Что такое общий делитель. Нод и нок двух чисел, алгоритм евклида. Нахождение НОД с помощью разложения чисел на простые множители

Ланцинова Айса

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задачи на НОД и НОК чисел Работа ученицы 6 класса МКОУ «Камышовская ООШ» Ланциновой Айсы Руководитель Горяева Зоя Эрднигоряевна, учитель математики с. Камышово, 2013г

Пример нахождения НОД чисел 50, 75 и 325. 1) Разложим числа 50, 75 и 325 на простые множители. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙ 13 2) Из множителей входящих в разложение одного из этих чисел, вычеркнем те, которые не входят в разложение других. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙13 3) Найдём произведение оставшихся множителей 5 ∙ 5 = 25 Ответ: НОД (50, 75 и 325)= 25 Наибольшее натуральное число, на которое делятся без остатка числа a и b называют наибольшим общим делителем этих чисел.

Пример нахождения НОК чисел 72, 99 и 117. 1) Разложим на простые множители числа 72, 99 и 117. 72 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 99 = 3 ∙ 3 ∙ 11 117 = 3 ∙ 3 ∙13 2) Выписать множители, входящих в разложение одного из чисел 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 и добавить к ним недостающие множители остальных чисел. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13 3)Найдите произведение получившихся множителей. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13= 10296 Ответ: НОК (72, 99 и 117) = 10296 Наименьшим общим кратным натуральных чисел a и b называют наименьшее натуральное число, которое кратно a и b .

Лист картона имеет форму прямоугольника, длина которого 48 см., а ширина 40 см. Этот лист надо разрезать без отходов на равные квадраты. Какие наибольшие квадраты можно получить из этого листа и сколько? Решение: 1) S = a ∙ b – площадь прямоугольника. S= 48 ∙ 40 = 1960 см ² . – площадь картона. 2) a – сторона квадрата 48: a – число квадратов, которое можно уложить по длине картона. 40: а – число квадратов, которое можно уложить по ширине картона. 3) НОД (40 и 48) = 8(см) – сторона квадрата. 4) S = a² – площадь одного квадрата. S = 8² = 64 (см ² .) – площадь одного квадрата. 5) 1960: 64 = 30 (количество квадратов). Ответ: 30 квадратов со стороной 8 см каждый. Задачи на НОД

Камин в комнате необходимо выложить отделочной плиткой в форме квадрата. Сколько плиток понадобится для камина размером 195 ͯ 156 см и каковы наибольшие размеры плитки? Решение: 1) S = 196 ͯ 156 = 30420 (см ²) – S поверхности камина. 2) НОД (195 и 156) = 39 (см) – сторона плитки. 3) S = a² = 39² = 1521 (см ²) – площадь 1 плитки. 4) 30420: = 20 (штук). Ответ: 20 плиток размером 39 ͯ 39 (см). Задачи на НОД

Садовый участок размером 54 ͯ 48 м по периметру необходимо оградить забором, для этого через равные промежутки надо поставить бетонные столбы. Сколько столбов необходимо привезти для участка, и на каком максимальном расстоянии друг от друга будут стоять столбы? Решение: 1) P = 2(a + b) – периметр участка. P = 2(54 + 48) = 204 м. 2) НОД (54 и 48) = 6 (м) – расстояние между столбами. 3) 204: 6 = 34 (столба). Ответ: 34 столба, на расстоянии 6 м. Задачи на НОД

Из 210 бордовых, 126 белых, 294 красных роз собрали букеты, причём в каждом букете количество роз одного цвета поровну. Какое наибольшее количество букетов сделали из этих роз и сколько роз каждого цвета в одном букете? Решение: 1) НОД (210, 126 и 294) = 42 (букета). 2) 210: 42 = 5 (бордовых роз). 3) 126: 42 = 3 (белых роз). 4) 294: 42 = 7 (красных роз). Ответ: 42 букета: 5 бордовых, 3 белых, 7 красных роз в каждом букете. Задачи на НОД

Таня и Маша купили одинаковое число почтовых наборов. Таня заплатила 90 руб., а Маша на 5 руб. больше. Сколько стоит один набор? Сколько наборов купила каждая? Решение: 1) 90 + 5 = 95 (руб.) заплатила Маша. 2) НОД (90 и 95) = 5 (руб.) – цена 1 набора. 3) 980: 5 = 18 (наборов) – купила Таня. 4) 95: 5 = 19 (наборов) – купила Маша. Ответ: 5 рублей, 18 наборов, 19 наборов. Задачи на НОД

