западной науке впервые об этом заговорил Эйнштейн. Это была революция, которую наше сознание не приняло. Со снисходительностью мы повторяем: «все относительно», «время и пространство едины», - всегда держа в уме, что это допущение, научная абстракция, имеющая мало общего с нашей привычной устойчивой действительностью. На самом же деле как раз наши представления слабо соотносятся с действительностью - удивительной и невероятной.

После того как в общих чертах было открыто строение атома и предложена его «планетарная» модель, ученые столкнулись с множеством парадоксов, для объяснения которых появился целый раздел физики - квантовая механика. Она быстро развивалась и далеко продвинулась в объяснении Вселенной. Но объяснения эти настолько сложны для восприятия, что до сих пор мало кто может осознать их хотя бы в общих чертах.

Действительно, большинство достижений квантовой механики сопровождаются настолько сложным математическим аппаратом, что он попросту не переводится ни на один из человеческих языков. Математика, как и музыка, предмет крайне абстрактный, и над адекватным выражением смысла, к примеру, свертывания функций или многомерных рядов Фурье ученые бьются до сих пор. Язык математики строг, но мало соотносится с нашим непосредственным восприятием.

Кроме того, Эйнштейн математически показал, что наши понятия времени и пространства иллюзорны. В действительности пространство и время нераздельны и образуют единый четырехмерный континуум. Представить его вряд ли возможно, ведь мы привыкли иметь дело только с тремя измерениями.

Планетарная теория. Волна или частица

До конца XIX века атомы считались неделимыми «элементами». Открытие радиации позволило Резерфорду проникнуть под «оболочку» атома и сформулировать планетарную теорию его строения: основная масса атома сосредоточена в ядре. Положительный заряд ядра компенсируется отрицательно заряженными электронами, размеры которых настолько малы, что их массой можно пренебречь. Электроны вращаются вокруг ядра по орбитам, подобно вращению планет вокруг Солнца. Теория весьма красивая, но возникает ряд противоречий.

Во-первых, почему отрицательно заряженные электроны не «падают» на положительное ядро? Во-вторых, в природе атомы сталкиваются миллионы раз в секунду, что ничуть не вредит им - чем объяснить удивительную прочность всей системы? Говоря словами одного из «отцов» квантовой механики Гейзенберга, «никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние».

Кроме того, размеры ядра, в котором собрана практически вся масса, в сравнении с целым атомом чрезвычайно малы. Можно сказать, что атом - пустота, в которой с бешеной скоростью вращаются электроны. При этом такой «пустой» атом предстает как весьма твердая частица. Объяснение этому явлению выходит за рамки классического понимания. На самом деле, на субатомном уровне скорость частицы возрастает тем больше, чем больше ограничивается пространство, в котором она движется. Так что чем ближе электрон притягивается к ядру, тем быстрее он движется и тем больше отталкивается от него. Скорость движения настолько велика, что «со стороны» атом «выглядит твердым», как выглядят диском лопасти вращающегося вентилятора.

Данные, плохо укладывающиеся в рамки классического подхода, появились задолго до Эйнштейна. Впервые подобная «дуэль» состоялась между Ньютоном и Гюйгенсом, которые пытались объяснить свойства света. Ньютон утверждал, что это поток частиц, Гюйгенс считал свет волной. В рамках классической физики примирить их позиции невозможно. Ведь для нее волна - это передающееся возбуждение частиц среды, понятие, применимое лишь для множества объектов. Ни одна из свободных частиц не может перемещаться по волнообразной траектории. Но вот в глубоком вакууме движется электрон, и его перемещения описываются законами движения волн. Что здесь возбуждается, если нет никакой среды? Квантовая физика предлагает соломоново решение: свет является одновременно и частицей, и волной.

Вероятностные электронные облака. Строение ядра и ядерные частицы

Постепенно становилось все более ясно: вращение электронов по орбитам вокруг ядра атома совершенно не похоже на вращение планет вокруг звезды. Обладая волновой природой, электроны описываются в терминах вероятности. Мы не можем сказать об электроне, что он находится в такой-то точке пространства, мы можем только описать примерно, в каких областях он может находиться и с какой вероятностью. Вокруг ядра электроны формируют «облака» таких вероятностей от простейшей шарообразной до весьма причудливых форм, похожих на фотографии привидений.

Но тот, кто хочет окончательно понять устройство атома, должен обратиться к его основе, к строению ядра. Составляющие его крупные элементарные частицы - положительно заряженные протоны и нейтральные нейтроны - также обладают квантовой природой, а значит, движутся тем быстрее, чем в меньший объем они заключены. Поскольку размеры ядра чрезвычайно малы даже в сравнении с атомом, эти элементарные частицы носятся со вполне приличными скоростями, близкими к скорости света. Для окончательного объяснения их строения и поведения нам понадобится «скрестить» квантовую теорию с теорией относительности. К сожалению, такая теория до сих пор не создана и нам придется ограничиться несколькими общепринятыми моделями.

