Квантовая теория просто. «В основе мироздания лежит понятие красоты»: физик объясняет квантовую теорию поля. а) Предпосылки квантовой теории

Квантовая механика, не говоря уже о квантовой теории поля, имеет репутацию странной, пугающей и контринтуитивной науки. В научном сообществе есть те, кто по сей день ее не признает. Однако же квантовая теория поля - единственная подтвержденная экспериментом теория, способная объяснить взаимодействие микрочастиц при низких энергиях. Почему это важно? Андрей Ковтун, студент МФТИ и сотрудник кафедры фундаментальных взаимодействий, рассказывает, как с помощью этой теории добраться до главных законов природы или придумать их самим.

Как известно, все естественные науки подчиняются определенной иерархии. Например, биология и химия имеют физические основания. И если смотреть на мир через лупу и каждый раз увеличивать ее силу, проводя таким образом редукцию знания, мы потихоньку придем к квантовой теории поля. Это наука, которая описывает свойства и взаимодействия самых маленьких крупиц матери, из которых мы состоим, - частиц, которые принято называть элементарными. Некоторые из них - такие, как, например, электрон - существуют сами по себе, другие же объединяются и образуют составные частицы. Всем известные протоны и нейтроны как раз являются таковыми - они состоят из кварков. А вот сами по себе кварки уже элементарны. Так вот задача физиков - понять и вывести все свойства этих частиц и ответить на вопрос, есть ли еще что-то, что лежит глубже в иерархии фундаментальных физических законов.

Наша реальность - полевая, она состоит из полей, а мы лишь элементарные возбуждения этих полей

Для радикальных ученых конечная цель - полная редукция знаний о мире, для менее радикальных - более глубинное проникновение в тонкости микромира или сверхмикромира. Но как это возможно, если мы имеем дело лишь с частицами? Ответ очень прост. Мы просто берем и сталкиваем их, в прямом смысле разбиваем друг о друга - как дети, которые, желая посмотреть устройство какой-нибудь занятной вещицы, просто бросают ее на пол, а потом изучают осколки. Также и мы сталкиваем частицы, а потом смотрим, какие новые частицы получаются при столкновении, а какие распадаются после продолжительного путешествия в гордом одиночестве. Все эти процессы в квантовой теории описываются так называемыми вероятностями распада и рассеяния. Расчетами этих величин и занимается квантовая теория поля. Но не только ими.

Векторы вместо координат и скоростей

Основное отличие квантовой механики - в том, что мы больше не будем описывать физические тела с помощью координат и скоростей. Основное понятие в квантовой механике - это вектор состояния. Это шкатулка с квантово-механической информацией о физической системе, которую мы изучаем. Причем я использую слово «система», потому что вектор состояния - это штука, которая может описывать состояние как электрона, так и бабушки, лузгающей семечки на скамейке. То есть это понятие имеет очень широкий круг охвата. И мы хотим найти все векторы состояния, которые содержали бы в себе всю необходимую нам информацию об изучаемом объекте.

Далее естественно задаться вопросом «А как же нам эти векторы найти, а потом извлечь из них то, что хочется?». Здесь нам на помощь приходит следующее важное понятие квантовой механики - оператор. Это правило, по которому одному вектору состояния ставится в соответствие другой. Операторы должны обладать определенными свойствами, и некоторые из них (но не все) извлекают информацию из векторов состояния о нужных нам физических величинах. Такие операторы называются операторами физических величин.

Измерить то, что трудно измерить

Квантовая механика последовательно решает две задачи - стационарную и эволюционную, причем по очереди. Суть стационарной задачи состоит в том, чтобы определить все возможные векторы состояния, которые могут описывать физическую систему в данный момент времени. Такие векторы являются так называемыми собственными векторами операторов физических величин. Определив их в начальный момент, интересно проследить, как они будут эволюционировать, то есть меняться со временем.

Мюон - неустойчивая элементарная частица с отрицательным электрическим зарядом и спином 1⁄2. Антимюон - античастица с квантовыми числами (в том числе зарядом) противоположного знака, но с равной массой и спином.

Посмотрим на эволюционную задачу с точки зрения теории элементарных частиц. Пусть мы хотим столкнуть электрон и его партнера - позитрон. Другими словами, у нас есть вектор состояния-1, который описывает электрон-позитронную пару с определенными импульсами в начальном состоянии. А потом мы хотим узнать, с какой вероятностью после столкновения электрона и позитрона родятся мюон и антимюон. То есть система будет описываться вектором состояния, который содержит информацию про мюон и его антипартнера тоже с определенными импульсами в конечном состоянии. Вот вам и эволюционная задача - мы хотим узнать, с какой вероятностью наша квантовая система перескочит из одного состояния в другое.

Пусть мы также решаем задачу о переходе физической системы из состояния-1 в состояние-2. Допустим, у вас есть шарик. Он хочет попасть из точки A в точку B, и существует множество мыслимых путей, по которым он мог бы совершить это путешествие. Но повседневный опыт показывает, что если вы кидаете шарик под определенным углом и с определенной скоростью, то у него есть только один реальный путь. Квантовая же механика утверждает другое. Она говорит, что шарик путешествует одновременно по всем этим траекториям. Каждая из траекторий вносит свой (больший или меньший) вклад в вероятность перехода из одной точки в другую.

