Невероятные числа профессора стюарта. Современные наукоемкие технологии Теорема пифагора целые числа

Важный пример диофантова уравнения дает теорема Пифагора, связывающая длины x и y катетов прямоугольного треугольника с длиной z его гипотенузы:


Вы, конечно, встречали одно из замечательных решений этого уравнения в натуральных числах, а именно пифагорову тройку чисел x = 3, y = 4, z = 5. Есть ли еще такие тройки?

Оказывается пифагоровых троек бесконечно много и все они давным-давно найдены. Они могут быть получены по известным формулам, о которых вы узнаете из настоящего параграфа.

Если диофантовы уравнения первой и второй степени уже решены, то вопрос о решении уравнений более высоких степеней до сих пор остается открытым, несмотря на усилия крупнейших математиков. В настоящее время, например, еще окончательно не доказана и не опровергнута знаменитая гипотеза Ферма о том, что при любом целом значении n&362;2 уравнение


в целых числах не имеет решений.

Для решения некоторых типов диофантовых уравнений полезную роль могут сыграть так называемые комплексные числа. Что это такое? Пусть буквой i обозначен некий объект, удовлетворяющий условию i 2 = -1 (понятно, что ни одно действительное число этому условию не удовлетворяет). Рассмотрим выражения вида α + iβ, где α и β - действительные числа. Такие выражения будем называть комплексными числами, определив над ними операции сложения и умножения, как и над двучленами, но с той лишь разницей, что выражение i 2 всюду будем заменять числом -1:

7.1. Из одной тройки много

Докажите, что если x 0 , y 0 , z 0 - пифагорова тройка, то тройки y 0 , x 0 , z 0 и x 0 k, y 0 k, z 0 k при любом значении натурального параметра k также являются пифагоровыми.

7.2. Частные формулы

Проверьте, что при любых натуральных значениях m>n тройка вида

является пифагоровой. Всякую ли пифагорову тройку x, y, z можно представить в таком виде, если разрешить переставлять местами числа x и y в тройке?

7.3. Несократимые тройки

Пифагорову тройку чисел, не имеющих общего делителя, большего 1, будем называть несократимой. Докажите, что пифагорова тройка является несократимой только в случае, если любые два из чисел тройки являются взаимно простыми.

7.4. Свойство несократимых троек

Докажите, что в любой несократимой пифагоровой тройке x, y, z число z и ровно одно из чисел x или y являются нечетными.

7.5. Все несократимые тройки

Докажите, что тройка чисел x, y, z является несократимой пифагоровой тройкой тогда и только тогда, когда она с точностью до порядка первых двух чисел совпадает с тройкой 2mn, m 2 - n 2 , m 2 + n 2 , где m>n - взаимно простые натуральные числа разной четности.

7.6. Общие формулы

Докажите, что все решения уравнения


в натуральных числах задаются с точностью до порядка неизвестных x и y формулами

где m>n и k - натуральные параметры (чтобы исключить дублирование каких-либо троек, достаточно выбирать числа тип взаимно простыми и к тому же разной четности).

7.7. Первые 10 троек

Найдите все пифагоровы тройки x, y, z, удовлетворяющие условию x

7.8. Свойства пифагоровых троек

Докажите, что для любой пифагоровой тройки x, y, z справедливы утверждения:

а) хотя бы одно из чисел x или y кратно 3;

б) хотя бы одно из чисел x или y кратно 4;

в) хотя бы одно из чисел x, y или z кратно 5.

7.9. Применение комплексных чисел

Модулем комплексного числа α + iβ называется неотрицательное число

Проверьте, что для любых комплексных чисел α + iβ и γ + iδ выполняется свойство

Пользуясь свойствами комплексных чисел и их модулей, докажите, что любые два целых числа m и n удовлетворяют равенству

т. е. задают решение уравнения


целых числах (сравните с задачей 7.5).

7.10. Непифагоровы тройки

Пользуясь свойствами комплексных чисел и их модулей (см. задачу 7.9), найдите формулы для каких-либо целочисленных решений уравнения:

а) x 2 + y 2 = z 3 ; б) x 2 + y 2 = z 4 .

Решения


7.1. Если x 0 2 + y 0 2 = z 0 2 , то y 0 2 + x 0 2 = z 0 2 , и при любом натуральном значении k имеем

что и требовалось доказать.

7.2. Из равенств

заключаем, что указанная в задаче тройка удовлетворяет уравнению x 2 + y 2 = z 2 в натуральных числах. Однако не всякую пифагорову тройку x, y, z можно представить в таком виде; например, тройка 9, 12, 15 является пифагоровой, но число 15 не представимо в виде суммы квадратов каких-либо двух натуральных чисел m и n.

7.3. Если какие-то два числа из пифагоровой тройки x, y, z имеют общий делитель d, то он будет делителем и третьего числа (так, в случае x = x 1 d, y = y 1 d имеем z 2 = x 2 + y 2 = (x 1 2 + y 1 2)d 2 , откуда z 2 делится на d 2 и z делится на d). Поэтому для несократимости пифагоровой тройки необходимо, чтобы любые два из чисел тройки были взаимно простыми,

7.4. Заметим, что одно из чисел x или y, скажем x, несократимой пифагоровой тройки x, y, z является нечетным, так как в противном случае числа x и y не были бы взаимно простыми (см. задачу 7.3). Если при этом другое число y также нечетно, то оба числа

дают остаток 1 при делении на 4, а число z 2 = x 2 + y 2 дает при делении на 4 остаток 2, т. е. оно делится на 2, но не делится на 4, чего не может быть. Таким образом, число y должно быть четным, а число z, стало быть, нечетным.