В портовом городе начинаются три туристских теплоходных рейса, первый из которых длится 15 суток, второй – 20 и третий – 12 суток. Вернувшись в порт, теплоходы в этот же день снова отправляются в рейс. Сегодня из порта вышли теплоходы по всем трём маршрутам. Через сколько суток они впервые снова вместе уйдут в плавание? Какое количество рейсов сделает каждый теплоход? Решение: 1) НОК (15,20 и 12) = 60 (суток) – время встречи. 2) 60: 15 = 4 (рейса) – 1 теплоход. 3) 60: 20 = 3 (рейса) – 2 теплоход. 4) 60: 12 = 5 (рейсов) – 3 теплоход. Ответ: 60 суток, 4 рейса, 3 рейса, 5 рейсов. Задачи на НОК

Маша для Медведя купила в магазине яйца. По дороге в лес она сообразила, что число яиц делится на 2,3,5,10 и 15. Сколько яиц купила Маша? Решение: НОК (2;3;5;10;15) = 30 (яиц) Ответ: Маша купила 30 яиц. Задачи на НОК

Требуется изготовить ящик с квадратным дном для укладки коробок размером 16 ͯ 20 см. Какова должна быть наименьшая длина стороны квадратного дна, чтобы уместить коробки в ящик вплотную? Решение: 1) НОК (16 и 20) = 80 (коробок). 2) S = a ∙ b – площадь 1 коробки. S = 16 ∙ 20 = 320 (см ²) – площадь дна 1 коробки. 3) 320 ∙ 80 = 25600 (см ²) – площадь квадратного дна. 4) S = а² = а ∙ а 25600 = 160 ∙ 160 – размеры ящика. Ответ: 160 см- сторона квадратного дна. Задачи на НОК

Вдоль дороги от пункта К стоят столбы электролинии через каждые 45 м. Эти столбы решили заменить другими, поставив их на расстоянии 60 м друг от друга. Сколько столбов было и сколько будут стоять? Решение: 1) НОК (45 и 60) = 180. 2) 180: 45 = 4 –было столбов. 3) 180: 60 = 3 – стало столбов. Ответ: 4 столба, 3 столба. Задачи на НОК

Сколько солдат маршируют на плацу, если они будут маршировать строем по 12 человек в шеренге и перестраиваться в колонну по 18 человек в шеренге? Решение: 1)НОК (12 и 18) = 36 (человек) – маршируют. Ответ: 36 человек. Задачи на НОК

Чтобы найти наименьшее общее кратное (НОК) и наибольший общий делитель (НОД) двух чисел воспользуйтесь нашим онлайн калькулятором:

Введите числа: и
НОК:
НОД:

Определить

Просто введите числа и получите результат.

Как найти НОК двух чисел

Наименьшее общее кратное (НОК) двух или нескольких чисел – это самое маленькое число, которое можно разделить на каждое из этих чисел без остатка.

Для того чтобы найти наименьшее общее кратное (НОК) двух чисел можно воспользоваться следующим алгоритмом (5 класс):

  1. Оба числа (сначала наибольшее число).
  2. Сравним множители большего числа с множителями меньшего. Выделим все множители меньшего числа, которых нет у большего.
  3. Добавим выделенные множители меньшего числа к множителям большего.
  4. Найдём НОК, перемножив ряд множителей, полученных в пункте 3.

Пример

Для примера определим НОК чисел 8 и 22 .

1) Раскладываем на простые множители:

2) Выделим все множители 8-ми, которых нет у 22-х:

8 = 2⋅2 2

3) Добавим выделенные множители 8-ми к множителям 22-х:

НОК (8; 22) = 2 · 11 · 2 · 2

4) Вычисляем НОК:

НОК (8; 22) = 2 · 11 · 2 · 2 = 88

Как найти НОД двух чисел

Наибольший общий делитель (НОД) двух или нескольких чисел – это наибольшее натуральное целое число, на которое эти числа можно разделить без остатка.

Чтобы найти наибольший общий делитель (НОД) двух чисел, для начала необходимо разложить их на простые множители. Затем нужно выделить общие множители, которые имеются и у первого числа и у второго. Перемножаем их – это и будет НОД. Чтобы лучше понять алгоритм рассмотрим пример:

Пример

Для примера определим НОД чисел 20 и 30 .

20 = 2 ⋅2⋅5

30 = 2 ⋅3⋅5

НОД(20,30) = 2⋅5 = 10

Решим задачу. У нас есть два типа печенья. Одни шоколадные, а другие простые. Шоколадных 48 штук, а простых 36. Необходимо составить из этого печенья максимально возможное число подарков, при этом надо использовать их все.