Поля

Квантовая теория поля называется так потому, что она описывает не частицы сами по себе, а некоторые более общие сущности, которые называются полями. Частицы же в квантовой теории поля являются элементарными переносчиками полей. Представьте воды мирового океана. Пусть наш океан спокоен, на его поверхности ничего не бурлит, нет волн, пены и так далее. Наш океан есть поле. А теперь представьте уединенную волну - только один гребень волны в форме горки, родившийся в результате какого-то возбуждения (например, удара по воде), который теперь путешествует по бескрайним просторам океана. Это частица. Эта аналогия иллюстрирует главную идею: частицы есть элементарные возбуждения полей. Таким образом, наша реальность - полевая, а мы состоим лишь из элементарных возбуждений этих полей. Будучи рожденными этими самыми полями, их кванты содержат в себе все свойства своих прародителей. Такова роль частиц в мире, в котором одновременно существует множество океанов, именуемых полями. С классической точки зрения поля сами по себе - это обычные числовые функции. Они могут состоять только из одной функции (скалярные поля), а могут - из множества (векторные, тензорные и спинорные поля).

Действие

Вот теперь пришло время снова вспомнить о том, что каждая траектория, по которой физическая система переходит из состояния-1 в состояние-2, формируется некоторой амплитудой вероятности. В своих работах американский физик Ричард Фейнман предположил, что вклады всех траекторий равны по величине, но отличаются на фазу. По-простому, если у вас волна (в данном случае - квантовая волна вероятности) путешествует из одной точки в другую, фаза (деленная на множитель 2π) показывает, сколько колебаний укладывается на этом пути. Эта фаза есть число, которое вычисляется с помощью некоторого правила. А число это называется действием.

В основе мироздания, по сути, лежит понятие красоты, которое получило отражение в термине «симметрия»

С действием связан основной принцип, на котором сейчас строятся все разумные модели, описывающие физику. Это принцип наименьшего действия, и, коротко говоря, суть его состоит в следующем. Пусть у нас есть физическая система - это может быть как точка, так и шарик, который хочет переместиться из одного места в другое, или это может быть какая-то конфигурация поля, которая хочет измениться и стать другой конфигурацией. Они могут сделать это множеством способов. Например, частичка пытается в поле тяготения Земли попасть из одной точки в другую, и мы видим, что, в общем-то, путей, по которым она может это сделать, бесконечно много. Но жизнь подсказывает, что в действительности при заданных начальных условиях траектория, которая позволит ей попасть из одной точки в другую, только одна. Теперь - к сути принципа наименьшего действия. Мы каждой траектории по определенному правилу приписываем число, называемое действием. Потом сравниваем все эти числа и выбираем только те траектории, для которых действие будет минимальным (в некоторых случаях - максимальным). Используя такой способ выбора путей наименьшего действия, можно получать законы Ньютона для классической механики или уравнения, описывающие электричество и магнетизм!

Остается осадок оттого, что не очень понятно, что это за число такое - действие? Если сильно не приглядываться, то это некоторая абстрактная математическая величина, которая, на первый взгляд, не имеет никакого отношения к физике - кроме того, что она случайным образом выплевывает известный нам результат. На самом деле все намного интереснее. Принцип наименьшего действия в самом начале был получен как следствие законов Ньютона. Потом на его основе сформулировали законы распространения света. Также его можно получить из уравнений, описывающих законы электричества и магнетизма, а потом в обратную сторону - из принципа наименьшего действия прийти к этим же законам.

Замечательно, что разные, на первый взгляд, теории обретают одинаковую математическую формулировку. И это наталкивает нас на следующее предположение: не можем ли мы сами придумывать какие-нибудь законы природы с помощью принципа наименьшего действия, а потом искать их в эксперименте? Можем и делаем! В этом и состоит значение этого неестественного и сложного для понимания принципа. Но он работает, что заставляет задуматься о нем именно как о некоторой физической характеристике системы, а не как об абстрактной математической формулировке современной теоретической науки. Важно также отметить, что мы не можем писать любые действия, которые подскажет нам наше воображение. Пытаясь придумать, как должно выглядеть действие очередной физической теории поля, мы используем симметрии, которыми обладает физическая природа, и наряду с фундаментальными свойствами пространства-времени мы можем использовать множество других интересных симметрий, которые подсказывает нам теория групп (раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. - Прим. ред.) .

О красоте симметрии

Замечательно, что мы получили не просто сводку законов, описывающую какие-то природные явления, а именно способ теоретически получать законы типа ньютоновских или уравнений Максвелла. И хотя квантовая теория поля описывает элементарные частицы лишь на уровне низких энергий, она уже сослужила хорошую службу физикам во всем мире и пока является единственной теорией, здраво описывающей свойства самых мелких кирпичиков, составляющих наш мир. То, чего, собственно, хотят ученые, - это написать такое вот действие, только квантовое, которое содержало бы в себе сразу все возможные законы природы. Хотя даже если бы это удалось, то не разрешило бы всех интересных нам вопросов.