7.5. Пусть пифагорова тройка x, y, z несократима и, для определенности, число x четно, а числа y, z нечетны (см. задачу 7.4). Тогда

где числа являются целыми. Докажем, что числа а и b взаимно просты. В самом деле, если бы они имели общий делитель, больший 1, то такой же делитель имели бы и числа z = a + b, y = a - b, т. е. тройка не была бы несократимой (см. задачу 7.3). Теперь, раскладывая числа а и b в произведения простых множителей, замечаем, что любой простой множитель должен входить в произведение 4ab = x 2 только в четной степени, причем если он входит в разложение числа а, то не входит в разложение числа b и наоборот. Поэтому любой простой множитель входит в разложение числа а или b в отдельности только в четной степени, а, значит, сами эти числа являются квадратами целых чисел. Положим тогда получим равенства

причем натуральные параметры m>n взаимно просты (вследствие взаимной простоты чисел а и b) и имеют разную четность (из-за нечетности числа z = m 2 + n 2 ).

Пусть теперь натуральные числа m>n разной четности являются взаимно простыми. Тогда тройка х = 2mn, y = m 2 - n 2 , z = m 2 + n 2 , согласно утверждению задачи 7.2, является пифагоровой. Докажем, что она несократима. Для этого достаточно проверить, что числа y и z не имеют общих делителей (см. задачу 7.3). В самом деле, оба эти числа нечетны, так как числа тип имеют разную четность. Если же числа y и z имеют какой-либо простой общий делитель (тогда уж обязательно нечетный), то такой же делитель имеет и каждое из чисел и а с ними и каждое из чисел m и n, что противоречит их взаимной простоте.

7.6. В силу утверждений, сформулированных в задачах 7.1, 7.2, указанные формулы задают только пифагоровы тройки. С другой стороны, любая пифагорова тройка x, y, z после ее сокращения на наибольший общий делитель k пары чисел x и y становится несократимой (см. задачу 7.3) и, следовательно, может быть представлена с точностью до порядка чисел x и y в виде, описанном в задаче 7.5. Поэтому любая пифагорова тройка задается указанными формулами при некоторых значениях параметров.

7.7. Из неравенства z и формул задачи 7.6 получаем оценку m 2 т. е. m≤5 . Полагая m = 2, n = 1 и k = 1, 2, 3, 4, 5, получаем тройки 3, 4, 5; 6, 8, 10; 9, 12, 15; 12,16,20; 15, 20, 25. Полагая m = 3, n = 2 и k = 1, 2, получаем тройки 5, 12, 13; 10, 24, 26. Полагая m = 4, n = 1, 3 и k = 1, получаем тройки 8, 15, 17; 7, 24, 25. Наконец, полагая m = 5, n = 2 и k = 1, получаем тройку 20, 21, 29.

Свойства

Поскольку уравнение x 2 + y 2 = z 2 однородно , при домножении x , y и z на одно и то же число получится другая пифагорова тройка. Пифагорова тройка называется примитивной , если она не может быть получена таким способом, то есть - взаимно простые числа .

Примеры

Некоторые пифагоровы тройки (отсортированы по возрастанию максимального числа, выделены примитивные):

(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (14, 48, 50), (30, 40, 50)…

Основываясь на свойствах чисел Фибоначчи , можно составить из них, например, такие пифагоровы тройки:

.

История

Пифагоровы тройки известны очень давно. В архитектуре древнемесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н. э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей.

См. также

Ссылки

  • Е. А. Горин Степени простых чисел в составе пифагоровых троек // Математическое просвещение . - 2008. - В. 12. - С. 105-125.

Wikimedia Foundation . 2010 .

Смотреть что такое "Пифагоровы числа" в других словарях:

    Тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Большой Энциклопедический словарь

    Тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, например тройка чисел: 3, 4, 5. * * * ПИФАГОРОВЫ ЧИСЛА ПИФАГОРОВЫ ЧИСЛА, тройки таких натуральных чисел, что… … Энциклопедический словарь

    Тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным. По теореме, обратной теореме Пифагора (см. Пифагора теорема), для этого достаточно, чтобы они… …

    Тройки целых положительных чисел х, у,z, удовлетворяющих уравнению x2+у 2=z2. Все решения этого уравнения, а следовательно, и все П. ч. выражаются формулами х=а 2 b2, y=2ab, z=a2+b2, где а, b произвольные целые положительные числа (а>b). П. ч … Математическая энциклопедия

    Тройки таких натуральных чисел, что треугольник, длины сторон к рого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Естествознание. Энциклопедический словарь

    В математике пифагоровыми числами (пифагоровой тройкой) называется кортеж из трёх целых чисел удовлетворяющих соотношению Пифагора: x2 + y2 = z2. Содержание 1 Свойства 2 Примеры … Википедия

    Фигурные числа общее название чисел, связанных с той или иной геометрической фигурой. Это историческое понятие восходит к пифагорейцам. Предположительно от фигурных чисел возникло выражение: «Возвести число в квадрат или в куб». Содержание… … Википедия

    Фигурные числа общее название чисел, связанных с той или иной геометрической фигурой. Это историческое понятие восходит к пифагорейцам. Различают следующие виды фигурных чисел: Линейные числа числа, не разлагающиеся на сомножители, то есть их… … Википедия

    - «Парадокс числа пи» шутка на тему математики, имевшая хождение в среде студентов до 80 х годов (фактически, до массового распространения микрокалькуляторов) и была связана с ограниченной точностью вычислений тригонометрических функций и… … Википедия

    - (греч. arithmetika, от arithmys число) наука о числах, в первую очередь о натуральных (целых положительных) числах и (рациональных) дробях, и действиях над ними. Владение достаточно развитым понятием натурального числа и умение… … Большая советская энциклопедия

Книги

  • Архимедово лето, или История содружества юных математиков. Двоичная система счисления , Бобров Сергей Павлович. Двоичная система счисления, "Ханойская башня", ход коня, магические квадраты, арифметический треугольник, фигурные числа, сочетания, понятие о вероятностях, лента Мёбиуса и бутылка Клейна.…

Изучение свойств натуральных чисел привело пифагорейцев к еще одной «вечной» проблеме теоретической арифметики (теории чисел) - проблеме, ростки которой пробивались задолго до Пифагора в Древнем Египте и Древнем Вавилоне, а общее решение не найдено и поныне. Начнем с задачи, которую в современных терминах можно сформулировать так: решить в натуральных числах неопределенное уравнение

Сегодня эта задача именуется задачей Пифагора , а ее решения - тройки натуральных чисел, удовлетворяющих уравнению (1.2.1), - называются пифагоровыми тройками . В силу очевидной связи теоремы Пифагора с задачей Пифагора последней можно дать геометрическую формулировку: найти все прямоугольные треугольники с целочисленными катетами x , y и целочисленной гипотенузой z .