Теория относительности показала (а проведенные эксперименты доказали), что масса является лишь одной из форм энергии. Энергия - величина динамическая, связанная с процессами или работой. Поэтому элементарную частицу следует воспринимать как вероятностную динамическую функцию, как взаимодействия, связанные с непрерывным превращением энергии. Это дает неожиданный ответ на вопрос, насколько элементарны элементарные частицы, можно ли разделить их на «еще более простые» блоки. Если разогнать две частицы в ускорителе, и затем столкнуть, мы получим не две, а три частицы, причем совершенно одинаковые. Третья просто возникнет из энергии их столкновения - таким образом, они и разделятся, и не разделятся одновременно!

Участник вместо наблюдателя

В мире, где понятия пустого пространства, изолированной материи теряют смысл, частица описывается только через ее взаимодействия. Для того чтобы сказать что-то о ней, нам придется «вырвать» ее из первоначальных взаимодействий и, подготовив, подвергнуть другому взаимодействию - измерению. Так что мы меряем в итоге? И насколько правомерны наши измерения вообще, если наше вмешательство меняет взаимодействия, в которых участвует частица, - а значит, меняет и ее саму?

В современной физике элементарных частиц все больше нареканий вызывает... сама фигура ученого-наблюдателя. Правомернее было бы называть его «участником».

Наблюдатель-участник необходим не только для измерения свойств субатомной частицы, но и для того, чтобы определить эти самые свойства, ведь и о них можно говорить лишь в контексте взаимодействия с наблюдателем. Стоит ему выбрать способ, каким он будет проводить измерения, и в зависимости от этого реализуются возможные свойства частицы. Стоит сменить наблюдающую систему, и свойства наблюдаемого объекта также изменятся.

Этот важный момент раскрывает глубинное единство всех вещей и явлений. Сами частицы, непрерывно переходя одна в другую и в иные формы энергии, не имеют постоянных или точных характеристик - эти характеристики зависят от способа, каким мы решили их видеть. Если понадобится измерить одно свойство частицы, другое непременно изменится. Такое ограничение не связано с несовершенством приборов или другими вполне исправимыми вещами. Это характеристика действительности. Попробуйте точно измерить положение частицы, и вы ничего не сможете сказать о направлении и скорости ее движения - просто потому, что у нее их не будет. Опишите точно движение частицы - вы не найдете ее в пространстве. Так современная физика ставит перед нами проблемы уже совершенно метафизического свойства.

Принцип неопределенности. Место или импульс, энергия или время

Мы уже говорили, что разговор о субатомных частицах нельзя вести в привычных нам точных терминах, в квантовом мире нам остается лишь вероятность. Это, конечно, не та вероятность, о которой говорят, делая ставки на скачках, а фундаментальное свойство элементарных частиц. Они не то чтобы существуют, но скорее - могут существовать. Они не то чтобы обладают характеристиками, а скорее - могут ими обладать. Научно выражаясь, частица является динамической вероятностной схемой, и все ее свойства находятся в постоянном подвижном равновесии, балансируют, как Инь и Ян на древнем китайском символе тайцзи.

Недаром нобелевский лауреат Нильс Бор, возведенный в дворянское звание, для своего герба выбрал именно этот знак и девиз: «Противоположности дополняют друг друга». Математически распределение вероятности представляет собой неравномерные волновые колебания. Чем больше амплитуда волны в определенном месте, тем выше вероятность существования частицы в нем. При этом длина ее непостоянна - расстояния между соседними гребнями неодинаковы, и чем выше амплитуда волны, тем сильнее разница между ними. В то время как амплитуда соответствует положению частицы в пространстве, длина волны связана с импульсом частицы, то есть с направлением и скоростью ее движения. Чем больше амплитуда (чем точнее можно локализовать частицу в пространстве), тем более неопределенной становится длина волны (тем меньше можно сказать об импульсе частицы). Если мы сможем установить положение частицы с предельной точностью, у нее вообще не будет никакого определенного импульса.

Это фундаментальное свойство математически выводится из свойств волны и называется принципом неопределенности. Принцип касается и других характеристик элементарных частиц. Еще одна такая взаимосвязанная пара - это энергия и время протекания квантовых процессов. Чем быстрее проходит процесс, тем более неопределенно количество энергии, задействованной в нем, и наоборот - точно охарактеризовать энергию можно только для процесса достаточной продолжительности.

Итак, мы поняли: о частице нельзя сказать ничего определенного. Она движется туда, или не туда, а верней, ни туда и ни сюда. Ее характеристики такие или сякие, а точнее – и не такие, и не сякие. Она находится здесь, но может быть и там, а может и не быть нигде. Так существует ли она вообще?