В основе глубинного понимания законов природы лежат некоторые сущности, которые имеют чисто математическую природу. И сейчас, чтобы попытаться проникнуть в глубины мироздания, приходится отказываться от качественных, интуитивно понятных аргументов. Рассказывая о квантовой механике и квантовой теории поля, очень тяжело найти понятные и наглядные аналогии, но самое главное, что я хотел бы донести, - это то, что в основе мироздания лежит, по сути, понятие красоты, которое получило отражение в термине «симметрия». Симметрия поневоле ассоциируется с красотой, как это было, например, у древних греков. И именно симметрии наряду с законами квантовой механики лежат в основе устройства самых маленьких кирпичиков мира, до которых к настоящему моменту удалось добраться физикам.

Описывает взаимодействие элементарных частиц на основе универсального понятия квантованного физического поля. На основе данного раздела физики сформировалась классическая теория поля, которая сегодня известна как постоянная Планка.

Замечание 1

Основой изучаемой дисциплины стало представление о том, что абсолютно все элементарные частицы стали квантами соответствующих полей. Понятие квантового поля возникло на основе формирования представлений о традиционном поле, частицах, их синтезе, а также заключений в рамках квантовой теории.

Квантовая теория поля выступает в качестве теории, где есть бесконечное число степеней свободы. Их еще называют физическими полями. Острой проблемой квантовой теории стало создание единой теории, которая объединяла бы все квантовые поля. В Теории в настоящее время самыми фундаментальными полями являются поля, которые связаны с бесструктурными фундаментальными частицами. Этими микрочастицами выступают кварки и лептоны, а также поля, связанные с квантами-переносчиками четырёх фундаментальных взаимодействий. Исследования проводятся с промежуточными бозонами, глюонами и фотонами.

Частицы и поля квантовой теории

Более ста лет назад зародились основные понятия атомной физики, которые со временем получили продолжение в квантовой физике, сформулировав теорию поля. Различают двойственность классической теории. Она сформировалась в начале 20 века. Тогда частицы представлялись как маленькие комочки энергии, сформировавшие материю. Все они двигались согласно известной законам классической механики, о которых ранее подробно изложил в своих работах британский ученый Исаак Ньютон. Затем приложили руку к дальнейшим исследованиям Фарадей и Максвелл. Он сформировали законы динамики электромагнитного поля.

В это же время Планк впервые вводит в физическую науку понятие о порции, кванте, излучении для объяснения закономерностей теплового излучения. Затем физик Альберт Эйнштейн обобщил эту идею Планка о дискретности излучения. Он предположил, что такая дискретность не связывается с определенным механизмом взаимодействия излучения и веществом, а присуща на внутреннем уровне самому электромагнитному излучению. Электромагнитное излучение – это и есть кванты. Подобные теории вскоре получили экспериментальное подтверждение. На их основе были объяснены закономерности фотоэффекта.

Новые открытия и теории

Примерно 50 лет назад ряд физиков нового поколения попытались использовать аналогичный подход в описании гравитационного взаимодействия. Они не только подробно описали все процесса, происходящие в условиях планеты, но и устремили свои взгляды на проблемы возникновения Вселенной, сформулировав теорию Большого взрыва.

Квантовая теория поля стала обобщением квантовой механики. Квантовая механика, наконец, стала ключом к пониманию важнейшей проблемы атома, в том числе открыла двери перед исследованиями другими ученых в постижении загадок микромира.

Квантовая механика позволяет описывать движение электронов, протонов и иных частиц, однако не их порождение или уничтожение. Оказалось, что ее применение верно только для описания систем, в которых остается неизменно число частиц. Была доказана наиболее интересная в электродинамике задача испускания и поглощения электромагнитных волн заряженными частицами. Это соответствует порождению или уничтожению фотонов. Теория оказалась вне рамок компетенции ее исследования.

На основе первоначальных знаний стали приниматься в разработку иные теории. Так в Японии выдвинули квантовую электродинамику как наиболее перспективное и точное направление научной деятельности последних лет. В дальнейшем развитие получило направление хромодинамики и квантовая теория электрослабых взаимодействий.

Квантовая теория поля рассматривает в качестве основных следующие теории:

  • свободные поля и корпускулярно-волновой дуализм;
  • взаимодействие полей;
  • теорию возмущений;
  • расходимости и перенормировки;
  • функционального интеграла.

Квантованное свободное поле имеет запас свободной энергии и имеет возможность отдавать ее определенными частями. При уменьшении энергии поля на автоматически означает исчезновение одного фотона другой частоты. Происходит переход поля в иное состояние, при этом происходит уменьшение на одну единицу фотона. После таких последовательных переходов в итоге образуется состояние, где число фотонов равно нулю. Отдача энергии полем становится невозможной.

Поле может существовать в состоянии вакуума. Подобная теория не совсем понятна, но является полностью обоснованной с физической точки зрения. Электромагнитное поле в вакуумном состоянии не может быть поставщиком энергии, однако вакуум вообще никак не может проявить себя.

Определение 1

Физический вакуум - это состояние с необходимыми и значимыми свойствами, проявляющимися в реальных процессах.

Такое утверждение верно для других частиц. И его можно представить как низшее энергетическое положение этих частиц и их полей. Вакуумным при рассмотрении взаимодействующих полей называют низшее энергетическое состояние всей системы данных полей.