Частные решения задачи Пифагора были известны в глубокой древности. В папирусе времен фараона Аменемхета I (ок. 2000 до н. э.), хранящемся в Египетском музее в Берлине, мы находим прямоугольный треугольник с отношением сторон (). По мнению крупнейшего немецкого историка математики М. Кантора (1829 - 1920), в Древнем Египте существовала особая профессия гарпедонаптов - «натягивателей веревок», которые во время торжественной церемонии закладки храмов и пирамид размечали прямые углы с помощью веревки, имеющей 12 (= 3 + 4 + 5) равноотстоящих узлов. Способ построения прямого угла гарпедонаптами очевиден из рисунка 36.

Надо сказать, что с Кантором категорически не согласен другой знаток древней математики - ван дер Варден, хотя сами пропорции древнеегипетской архитектуры свидетельствуют в пользу Кантора. Как бы то ни было, сегодня прямоугольный треугольник с отношением сторон называется египетским .

Как отмечалось на с. 76, сохранилась глиняная табличка, относящаяся к древневавилонской эпохе и содержащая 15 строк пифагоровых троек. Помимо тривиальной тройки, получаемой из египетской (3, 4, 5) умножением на 15 (45, 60, 75), здесь есть и весьма сложные пифагоровы тройки, такие, как (3367, 3456, 4825) и даже (12709, 13500, 18541)! Нет никаких сомнений, что эти числа были найдены не простым перебором, а по неким единым правилам.

И тем не менее вопрос об общем решении уравнения (1.2.1) в натуральных числах был поставлен и решен только пифагорейцами. Общая постановка какой бы то ни было математической задачи была чужда как древним египтянам, так и древним вавилонянам. Только с Пифагора начинается становление математики как дедуктивной науки, и одним из первых шагов на этом пути было решение задачи о пифагоровых тройках. Первые решения уравнения (1.2.1) античная традиция связывает с именами Пифагора и Платона. Попробуем реконструировать эти решения.


Ясно, что уравнение (1.2.1) Пифагор мыслил не в аналитической форме, а в виде квадратного числа , внутри которого нужно было отыскать квадратные числа и . Число естественно было представить в виде квадрата со стороной y на единицу меньше стороны z исходного квадрата, т. е. . Тогда, как легко видеть из рисунка 37 (именно видеть!), для оставшегося квадратного числа должно выполняться равенство . Таким образом, мы приходим к системе линейных уравнений

Складывая и вычитая эти уравнения, находим решение уравнения (1.2.1):

Легко убедиться в том, что полученное решение дает натуральные числа только при нечетных . Таким образом, окончательно имеем

И т. д. Это решение традиция связывает с именем Пифагора.

Заметим, что система (1.2.2) может быть получена и формально из уравнения (1.2.1). В самом деле,

откуда, полагая , приходим к (1.2.2).

Ясно, что решение Пифагора найдено при достаточно жестком ограничении () и содержит далеко не все пифагоровы тройки. Следующим шагом можно положить , тогда , так как только в этом случае будет квадратным числом. Так возникает система также будет пифагоровой тройкой. Теперь может быть доказана основная

Теорема. Если p и q взаимно простые числа разной четности , то все примитивные пифагоровы тройки находятся по формулам

Белотелов В.А. Пифагоровы тройки и их количество // Энциклопедия Нестеровых

Эта статья является ответом одному профессору – щипачу. Смотри, профессор, как это у нас в деревне делают.

Нижегородская область, г. Заволжье.

Требуется знание алгоритма решения диофантовых уравнений (АРДУ) и знание прогрессий многочленов.

ПЧ – простое число.

СЧ – составное число.

Пусть есть число N нечётное. Для любого нечётного числа, кроме единицы, можно составить уравнение.

р 2 + N = q 2 ,

где р + q = N, q – р = 1.

Например, для чисел 21 и 23 уравнениями будут, -

10 2 + 21 = 11 2 , 11 2 + 23 = 12 2 .

Если число N простое, данное уравнение единственное. Если число N составное, тогда можно составить подобных уравнений по числу пар сомножителей представляющих это число, включая 1 х N.

Возьмём число N = 45, -

1 х 45 = 45, 3 х 15 = 45, 5 х 9 = 45.

Мечталось, а нельзя ли уцепившись за это различие между ПЧ и СЧ найти метод их идентификации.

Введём обозначения;

Изменим нижнее уравнение, -

N = в 2 – а 2 = (в – а)(в + а).

Сгруппируем величины N по признаку в - а, т.е. составим таблицу.

Числа N были сведены в матрицу, -

Именно под эту задачу пришлось разбираться с прогрессиями многочленов и их матрицами. Всё оказалось напрасно, – ПЧ оборону держат мощно. Давайте в таблицу 1 введём столбец, где в - а = 1 (q - р = 1).

И ещё раз. Таблица 2 получилась в следствии попытки решения задачи об идентификации ПЧ и СЧ. Из таблицы следует, что для любого числа N, существует столько уравнений вида а 2 + N = в 2 , на сколько пар сомножителей можно разбить число N, включая сомножитель 1 х N. Кроме чисел N = ℓ 2 , где

ℓ - ПЧ. Для N = ℓ 2 , где ℓ - ПЧ, существует единственное уравнение р 2 + N = q 2 . О каком дополнительном доказательстве может идти речь, если в таблице перебраны меньшие множители из пар сомножителей, образующих N, от единицы до ∞. Таблицу 2 поместим в сундучок, а сундучок спрячем в чуланчике.

Вернёмся к теме заявленной в названии статьи.

Эта статья является ответом одному профессору – щипачу.