Для начала выпишем все делители каждого из этих двух чисел, так как оба эти числа должны делиться на количество подарков.

Получаем,

  • 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
  • 36: 1, 2, 3, 4, 6, 9, 12, 18, 36.

Найдем среди делителей общие, которые есть как у первого, так и у второго числа.

Общими делителями будут: 1, 2, 3, 4, 6, 12.

Наибольшим из всех общих делителей является число 12. Это число называют наибольшим общим делителем чисел 36 и 48.

Исходя из полученного результата, можем заключить, что из всего печенья можно составить 12 подарков. В одном таком подарке будет 4 шоколадных печенья и 3 обычных печенья.

Определение наибольшего общего делителя

  • Наибольшее натуральное число, на которое делятся без остатка два числа a и b, называют наибольшим общим делителем этих чисел.

Иногда для сокращения записи используют аббревиатуру НОД.

Некоторые пары чисел имеют в качестве наибольшего общего делителя единицу. Такие числа называют взаимно простыми числами. Например, числа 24 и 35. Имеют НОД =1.

Как найти наибольший общий делитель

Для того чтобы найти наибольший общий делитель не обязательно выписывать все делители данных чисел.

Можно поступить иначе. Сначала разложить на простые множители оба числа.

  • 48 = 2*2*2*2*3,
  • 36 = 2*2*3*3.

Теперь из множителей, которые входят в разложение первого числа, вычеркнем все те, которые не входят в разложение второго числа. В нашем случае это две двойки.

  • 48 = 2*2*2*2*3 ,
  • 36 = 2*2*3 *3.

Останутся множители 2, 2 и 3. Их произведение равно 12. Это число и будет являться наибольшим общим делителем чисел 48 и 36.

Это правило можно распространить на случай с тремя, четырьмя и т.д. числами.

Общая схема нахождения наибольшего общего делителя

  • 1. Разложить числа на простые множители.
  • 2. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел.
  • 3. Посчитать произведение оставшихся множителей.

Определение. Наибольшее натуральное число, на которое делятся без остатка числа а и b, называют наибольшим общим делителем (НОД) этих чисел.

Найдём наибольший общий делитель чисел 24 и 35.
Делителями 24 будут числа 1, 2, 3, 4, 6, 8, 12, 24, а делителями 35 будут числа 1, 5, 7, 35.
Видим, что числа 24 и 35 имеют только один общий делитель - число 1. Такие числа называют взаимно простыми .

Определение. Натуральные числа называют взаимно простыми , если их наибольший общий делитель (НОД) равен 1.

Наибольший общий делитель (НОД) можно найти, не выписывая всех делителей данных чисел.

Разложим на множители числа 48 и 36, получим:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Из множителей, входящих в разложение первого из этих чисел, вычеркнем те, которые не входят в разложение второго числа (т. е. две двойки).
Остаются множители 2 * 2 * 3. Их произведение равно 12. Это число и является наибольшим общим делителем чисел 48 и 36. Так же находят наибольший общий делитель трёх и более чисел.

Чтобы найти наибольший общий делитель

2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;
3) найти произ ведение оставшихся множителей.

Если все данные числа делятся на одно из них, то это число и является наибольшим общим делителем данных чисел.
Например, наибольшим общим делителем чисел 15, 45, 75 и 180 будет число 15, так как на него делятся все остальные числа: 45, 75 и 180.

Наименьшее общее кратное (НОК)

Определение. Наименьшим общим кратным (НОК) натуральных чисел а и b называют наименьшее натуральное число, которое кратно и a и b. Наименьшее общее кратное (НОК) чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на простые множители: 75 = 3 * 5 * 5, а 60 = 2 * 2 * 3 * 5.
Выпишем множители, входящие в разложение первого из этих чисел, и добавим к ним недостающие множители 2 и 2 из разложения второго числа (т.е. объединяем множители).
Получаем пять множителей 2 * 2 * 3 * 5 * 5, произведение которых равно 300. Это число является наименьшим общим кратным чисел 75 и 60.

Так же находят наименьшее общее кратное для трёх и более чисел.

Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) выписать множители, входящие в разложение одного из чисел;
3) добавить к ним недостающие множители из разложений остальных чисел;
4) найти произведение получившихся множителей.

Заметим, что если одно из данных чисел делится на все остальные числа, то это число и является наименьшим общим кратным данных чисел.
Например, наименьшим общим кратным чисел 12, 15, 20 и 60 будет число 60, так как оно делится на все данные числа.