Проблемы квантовой теории поля

В квантовой электродинамике исследователи достигли немало успехов, однако не всегда удается понять, как они были показаны. Все эти успехи нуждаются в дальнейшем объяснении. Теория сильных взаимодействий стала формироваться развиваться по аналогии квантовой электродинамики. Тогда роль переносчиков взаимодействия были приписана частицам, что обладают массой покоя. Также существует проблема перенормируемости.

Она не могла рассматриваться как непротиворечивое построение, поскольку в ней появляются бесконечно огромные значения для определенных физических величин и отсутствует понимание того, что же с ними делать. Идея изменения нормировок не только объясняет исследуемые эффекты, но и придает всей теории черты логической замкнутости, устранив из нее расходимости. Ученые сталкиваются с определенными проблемами на различных стадиях исследований. Им будет посвящено немало времени на устранение, поскольку точных показателей до сих пор в квантовой теории поля не существует.

Физика дает нам объективное понимание окружающего мира, а ее законы абсолютны и действуют на всех людей без исключения, невзирая на социальный статус и лица.

Но такое понимание указанной науки было не всегда. В конце XIX столетия были сделаны первые несостоятельные шаги к созданию теории излучения черного физического тела на основе законов классической физики. Из законов данной теории следовало, что вещество обязано отдавать определенные электромагнитные волны при любой температуре, снижать амплитуду до абсолютного нуля и терять свои свойства. Другими словами, тепловое равновесие между излучением и конкретным элементом было невозможно. Однако такое утверждение находилось в противоречии с реальным повседневным опытом.

Более детализировано и понятно квантовую физику можно пояснить следующим образом. Существует определение абсолютно черного тела, которое способно поглощать электромагнитное излучение любого спектра волны. Длина его излучения определяется только его температурой. В природе не может быть абсолютно черных тел, которые соответствуют непрозрачному замкнутому веществу с отверстием. Любой кусок элемента при нагревании начинает светиться светится, а при дальнейшем повышении градуса окрашивается сначала красным, а затем - белым. Цвет от свойств вещества практически не зависит, для абсолютно черного тела он характеризуется исключительно его температурой.

Замечание 1

Следующим этапом в развитии квантовой концепции было учение А. Эйнштейна, которое известно под гипотезой Планка.

Данная теория дала возможность ученому объяснить все закономерности уникального фотоэффекта, не укладывающиеся в пределы классической физики. Сущность указанного процесса заключается в исчезновении вещества под воздействием быстрых электронов электромагнитного излучения. Энергия испускаемых элементов не зависит от коэффициента поглощаемого излучения и определяется его характеристиками. Однако от насыщенности лучей зависит количество испускаемых электронов

Многократные эксперименты вскоре подтвердили учение Эйнштейна, причем не только с фотоэффектом и светом, но и с рентгеновскими и гамма-лучами. Эффект А. Комптона, который был найден в 1923 году, представил общественности новые факты существования неких фотонов посредством расположения упругого рассеяния электромагнитных излучений на свободных, малых электронах, сопровождаемые повышением диапазона и длины волны.

Квантовая теория поля

Данное учение позволяет определить процесс внедрения квантовых систем в рамки, называемых в науке степеней свободы, предполагающих определенное количество независимых координат, которые крайне важны для обозначения общего движения механической концепции.

Простыми словами, эти показатели являются основными характеристиками движения. Стоит отметить, что интересные открытия в сфере гармоничного взаимодействия элементарных частиц сделал исследователь Стивен Вайнберг, который открыл нейтральный ток, а именно принцип взаимосвязи между лептонами и кварками. За свое открытие в 1979-ом году физик стал лауреатом Нобелевской премии.

В квантовой теории атом состоит из ядра и конкретного облака электронов. Основа данного элемента включает в себя практически всю массу самого атома - более 95 процентов. Ядро обладает исключительно положительным зарядом, определяющий химический элемент, частью которого является сам атом. Самым необычным в строение атома является то, что ядро хоть и составляет почти всю его массу, но содержит всего одну десятитысячную его объема. Из этого следует, что плотного вещества в атоме действительно очень мало, а все остальное пространство занимает электронное облако.

Интерпретации квантовой теории - принцип дополнительности

Стремительное развитие квантовой теории привело к кардинальному изменению классических представлений о таких элементах:

  • структуре материи;
  • движении элементарных частиц;
  • причинности;
  • пространстве;
  • времени;
  • характере познания.

Такие перемены в сознании людей способствовали коренной трансформации картины мира в более четкое понятие. Для классической интерпретации материальной частицы было свойственно внезапное выделение из окружающей среды, наличие собственного движения и конкретное месторасположение в пространстве.

В квантовой теории элементарная частица стала представляться как важнейшая часть системы, в которую она была включена, однако при этом не имела собственных координат и импульса. В классическом познании движения предлагался перенос элементов, которые оставались тождественными сами себе, по заранее спланированной траектории.

Неоднозначный характер деления частицы обусловил надобность отказа от такого видения движения. Классический детерминизм уступил лидирующую позицию статистическому направлению. Если ранее все целое в элементе воспринималось как общее количество составляющих частей, то квантовая теория определила зависимость отдельных свойств атома от системы.

Классическое понимание интеллектуального процесса было напрямую связано с пониманием материального предмета как полноценно существующего самого по себе.