Обратился за помощью, – требовался ряд чисел, который не мог найти в интернете. Напоролся на вопросы типа, – "а за чем?", "а покажи метод". Был в частности задач вопрос, бесконечен ли ряд пифагоровых троек, "а как доказать?". Не помог он мне. Смотри, профессор, как это у нас в деревне делают.

Возьмем формулу пифагоровых троек, –

х 2 = у 2 + z 2 . (1)

Пропустим через АРДУ.

Возможны три ситуации:

I. х – нечётное число,

у – чётное число,

z – чётное число.

И есть условие х > у > z.

II. х – нечётное число,

у – чётное число,

z – нечётное число.

х > z > у.

III.х – чётное число,

у – нечётное число,

z – нечётное число.

х > у > z.

Начнём по порядку с I.

Введём новые переменные

Подставим в уравнение (1).

Сократим на меньшее переменное 2γ.

(2α – 2γ + 2к + 1) 2 = (2β – 2γ + 2к) 2 + (2к + 1) 2 .

Сократим на меньшее переменное 2β – 2γ с одновременным введением нового параметра ƒ, -

(2α – 2β + 2ƒ + 2к + 1) 2 = (2ƒ + 2к) 2 + (2к + 1) 2 (2)

Тогда, 2α – 2β = х – у – 1.

Уравнение (2) примет вид, –

(х – у + 2ƒ + 2к) 2 = (2ƒ + 2к) 2 + (2к + 1) 2

Возведём в квадрат, -

(х – у) 2 + 2(2ƒ + 2к)(х – у) + (2ƒ + 2к) 2 = (2ƒ + 2к) 2 + (2к + 1) 2 ,

(х – у) 2 + 2(2ƒ + 2к)(х – у) – (2к + 1) 2 = 0. (3)

АРДУ даёт через параметры соотношение между старшими членами уравнения, поэтому мы получили уравнение (3).

Не солидно заниматься подбором решений. Но, во – первых, деваться некуда, а во – вторых, этих решений нужно несколько, а бесконечный ряд решений мы сможем восстановить.

При ƒ = 1, к = 1, имеем х – у = 1.

При ƒ = 12, к = 16, имеем х – у = 9.

При ƒ = 4, к = 32, имеем х – у = 25.

Подбирать можно долго, но в конечном итоге ряд примет вид, -

х – у = 1, 9, 25, 49, 81, ….

Рассмотрим вариант II.

Введём в уравнение (1) новые переменные

(2α + 2к + 1) 2 = (2β + 2к) 2 + (2γ + 2к + 1) 2 .

Сократим на меньшее переменное 2 β, -

(2α – 2β + 2к + 1) 2 = (2α – 2β + 2к+1) 2 + (2к) 2 .

Сократим на меньшее переменное 2α – 2β, –

(2α – 2γ + 2ƒ + 2к + 1) 2 = (2ƒ + 2к + 1) 2 + (2к) 2 . (4)

2α – 2γ = х – z и подставим в уравнение (4).

(х – z + 2ƒ + 2к + 1) 2 = (2ƒ + 2к + 1) 2 + (2к) 2

(х – z) 2 + 2(2ƒ + 2к + 1)(х – z) + (2ƒ + 2к + 1) 2 = (2ƒ + 2к + 1) 2 + (2к) 2 (х – z) 2 + 2(2ƒ + 2к + 1)(х – z) – (2к) 2 = 0

При ƒ = 3, к = 4, имеем х – z = 2.

При ƒ = 8, к = 14, имеем х – z = 8.

При ƒ = 3, к = 24, имеем х – z = 18.

х – z = 2, 8, 18, 32, 50, ….

Нарисуем трапецию, -

Напишем формулу.

где n=1, 2,... ∞.

Случай III расписывать не будем, – нет там решений.

Для условия II набор троек будет таким:

Уравнение (1) представлено в виде х 2 = z 2 + у 2 для наглядности.

Для условия I набор троек будет таким:

В общей сложности расписано 9 столбцов троек, по пять троек в каждом. И каждый из представленных столбцов можно писать до ∞.

В качестве примера рассмотрим тройки последнего столбца, где х – у = 81.

Для величин х распишем трапецию, -

Напишем формулу, -

Для величин у распишем трапецию, -

Напишем формулу, -

Для величин z распишем трапецию, -

Напишем формулу, -

Где n = 1 ÷ ∞.

Как и обещано, ряд троек при х – у = 81 летит в ∞.

Была попытка для случаев I и II построить матрицы для величин х, у, z.

Выпишем из последних пяти столбцов величины х из верхних строк и построим трапецию.

Не получилось, а закономерность должна быть квадратичной. Чтобы всё было в ажуре, оказалось, что надо объединить столбцы I и II.

В случае II величины у, z снова поменяем местами.

Объединить удалось по одной причине, – карты хорошо легли в этой задаче, – повезло.

Теперь можно расписать матрицы для х, у, z.

Возьмём из последних пяти столбцов величины х из верхних строк и построим трапецию.

Всё нормально, можно строить матрицы, и начнём с матрицы для z.

Бегом в чуланчик за сундучком.

Итого: Кроме единицы, каждое нечётное число числовой оси участвует в образовании пифагоровых троек равным количеству пар сомножителей образующих данное число N, включая сомножитель 1 х N.

Число N = ℓ 2 , где ℓ - ПЧ, образует одну пифагорову тройку, если ℓ - СЧ, то на сомножителях ℓхℓ тройки не существует.

Построим матрицы для величин х, у.

Начнём работать с матрицей для х. Для этого натянем на неё координатную сетку из задачи по идентификации ПЧ и СЧ.

Нумерация вертикальных рядов нормирована выражением

Первый столбец уберём, т.к.

Матрица примет вид, -

Опишем вертикальные ряды, -

Опишем коэффициенты при "а", -

Опишем свободные члены, -

Составим общую формулу для "х", -

Если провести подобную работу для "у", получим, -

Можно подойти к этому результату и с другой стороны.

Возьмём уравнение, –

а 2 + N = в 2 .