Квантовая теория продемонстрировала:

  • зависимость знания об объекте;
  • самостоятельность исследовательских процедур;
  • завершенность действий на ряде гипотез.

Замечание 2

Смысл этих концепций изначально был далеко не ясен, а поэтому основные положения квантовой теории всегда получали разное истолкование, а также разнообразные интерпретации.

Квантовая статистика

Параллельно с развитием квантовой и волновой механики стремительно развивались другие составные элементы квантовой теории - статистика и статистическая физика квантовых систем, которые включали в себя огромное количество частиц. На базе классических методов движения конкретных элементов была создана теория поведения их целостности- классическая статистика.

В квантовой статистике полностью отсутствует вероятность различить две частицы одинаковой природы, так как два состояния этой нестабильной концепции отличаются друг от друга только перестановкой частиц идентичной мощности влияний на сам принцип тождественности. Этим квантовые системы в основном и отличаются от классических научных систем.

Важным итогом в открытии квантовой статистики считается положение о том, что каждая частица, которая входит в какую-либо систему, не тождественна такому же элементу. Отсюда следует значимость задачи определения специфики материального предмета в конкретном сегменте систем.

Отличие квантовой физики от классической

Итак, постепенный отход квантовой физики от классической состоит в отказе от того, чтобы объяснять происходящие во времени и пространстве индивидуальные события, и применении статистического способа с его волнами вероятности.

Замечание 3

Целью классической физики является описание отдельных объектов в определенной сфере и формирование законов, управляющих изменением этих предметов во времени.

Квантовая физика в глобальном понимании физических идей занимает особое место в науке. К числу самых запоминающихся созданий человеческого ума относится теория относительности – общая и специальная, которая представляет собой абсолютно новую концепцию направлений, объединяющую электродинамику, механику и теорию тяготения.

Квантовая теория смогла окончательно разорвать связи с классическими традициями, создав новый, универсальный язык и необычный стиль мышления, позволяющий ученым проникнуть в микромир с его энергетическими составляющими и дать его полное описание посредством введения специфик, отсутствовавших в классической физике. Все эти методы в конечном итоге позволили более детализировано понять сущность всех атомных процессов, и вместе с тем именно эта теория внесла в науку элемент случайности и непредсказуемости.

Фоковского пространства, описывающие всевозможные возбуждения квантового поля. Аналогом квантовомеханической волновой функции в КТП является полевой оператор (точнее, «поле» - это операторнозначная обобщённая функция , из которой только после свёртки с основной функцией получается оператор, действующий в гильбертовом пространстве состояний), способный действовать на вакуумный вектор фоковского пространства (см. вакуум) и порождать одночастичные возбуждения квантового поля. Физическим наблюдаемым здесь также соответствуют операторы, составленные из полевых операторов [стиль! ] .

Именно на квантовой теории поля базируется вся физика элементарных частиц .

При построении квантовой теории поля ключевым моментом было понимание сущности явления перенормировки .

История зарождения

Основное уравнение квантовой механики - уравнение Шрёдингера - является релятивистски неинвариантным, что видно из несимметричного вхождения времени и пространственных координат в уравнение. В 1926 году было предложено релятивистски инвариантное уравнение для свободной (безспиновой или с нулевым спином) частицы (уравнение Клейна - Гордона - Фока). Как известно, в классической механике (включая нерелятивистскую квантовую механику) энергия (кинетическая, поскольку потенциальная предполагается нулевой) и импульс свободной частицы связаны соотношением . Релятивистское соотношение энергии и импульса имеет вид . Предполагая, что оператор импульса в релятивистском случае такой же, как и в нерелятивистской области, и используя данную формулу для построения релятивистского гамильтониана по аналогии, получим уравнение Уравнение Клейна - Гордона :

или

или, кратко, используя вдобавок естественные единицы :

, где - оператор Д’Аламбера .

Однако проблема данного уравнения заключается в том, что волновую функцию здесь сложно интерпретировать как амплитуду вероятности хотя бы потому, что - как можно показать - плотность вероятности не будет положительно определенной величиной.

Несколько иное обоснование имеет уравнение Дирака , предложенное им в 1928 году. Дирак пытался получить дифференциальное уравнение первого порядка, в котором обеспечено равноправие временной координаты и пространственных координат. Поскольку оператор импульса пропорционален первой производной по координатам, то гамильтониан Дирака должен быть линейным по оператору импульса.

и с учетом формулы связи энергии и импульса, на квадрат этого оператора налагаются ограничения, а значит и на "коэффициенты" - их квадраты должны быть равны единице и они должны быть взаимно антикоммутативны. Таким образом, это точно не могут быть числовые коэффициенты. Однако, они могут быть матрицами, причем размерности не менее 4, а "волновая функция" - четырехкомпонентным объектом, получившим название биспинора . В таком случае уравнение Дирака формально имеет вид, идентичный уравнению Шредингера (с гамильтонианом Дирака).

Однако данное уравнение, впрочем как и уравнение Клейна - Гордона, имеет решения с отрицательными энергиями. Данное обстоятельство явилось причиной для предсказания античастиц , что позже и было подтверждено экспериментально (открытие позитрона). Наличие античастиц есть следствие релятивистского соотношения между энергией и импульсом.