Чуть преобразуем, –

N = в 2 – а 2 .

Возведём в квадрат, –

N 2 = в 4 – 2в 2 а 2 + а 4 .

К левой и правой части уравнения добавим по величине 4в 2 а 2 , -

N 2 + 4в 2 а 2 = в 4 + 2в 2 а 2 + а 4 .

И окончательно, –

(в 2 + а 2) 2 = (2ва) 2 + N 2 .

Пифагоровы тройки составляются так:

Рассмотрим пример с числом N = 117.

1 х 117 = 117, 3 х 39 = 117, 9 х 13 = 117.

Вертикальные столбцы таблицы 2 пронумерованы величинами в – а, тогда как вертикальные столбцы таблицы 3 пронумерованы величинами х – у.

х – у = (в – а) 2 ,

х = у + (в – а) 2 .

Составим три уравнения.

(у + 1 2) 2 = у 2 + 117 2 ,

(у + 3 2) 2 = у 2 + 117 2 ,

(у + 9 2) 2 = у 2 + 117 2 .

х 1 = 6845, у 1 = 6844, z 1 = 117.

х 2 = 765, у 2 = 756, z 2 = 117 (х 2 = 85, у 2 = 84, z 2 = 13).

х 3 = 125, у 3 = 44, z 3 = 117.

Сомножители 3 и 39 не являются взаимно простыми числами, поэтому одна тройка получилась с коэффициентом 9.

Изобразим выше написанное в общих символах, -

В данной работе всё, включая пример на расчёт пифагоровых троек с числом

N = 117, привязано к меньшему сомножителю в - а. Явная дискриминация по отношению к сомножителю в + а. Исправим эту несправедливость, – составим три уравнения с сомножителем в + а.

Вернёмся к вопросу об идентификации ПЧ и СЧ.

Много что было совершено в этом направлении и на сегодняшний день через руки дошла следующая мысль, – уравнения идентификации, да такого чтобы и сомножители определить, не существует.

Допустим найдено соотношение F = а,в (N).

Есть формула

Можно избавиться в формуле F от в и получится однородное уравнение n – ой степени относительно а, т.е. F = а(N).

При любой степени n данного уравнения найдётся число N имеющее m пар сомножителей, при m > n.

И как следствие, однородное уравнение n степени должно иметь m корней.

Да быть такого не может.

В данной работе числа N рассматривались для уравнения х 2 = у 2 + z 2 , когда они находятся в уравнении на месте z. Когда N на месте х, - это уже другая задача.

С уважением Белотелов В.А.

Бескровный И.М. 1

1 OAO «Ангстрем–М»

Целью работы является разработка методов и алгоритмов вычисления пифагоровых троек вида a2+b2=c2. Процесс анализа осуществлялся в соответствии с принципами системного подхода. Наряду с математическими моделями, использованы графические модели, отображающие каждый член пифагоровой тройки в виде составных квадратов, каждый из которых состоит из совокупности единичных квадратов. Установлено, что бесконечное множество пифагоровы троек содержит бесконечное число подмножеств, различающих по признаку разности величин b–c. Предложен алгоритм формирования пифагоровых троек с любым наперёд заданным значением этой разности. Показано, что пифагоровы тройки существуют для любого значения 3≤a

Пифагоровы тройки

системный анализ

математическая модель

графическая модель

1. Аносов Д.Н. Взгляд на математику и нечто из неё. – М.: МЦНМО, 2003. – 24 с.: ил.

2. Айерланд К., Роузен М. Классическое введение в современную теорию чисел. – М.: Мир, 1987.

3. Бескровный И.М. Системный анализ и информационные технологии в организациях: Учебное пособие. – М.: РУДН, 2012. – 392 с.

4. Саймон Сингх. Великая теорема Ферма.

5. Ферма П. Исследования по теории чисел и диофантову анализу. – М.: Наука, 1992.

6. Yaptro. Ucoz, Available at: http://yaptro.ucoz.org/news/pifagorovy_trojki_chisel/2012-05-07-5.

Пифагоровы тройки представляют собой когорту из трех целых чисел, удовлетворяющих соотношению Пифагора x2 + y2 = z2. Вообще говоря, это частный случай Диофантовых уравнений, а именно, системы уравнений, в которых число неизвестных больше, чем число уравнений . Известны они давно, еще со времён Вавилона, то есть, задолго до Пифагора. А название они приобрели после того, как Пифагор на их основе доказал свою знаменитую теорему. Однако, как следует из анализа многочисленных источников, в которых вопрос о пифагоровых тройках в той или иной мере затрагивается до сих пор не раскрыт в полной мере вопрос о существующих классах этих троек и о возможных способах их формирования.

Так в книге Саймона Сингха говорится: - «Ученики и последователи Пифагора …поведали миру секрет нахождения так называемых пифагоровых трое к.». Однако, в след за этим читаем: - «Пифагорейцы мечтали найти и другие пифагорейские тройки, другие квадраты, из которых можно было бы сложить третий квадрат больших размеров. …По мере того, как числа возрастают, пифагоровы тройки встречаются все реже, и находить их становится все труднее и труднее. Пифагорейцы изобрели метод отыскания таких троек и, пользуясь им, доказали, что пифагоровых троек существует бесконечно много».

В приведенной цитате выделены слова вызывающие недоумение. Почему «Пифагорейцы мечтали найти…», если они «изобрели метод отыскания таких троек…», и почему для больших чисел «находить их становится все труднее и труднее…».

В работе известного математика Д.В. Аносова искомый ответ, вроде бы, приведен. - «Имеются такие тройки натуральных (т. е. целых положительных) чисел x, y, z, что

x2 + y2 = z2. (1)

…можно ли найти все решения уравнения x2+y2=z2 в натуральных числах? …Да. Ответ таков: каждое такое решение можно представить в виде

x=l(m2-n2), y=2lmn, z=l(m2+n2), (2),

где l, m, n - натуральные числа, причем m>n, или в аналогичном виде, в котором x и y меняются местами. Можно чуть короче сказать, что x, y, z из (2) со всевозможными натуральными l и m > n суть все возможные решения (1) с точностью до перестановки x и y. Например, тройка (3, 4, 5) получается при l=1, m=2, n=1. ... По-видимому, вавилоняне знали этот ответ, но как они к нему пришли - неизвестно».

Обычно математики известны своей требовательностью к строгости своих формулировок. Но, в данной цитате такой строгости не наблюдается. Так что именно: найти или представить? Очевидно, что это совершенно разные вещи. Вот ниже приводится строчка «свежеиспеченных» троек (получены методом, описываемым ниже):

12, 35, 37; 20, 21, 29; 44, 117, 125; 103, 5304, 5305.

Не вызывает сомнений, что каждую из этих троек можно представить в виде соотношения (2) и вычислить после этого значения l, m, n. Но, это уже после того, как все значения троек были найдены. А как быть до того?

Нельзя исключить того, что ответы на эти вопросы давно известны. Но их почему-то найти, пока не удалось. Таким образом, целью настоящей работы является системный анализ совокупности известных примеров пифагоровых троек, поиск системообразующих отношений в различных группах троек и выявление системных признаков характерных для этих групп и, затем - разработка простых эффективных алгоритмов расчёта троек с предварительно заданной конфигурацией. Под конфигурацией будем понимать отношения между величинами, входящими в состав тройки.

В качестве инструментария будет использован математический аппарат на уровне, не выходящем за рамки математики, преподаваемой в средней школе, и системный анализ на базе методов, изложенных в .

Построение модели

С позиций системного анализа любая пифагорова тройка является системой, образованной объектами, которыми являются три числа и их свойствами. Их совокупность, в которой объекты поставлены в определённые отношения и образуют систему, обладающую новыми свойствами, не присущими ни отдельным объектам, ни любой иной их совокупности, где объекты поставлены в иные отношения.

В уравнении (1), объектами системы являются натуральные числа, связанные простыми алгебраическими соотношениями: слева от знака равенство стоит сумма двух чисел, возведенных в степень 2, справа - третье число, также возведённое в степень 2. Отдельно взятые числа, слева от равенства, будучи возведены в степень 2, не накладывают никаких ограничений на операцию их суммирования - результирующая сумма может быть какой угодно. Но, знак равенства, поставленный после операции суммирования, налагает на значение этой суммы системное ограничение: сумма должна быть таким числом, чтобы результатом операции извлечения корня квадратного явилось натуральное число. А это условие выполняется не для любых чисел, подставляемых в левую часть равенства. Таким образом, знак равенства, поставленный между двумя членами уравнения и третьим, превращает тройку членов в систему. Новым свойством этой системы является введение ограничений на значения исходных чисел.

Исходя из формы записи, пифагорова тройка может рассматриваться как математическая модель геометрической системы, состоящей из трёх квадратов, связанных между собой отношениями суммирования и равенства, как это показано на рис. 1. Рис. 1 является графической моделью рассматриваемой системы, а вербальной её моделью является утверждение:

Площадь квадрата с длиной стороны c может быть разделена без остатка на два квадрата с длинами сторон a и b, таких, что сумма их площадей равна площади исходного квадрата, то есть, все три величины a, b, и c, связаны соотношением

Графическая модель разложения квадрата

В рамках канонов системного анализа известно, что если математическая модель адекватно отображает свойства некоей геометрической системы, то анализ свойств самой этой системы позволяет уточнить свойства её математической модели, глубже их познать, уточнить, и, при необходимости, усовершенствовать. Этого пути мы и будем придерживаться.

Уточним, что согласно принципам системного анализа операции сложения и вычитания могут производиться только над составными объектами, то есть, объектами, составленными из совокупности элементарных объектов. Поэтому, будем воспринимать любой квадрат, как фигуру, составленную из совокупности элементарных, или единичных квадратов. Тогда условие получения решения в натуральных числах эквивалентно принятия условия, что единичный квадрат неделим.

Единичным квадратом будем называть квадрат, у которого длина каждой из сторон равна единице. То есть, при площадь единичного квадрата определяет следующее выражение.

Количественным параметром квадрата является его площадь, определяемая количеством единичных квадратов, которые можно разместить на данной площади. Для квадрата с произвольным значением x, выражение x2 определяет величину площади квадрата, образованного отрезками длиной в x единичных отрезков. На площади этого квадрата могут быть размещены x2 единичных квадратов.

Приведенные определения могут быть восприняты как тривиальные и очевидные, но это не так. Д.Н. Аносов определяет понятие площадь по-другому: - « … площадь фигуры равна сумме площадей ее частей. Почему мы уверены, что это так? …Мы представляем себе фигуру сделанной из какого-то однородного материала, тогда ее площадь пропорциональна количеству содержащегося в ней вещества - ее массе. Далее подразумевается, что когда мы разделяем тело на несколько частей, сумма их масс равна массе исходного тела. Это понятно, потому что все состоит из атомов и молекул, и раз их число не изменилось, то не изменилась и их суммарная масса… Ведь, собственно, масса куска однородного материала пропорциональна его объему; значит, надо знать, что объем «листа», имеющего форму данной фигуры, пропорционален ее площади. Словом, …что площадь фигуры равна сумме площадей ее частей, в геометрии надо это доказывать. … В учебнике Киселева существование площади, имеющей то самое свойство, которое мы сейчас обсуждаем, честно постулировалось как некое допущение, причем говорилось, что это на самом деле верно, но мы этого доказывать не будем. Так что и теорема Пифагора, если ее доказывать с площадями, в чисто логическом отношении останется не совсем доказанной».

Нам представляется, что введенные выше определения единичного квадрата снимают указанную Д.Н. Аносовым неопределенность. Ведь если величина площади квадрата и прямоугольника определяется суммой заполняющих их единичных квадратов, то при разбиении прямоугольника на произвольные, прилегающие друг к другу части площадь прямоугольника естественно равна сумме всех его частей.