Одновременно к концу 20-х годов был разработан формализм квантового описания многочастичных систем (включая системы с переменным числом частиц), основанного на операторах рождения и уничтожения частиц. Квантовая теория поля оказывается также основанной на этих операторах (выражается через них).

Уравнения Клейна - Гордона и Дирака следует рассматривать как уравнения для полевых операторных функций, действующих на вектор состояния системы квантовых полей, удовлетворяющих уравнению Шрёдингера.

Сущность квантовой теории поля

Лагранжев формализм

В классической механике с помощью лагранжева формализма можно описать многочастичные системы. Лагранжиан многочастичной системы равен сумме лагранжианов отдельных частиц. В теории поля аналогичную роль может играть лагранжева плотность (плотность лагранжиана) в данной точке пространства. Соответственно лагранжиан системы (поля) будет равен интегралу от плотности лагранжиана по трехмерному пространству. Действие, как и в классической механике, предполагается равным интегралу от лагранжиана по времени. Следовательно, действие в теории поля можно рассматривать как интеграл от плотности лагранжиана по четырехмерному пространству-времени. Соответственно можно применить принцип наименьшего (стационарного) действия к этому четырехмерному интегралу и получить уравнения движения для поля - уравнения Эйлера-Лагранжа . Минимальное требование к лагранжиану (лагранжевой плотности) - релятивистская инвариантность. Второе требование - лагранжиан не должен содержать производных полевой функции выше первой степени, чтобы уравнения движения получались "правильными" (соответствовали классической механике). Есть также и иные требования (локальность, унитарность и др.). Согласно теореме Нётер инвариантность действия относительно k-параметрических преобразований, приводит к k динамическим инвариантам поля, то есть к законам сохранения. В частности инвариантность действия относительно трансляций (сдвигов) приводит к сохранению 4-импульса.

Пример: Скалярное поле c лагранжианом

Уравнения движения для данного поля приводят к уравнению Клейна-Гордона . Для решения этого уравнения полезно перейти к импульсному представлению через преобразование Фурье. Из уравнения Клейна-Гордона нетрудно видеть, что коэффициенты Фурье будут удовлетворять условию

Где - произвольная функция

Дельта-функция устанавливает связь между частотой (энергией) , волновым вектором (вектором импульса) и параметром (массой) : . Соответственно для двух возможных знаков имеем два независимых решения в импульсном представлении (интеграл Фурье)

Можно показать, что вектор импульса будет равен

Следовательно, функцию можно интерпретировать как среднюю плотность частиц с масоой , импульсом и энергией . После квантования эти произведения превращаются в операторы, имеющие целочисленные собственные значения.

Квантование поля. Операторы рождения и уничтожения квантов

Квантование означает переход от полей к операторам, действующим на вектор (амплитуду) состояния Φ . По аналогии с обычной квантовой механикой вектор состояния полностью характеризует физическое состояние системы квантованных волновых полей. Вектор состояния - это вектор в некотором линейном пространстве.

Основной постулат квантования волновых полей заключается в том, что операторы динамических переменных выражаются через операторы полей таким же образом, что и для классических полей (с учетом порядка перемножения)

Для квантового гармонического осциллятора получена известная формула квантования энергии . Собственные функции, соответствующие указанным собственным значениям гамильтониана, оказываются связанными друг с другом некоторыми операторами - повышающий оператор, - понижающий оператор. Следует отметить, что эти операторы некоммутативны (их коммутатор равен единице). Применение повышающего или понижающего оператора увеличивает квантовое число n на единицу и приводит к одинаковому увеличению энергии осциллятора (эквидистантность спектра), что можно интерпретировать как рождение нового или уничтожение кванта поля с энергией . Именно такая интерпретация позволяет использовать вышеприведенные операторы, как операторы рождения и уничтожения квантов данного поля. Гамильтониан гармонического осциллятора выражается через указанные операторы следующим образом , где - оператор числа квантов поля. Как нетрудно показать - то есть, собственные значения этого оператора - число квантов. Любое n-частичное состояние поля может быть получено действием операторов рождения на вакуум

Для вакуумного состояния результат применения оператора уничтожения равен нулю (это можно принять за формальное определение вакуумного состояния).

В случае N осцилляторов гамильтониан системы равен сумме гамильтонианов индивидуальных осцилляторов. Для каждого такого осциллятора можно определить свои операторы рождения . Следовательно произвольное квантовое состояние такой системы может быть описано с помощью чисел заполнения - количества операторов данного сорта k, действующих на вакуум:

Такое представление называют представлением чисел заполнения . Суть данного представления заключается в том, чтобы вместо задания функции функции от координат (координатное представление) или как функцию от импульсов (импульсное представление), состояние системы характеризуется номером возбужденного состояния - числом заполнения.

Можно показать, что, например, скалярное поле Клейна-Гордона может быть представлено как совокупность осцилляторов. Разлагая полевую функцию в бесконечный ряд Фурье по трехмерному вектору импульса можно показать, что из уравнения Клейна-Гордона следует, что амплитуды разложения удовлетворяют классическому дифференциальному уравнению второго порядка для осциллятора с параметром (частотой) . Рассмотрим ограниченный куб и наложим условие периодичности по каждой координате с периодом .Условие периодичности приводит к квантованию допустимых импульсов и энергии осциллятора:

Операторы поля, операторы динамических переменных

Фоковское представление

Квантование по Бозе-Эйнштейну и Ферми-Дираку. Связь со спином.