Более того, введенные определения снимают неопределенность использования понятий «разделить» и «сложить» применительно к абстрактным геометрическим фигурам. Действительно, что значит разделить прямоугольник или любую другую плоскую фигуру на части? Если это лист бумаги, то его можно разрезать ножницами. Если земельный участок - поставить забор. Комнату - поставить перегородку. А если это нарисованный квадрат? Провести разделительную линию и заявить, что квадрат разделён? Но, ведь говорил Д.И. Менделеев: «…Заявить можно всё, а ты - поди, демонстрируй!»

А при использовании предложенных определений «Разделить фигуру» означает разделить количество заполняющих эту фигуру единичных квадратов на две (или более) частей. Количество единичных квадратов в каждой из таких частей определяет её площадь. Конфигурацию этим частям можно придавать произвольную, но при этом сумма их площадей всегда будет равна площади исходной фигуры. Возможно, специалисты-математики сочтут эти рассуждения некорректными, тогда примем их за допущение. Если уж в учебнике Киселёва приемлемы такие допущения, то и нам подобным приёмом грех не воспользоваться.

Первым этапом системного анализа является выявление проблемной ситуации. В начале этого этапа было просмотрено несколько сот пифагоровых троек, найденных в различных источниках. При этом внимание привлекло то обстоятельство, что всю совокупность пифагоровых троек, упоминающихся в публикациях, можно разделить на несколько групп, различающихся по конфигурации. Признаком специфичной конфигурации будем считать разность длин сторон исходного и вычитаемого квадратов, то есть, величину c-b. Например, в публикациях довольно часто в качестве примера демонстрируются тройки, удовлетворяющие условию c-b=1 . Примем, что вся совокупность таких пифагоровых троек образует множество, которое будем называть «Класс c-1», и проведём анализ свойств этого класса.

Рассмотрим три квадрата, представленные на рисунке, где c - длина стороны уменьшаемого квадрата, b - длина стороны вычитаемого квадрата и a - длина стороны квадрата, образованного из их разности. На рис. 1 видно, что при вычитании из площади уменьшаемого квадрата площади вычитаемого квадрата в остатке остаются две полосы единичных квадратов:

Для того чтобы из этого остатка можно было образовать квадрат, необходимо выполнение условия

Эти соотношения позволяют определить значения всех членов тройки по единственному заданному числу c. Наименьшим числом c, удовлетворяющим соотношению (6), является число c = 5. Итак, были определенны длины всех трёх сторон квадратов, удовлетворяющих соотношению (1). Напомним, что значение b стороны среднего квадрата

было выбрано, когда мы решили образовать средний квадрат путем уменьшения стороны исходного квадрата на единицу. Тогда из соотношений (5), (6). (7) получаем следующее соотношение:

из которого следует, что выбранное значение c = 5 однозначно задаёт значения b = 4, a = 3.

В итоге, получены соотношения, позволяющие представить любую пифагорову тройку класса «c - 1» в таком виде, где значения все трёх членов определяются по одному задаваемому параметру - значению c:

Добавим, что число 5 в приведенном выше примере появилось как минимальное из всех возможных значений c, при которых уравнение (6) имеет решение в натуральных числах. Следующее число, обладающее таким же свойством, это 13, затем 25, далее 41, 61, 85 и т. д. Как видно, в этом ряду чисел интервалы между соседними числами интенсивно возрастают. Так, например, после допустимого значения , следующее допустимое значение , а после , следующее допустимое значение , то есть, допустимое значение отстоит от предыдущего более чем на пятьдесят миллионов!

Теперь понятно, откуда появилась эта фраза в книге : - «По мере того, как числа возрастают, пифагоровы тройки встречаются все реже, и находить их становится все труднее и труднее…». Однако это утверждение не является верным. Стоит только взглянуть на пифагоровы тройки, соответствующие приведенным выше парам соседних значений c, как сразу бросается в глаза одна особенность - в обеих парах, в которых значения c разнесены на столь большие интервалы, значения a оказываются соседними нечетными числами. Действительно, для первой пары имеем

и для второй пары

Так что «всё реже встречаются» не сами тройки, а интервалы между соседними значениями c увеличиваются. Сами же пифагоровы тройки, как это будет показано ниже, существуют для любого натурального числа.

Теперь рассмотрим, тройки следующего класса - «Класс c-2». Как видно из рис. 1, при вычитании из квадрата со стороной c квадрата со стороной (c - 2), образуется остаток в виде суммы двух единичных полос. Величина этой суммы определяется уравнением:

Из уравнения (10) получаем соотношения, определяющее любую из бесконечного множества троек класс «c-2»:

Условием существования решения уравнения (11) в натуральных числах является любое такого значения c , при котором a является натуральным числом. Минимальное значение c, при котором решение существует, составляет c = 5. Тогда «стартовая» тройка для этого класса троек определяется набором a = 4, b = 3, c = 5. То есть, вновь, образуется классическая тройка 3, 4, 5, только теперь площадь вычитаемого квадрата меньше площади остатка.

И наконец, проведём анализ троек класса «с-8». Для этого класса троек при вычитании площади квадрата из площади с2 исходного квадрата, получаем:

Тогда, из уравнения (12) следует:

Минимальное значение c, при котором решение существует: это c = 13. Пифагорова тройка при этом значении примет вид 12, 5, 13. В этом случае опять площадь вычитаемого квадрата меньше площади остатка. А переставив обозначения местами, получим тройку 5, 12, 13, которая по своей конфигурации относится к классу «c - 1». Похоже, что дальнейший анализ других возможных конфигураций ничего принципиально нового не откроет.

Вывод расчётных соотношений

В предыдущем разделе логика анализа развивалась в соответствии с требованиями системного анализа по четырём из пяти основных его этапов: анализ проблемной ситуации, формирование целей, формирование функций и формирование структуры. Теперь пора переходить к заключительному, пятому этапу - проверка реализуемости, то есть, проверка того, в какой мере поставленные цели достигнуты. .

Ниже показана табл. 1, в которой приведены значения пифагоровых троек, относящихся к классу «c - 1». Большинство троек встречаются в различных публикациях , но тройки для значений a, равных 999, 1001 в известных публикациях не встречались.