Коммутационные соотношения Бозе-Эйнштейна основаны на обычном коммутаторе (разность "прямого" и "обратного" произведения операторов), а коммутационные соотношения Ферми-Дирака - на антикоммутаторе (сумма "прямого" и "обратного" произведения операторов). Кванты первых полей подчиняются статистике Бозе-Эйнштейна и называются бозонами , а кванты вторых подчиняются статистике Ферми-Дирака и называются фермионами . Квантование полей по Бозе-Эйнштейну оказывается непротиворечивым для частиц с целым спином, а для частиц с полуцелым спином непротиворечивым оказывается квантование по Ферми-Дираку. Таким образом, фермионы являются частицами с полуцелым спином, а бозоны - с целым.

S-матричный формализм. Диаграммы Фейнмана

Проблема расходимостей и пути их решения

Аксиоматическая квантовая теория поля

См. также

Литература

  • Квантовая теория поля - Физическая энциклопедия (гл. редактор А. М. Прохоров).
  • Ричард Фейнман , «Характер физических законов» - М., Наука, 1987 г., 160 с.
  • Ричард Фейнман, «КЭД - странная теория света и вещества» - М., Наука, 1988 г., 144 с.
  • Боголюбов Н. Н. , Ширков Д. В. Введение в теорию квантованных полей . - М .: Наука, 1984. - 600 с.
  • Вентцель Г. Введение в квантовую теорию волновых полей. - М .: ГИТТЛ, 1947. - 292 с.
  • Ициксон К., Зюбер Ж.-Б. Квантовая теория поля. - М .: Мир, 1984. - Т. 1. - 448 с.
  • Райдер Л. Квантовая теория поля. - М .: Мир, 1987. - 512 с.
Основные разделы
Общая (физическая) акустика Геометрическая акустика Психоакустика Биоакустика Электроакустика Гидроакустика Ультразвуковая акустика Квантовая акустика (акустоэлектроника) Акустическая фонетика (Акустика речи)
Прикладная акустика Архитектурная акустика (Строительная акустика) Аэроакустика Музыкальная акустика Акустика транспорта Медицинская акустика Цифровая акустика
Смежные направления Акустооптика
Прикладная физика Физика плазмы Физика атмосферы Лазерная физика Физика ускорителей
Связанные науки Агрофизика Физическая химия Математическая физика Космология Астрофизика Геофизика Биофизика Метрология Материаловедение
См. также

Физика - самая загадочная из всех наук. Физика дает нам понимание окружающего мира. Законы физики абсолютны и действуют на всех без исключения, не взирая на лица и социальный статус.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Фундаментальные открытия в области квантовой физики

Исаак Ньютон, Никола Тесла, Альберт Эйнштейн и многие другие — великие проводники человечества в удивительном мире физики, которые подобно пророкам открыли человечеству величайшие тайны мироздания и возможности управления физическими явлениями. Их светлые головы рассекли тьму невежества неразумного большинства и подобно путеводной звезде указали путь человечеству во мраке ночи. Одним из таких проводников в мире физики стал Макс Планк — отец квантовой физики.

Макс Планк не только основоположник квантовой физики, но и автор всемирно известной квантовой теории. Квантовая теория — важнейшая составляющая квантовой физики. Простыми словами, данная теория описывает движение, поведение и взаимодействие микрочастиц. Основатель квантовой физики также принес нам и множество других научных трудов, которые стали краеугольными камнями современной физики:

  • теория теплового излучения;
  • специальная теория относительности;
  • исследования в области термодинамики;
  • исследования в области оптики.

Теория квантовой физики о поведении и взаимодействии микрочастиц стала основой для физики конденсированного состояния, физики элементарных частиц и физики высоких энергий. Квантовая теория объясняет нам суть множества явлений нашего мира — от функционирования электронных вычислительных машин до строения и поведения небесных тел. Макс Планк, создатель данной теории, благодаря своему открытию позволил нам постигнуть истинную суть многих вещей на уровне элементарных частиц. Но создание данной теории — далеко не единственная заслуга ученого. Он стал первым, кто открыл фундаментальный закон Вселенной — закон сохранения энергии. Вклад в науку Макса Планка сложно переоценить. Если говорить кратко, то его открытия бесценны для физики, химии, истории, методологии и философии.

Квантовая теория поля

В двух словах, квантовая теория поля — это теория описания микрочастиц, а также их поведения в пространстве, взаимодействия между собой и взаимопревращения. Данная теория изучает поведение квантовых систем в рамках, так называемых степеней свободы. Это красивое и романтичное название многим из нас толком ничего не говорит. Для чайников, степени свободы — это количество независимых координат, которые необходимы для обозначения движения механической системы. Простыми словами, степени свободы — это характеристики движения. Интересные открытия в области взаимодействия элементарных частиц совершил Стивен Вайнберг. Он открыл так называемый нейтральный ток — принцип взаимодействия между кварками и лептонами, за что и получил Нобелевскую премию в 1979-ом году.

Квантовая теория Макса Планка

В девяностых годах восемнадцатого века немецкий физик Макс Планк занялся изучением теплового излучения и в итоге получил формулу для распределения энергии. Квантовая гипотеза, которая родилась в ходе данных исследований, положила начало квантовой физике, а также квантовой теории поля, открытой в 1900-ом году. Квантовая теория Планка заключается в том, что при тепловом излучении продуцируемая энергия исходит и поглощается не постоянно, а эпизодически, квантово. 1900-ый год, благодаря данному открытию, которое совершил Макс Планк, стал годом рождения квантовой механики. Также стоит упомянуть о формуле Планка. Если говорить кратко, то ее суть следующая — она основана на соотношении температуры тела и его излучения.

Квантово-механическая теория строения атома

Квантово-механическая теория строения атома является одной из базовых теорий понятий в квантовой физике, да и в физике вообще. Данная теория позволяет нам понять строение всего материального и открывает завесу тайны над тем, из чего же на самом деле состоят вещи. А выводы, исходя из данной теории, получаются весьма неожиданные. Рассмотрим строение атома кратко. Итак, из чего же на самом деле состоит атом? Атом состоит из ядра и облака электронов. Основа атома, его ядро, содержит в себе почти всю массу самого атома — более 99 процентов. Ядро всегда имеет положительный заряд, и он определяет химический элемент, частью которого является атом. Самым интересным в ядре атома является то, что он содержит в себе практически всю массу атома, но при этом занимает лишь одну десятитысячную его объема. Что же из этого следует? А вывод напрашивается весьма неожиданный. Это значит, что плотного вещества в атоме — всего лишь одна десятитысячная. А что же занимает все остальное? А все остальное в атоме — электронное облако.

Электронное облако — это не постоянная и даже, по сути, не материальная субстанция. Электронное облако — это лишь вероятность появления электронов в атоме. То есть ядро занимает в атоме лишь одну десятитысячную, а все остальное — пустота. И если учесть, что все окружающие нас предметы, начиная от пылинок и заканчивая небесными телами, планетами и звездами, состоят из атомов, то получается, что все материальное на самом деле более чем на 99 процентов состоит из пустоты. Эта теория кажется вовсе невероятной, а ее автор, как минимум, заблуждающимся человеком, ведь вещи, существующие вокруг, имеют твердую консистенцию, имеют вес и их можно осязать. Как же он могут состоять из пустоты? Не закралась ли ошибка в эту теорию строения вещества? Но ошибки тут никакой нет.

Все материальные вещи кажутся плотными лишь за счет взаимодействия между атомами. Вещи имеют твердую и плотную консистенцию лишь за счет притяжения или же отталкивания между атомами. Это и обеспечивает плотность и твердость кристаллической решетки химических веществ, из которых и состоит все материальное. Но, интересный момент, при изменении, например, температурных условий окружающей среды, связи между атомами, то есть их притяжение и отталкивание может слабеть, что приводит к ослаблению кристаллической решетки и даже к ее разрушению. Именно этим объясняется изменение физических свойств веществ при нагревании. Например, при нагревании железа оно становится жидким и ему можно придать любую форму. А при таянии льда, разрушение кристаллической решетки приводит к изменению состояния вещества, и из твердого оно превращается в жидкое. Это яркие примеры ослабления связей между атомами и, как следствие, ослабления или разрушения кристаллической решетки, и позволяют веществу стать аморфным. А причина таких загадочных метаморфоз как раз в том, что вещества лишь на одну десятитысячную состоят из плотной материи, а все остальное — пустота.

И вещества кажутся твердыми лишь по причине прочных связей между атомами, при ослаблении которых, вещество видоизменяется. Таким образом, квантовая теория строения атома позволяет совершенно по-другому взглянуть на окружающий мир.

Основатель теории атома,Нильс Бор, выдвинул интересную концепцию о том, что электроны в атоме не излучают энергию постоянно, а лишь в момент перехода между траекториями своего движения. Теория Бора помогла объяснить многие внутриатомные процессы, а также сделала прорыв в области такой науки, как химия, объясняя границу таблицы, созданной Менделеевым. Согласно , последний элемент, способный существовать во времени и пространстве, имеет порядковый номер сто тридцать семь, а элементы, начиная со сто тридцать восьмого, существовать не могут, так как их существование противоречит теории относительности. Также, теория Бора объяснила природу такого физического явления, как атомные спектры.

Это спектры взаимодействия свободных атомов, возникающие при излучении энергии между ними. Такие явления характерны для газообразных, парообразных веществ и веществ в состоянии плазмы. Таким образом, квантовая теория сделала революцию в мире физики и позволила продвинуться ученым не только в сфере этой науки, но и в сфере многих смежных наук: химии, термодинамики, оптики и философии. А также позволила человечеству проникнуть в тайны природы вещей.

Еще очень многое надлежит перевернуть человечеству в своем сознании, чтобы осознать природу атомов, понять принципы их поведения и взаимодействия. Поняв это, мы сможем понять и природу окружающего нас мира, ведь все, что нас окружает, начиная с пылинок и заканчивая самим солнцем, да и мы сами — все состоит из атомов, природа которых загадочна и удивительна и таит в себе еще массу тайн.