Таблица 1

Пифагоровы тройки класса «с-1»

Можно проверить, что все тройки удовлетворяют соотношению (3). Таким образом, одна из поставленных целей достигнута. Полученные в предыдущем разделе соотношения (9), (11), (13) позволяют формировать бесконечное множество троек, задавая единственный параметр c - сторону уменьшаемого квадрата. Это, конечно, более конструктивный вариант, чем соотношение (2), для использования которого следует задать произвольно три числа l, m, n, имеющих любое значение, затем искать решение, зная только, что в итоге, непременно будет получена пифагорова тройка, а какая - заранее неизвестно. В нашем случае заранее известна конфигурация формируемой тройки и нужно задавать только один параметр. Зато, увы, не для каждого значения этого параметра решение существует. И надо заранее знать его допустимые значения. Так что полученный результат хорош, но, далёк от идеала. Желательно получить такое решение, чтобы пифагоровы тройки можно было вычислять для любого произвольно заданного натурального числа. С этой целью вернемся к четвёртому этапу - формирование структуры полученных математических соотношений.

Поскольку выбор величины c в качестве базового параметра для определения остальных членов тройки оказался неудобным, следует испробовать другой вариант. Как видно из табл. 1, выбор параметра a в качестве базового представляется предпочтительным, поскольку значения этого параметра идут подряд в ряду нечётных натуральных чисел. После несложных преобразований приводим соотношения (9) к более конструктивному виду:

Соотношения (14) позволяют найти пифагорову тройку для любого наперёд заданного нечётного значения a. При этот простота выражения для b позволяет производить вычисления даже без калькулятора. Действительно, выбрав, к примеру, число 13, получаем:

А для числа 99 соответственно получаем:

Соотношения (15) позволяют получать значения всех трёх членов пифагоровой троки для любого заданного n, начиная с n=1.

Теперь рассмотрим пифагоровы тройки класса «c - 2». В табл. 2 приведены для примера десять таких троек. Причем, в известных публикациях были найдены только три пары троек - 8, 15, 23; 12, 35, 36; и 16, 63, 65. Этого оказалось достаточно, чтобы определить закономерности, по которым они формируются. Остальные семь были найдены из выведенных ранее соотношений (11). Для удобства вычисление эти соотношения были преобразованы так, чтобы все параметры выражались через величину a. Из (11) с очевидность следует, что все тройки для класса «c - 2» удовлетворяют следующим соотношениям:

Таблица 2

Пифагоровы тройки класса «с-2»

Как видно из табл. 2, всё бесконечное множество троек класса «c - 2» можно разделить на два подкласса. Для троек, у которых значение a делится на 4 без остатка, значения b и c - нечётные. Такие тройки, у которых НОД = 1, называют примитивными . Для троек, у которых значения a не делится на 4 в целых числах, все три члена тройки a, b, c - чётные.

Теперь перейдём к рассмотрению результатов анализа третьего из выделенных классов - класса «c - 8». Расчётные соотношения для этого класса, полученные из (13), имеют вид:

Соотношения (20), (21) по сути, идентичны. Различие только в выборе последовательности действий. Либо, в соответствии с (20) выбирается желательное значение a (в данном случае требуется, чтобы это значение делилось на 4), затем, определяются величины b и c. Либо, выбирается произвольное число, и затем, из соотношений (21) определяются все три члена пифагоровой тройки. В табл. 3 приведен ряд пифагоровых троек, вычисленных указанным способом. Однако, вычислять значения пифагоровых троек можно ещё проще. Если известно хоть одно значение , то все последующие значения определяются очень просто по следующим соотношениям:

Таблица 3

Справедливость соотношения (22) для всех может быть проверена как по тройкам из табл. 2, так и по другим источникам. В качестве примера, в табл. 4 курсивом выделены тройки из обширной таблицы пифагоровых троек (10000 троек), вычисленных на основе компьютерной программы по соотношению (2) и жирным шрифтом - тройки, вычисленные по соотношения (20). Эти значения в указанной таблице отсутствовали.

Таблица 4

Пифагоровы тройки класса «с-8»

Соответственно, для троек вида могут использоваться соотношения:

И для троек вида <>, имеем соотношение:

Следует подчеркнуть, что рассмотренные выше классы троек «c - 1», «с - 2», «с - 8» составляют более 90 % среди первой тысячи троек, из таблицы приведенной в . Это даёт основания воспринимать указанные классы как базовые. Добавим, что при выводе соотношений (22), (23), (24) не использовались какие либо специальные свойства чисел, изучаемые в теории чисел (простые, взаимно простые и пр.). Выявленные закономерности формирования пифагоровых троек обусловлены только системными свойствами описываемых этими тройками геометрических фигур - квадратов, состоящих из совокупности единичных квадратов.

Заключение

Теперь, как сказал Эндрю Уайлс в 1993 г.: «Думаю, мне следует на этом остановиться» . Поставленная цель полностью достигнута. Показано, что анализ свойств математических моделей, структура которых связана с геометрическими фигурами, существенно упрощается, если в процессе анализа наряду с чисто математическими выкладками учитываются и геометрические свойства изучаемых моделей. Упрощение достигается, в частности за счёт того, что исследователь «видит» искомые результаты, не проводя математических преобразований.

Например, равенство

становится очевидным без преобразований в левой его части, стоит только взглянуть на рис. 1, где приведена графическая модель этого равенства.

В итоге, на основе проведенного анализа показано, что для любого квадрата со стороной могут быть найдены квадраты со сторонами b и c, такие, что для них выполняется равенство и получены соотношения, обеспечивающие получение результатов при минимальном объеме вычислений:

для нечётных значений a,

и - для чётных значений.

Библиографическая ссылка

Бескровный И.М. СИСТЕМНЫЙ АНАЛИЗ СВОЙСТВ ПИФАГОРОВЫХ ТРОЕК // Современные наукоемкие технологии. – 2013. – № 11. – С. 135-142;
URL: http://сайт/ru/article/view?id=33537 (дата обращения: 20.03.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»