Пифагор (VI в. до н. э.) и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа), они называли совершенным числом. Например, числа 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) совершенные. Следующие совершенные числа - 496, 8128, 33 550 336. Пифагорейцы знали только первые три совершенных числа. Четвёртое - 8128 - стало известно в I в. н. э. Пятое - 33 550 336 - было найдено в XV в. К 1983 г. было известно уже 27 совершенных чисел. Но до сих пор учёные не знают, есть ли нечётные совершенные числа, есть ли самое большое совершенное число.
Интерес древних математиков к простым числам связан с тем, что любое число либо простое, либо может быть представлено в виде произведения простых чисел, т. е. простые числа - это как бы кирпичики, из которых строятся остальные натуральные числа.
Вы, наверное, обратили внимание, что простые числа в ряду натуральных чисел встречаются неравномерно - в одних частях ряда их больше, в других - меньше. Но чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа. Возникает вопрос: существует ли последнее (самое большое) простое число? Древнегреческий математик Евклид (III в. до н. э.) в своей книге «начала», бывшей на протяжении двух тысяч лет основным учебником математики, доказал, что простых чисел бесконечно много, т. е. за каждым простым числом есть ещё большее простое число.
Для отыскания простых чисел другой греческий математик того же времени Эратосфен придумал такой способ. Он записывал все числа от 1 до какого-то числа, а потом вычёркивал единицу, которая не является ни простым, ни составным числом, затем вычёркивал через одно все числа, идущие после 2 (числа, кратные 2, т. е. 4, 6, 8 и т. д.). Первым оставшимся числом после 2 было 3. Далее вычёркивались через два все числа, идущие после 3 (числа, кратные 3, т. е. 6, 9, 12 и т. д.). в конце концов оставались невычеркнутыми только простые числа.

Ключевые слова конспекта: Натуральные числа. Арифметические действия над натуральными числами. Делимость натуральных чисел. Простые и составные числа. Разложение натурального числа на простые множители. Признаки делимости на 2, 3, 5, 9, 4, 25, 10, 11. Наибольший общий делитель (НОД), а также наименьшее общее кратное (НОК). Деление с остатком.

Натуральные числа — это числа, которые используются для счета предметов - 1, 2, 3, 4 , … Но число 0 не является натуральным!

Множество натуральных чисел обозначают N . Запись «3 ∈ N» означает, что число три принадлежит множеству натуральных чисел, а запись «0 ∉ N» означает, что число нуль не принадлежит этому множеству.

Десятичная система счисления - позиционная система счисления по основанию 10 .

Арифметические действия над натуральными числами

Для натуральных чисел определены следующие действия: сложение, вычитание, умножение, деление, возведение в степень, извлечение корня. Первые четыре действия являются арифметическими .

Пусть a, b и c - натуральные числа, тогда

1. СЛОЖЕНИЕ. Слагаемое + Слагаемое = Сумма

Свойства сложения
1. Переместительное а + b = b + а.
2. Сочетательное а + (b + с) = (а + b) + с.
3. а + 0= 0 + а = а.

2. ВЫЧИТАНИЕ. Уменьшаемое — Вычитаемое = Разность

Свойства вычитания
1. Вычитание суммы из числа а — (b + с) = а — b — с.
2. Вычитание числа из суммы (а + b) — с = а + (b — с); (а + b) — с = (а — с) + b.
3. а — 0 = а.
4. а — а = 0.

3. УМНОЖЕНИЕ. Множитель * Множитель = Произведение

Свойства умножения
1. Переместительное а*b = b*а.
2. Сочетательное а*(b*с) = (а*b)*с.
3. 1 * а = а * 1 = а.
4. 0 * а = а * 0 = 0.
5. Распределительное (а + b) * с = ас + bс; (а — b) * с = ас — bс.

4. ДЕЛЕНИЕ. Делимое: Делитель = Частное

Свойства деления
1. а: 1 = а.
2. а: а = 1. Делить на ноль нельзя!
3. 0: а= 0.

Порядок действий

1. Прежде всего действия в скобках.
2. Потом умножение, деление.
3. И только в конце сложение, вычитание.

Делимость натуральных чисел. Простые и составные числа.

Делителем натурального числа а называется натуральное число, на которое а делится без остатка. Число 1 является делителем любого натурального числа.

Натуральное число называется простым , если оно имеет только два делителя: единицу и само это число. Например, числа 2, 3, 11, 23 - простые числа.

Число, имеющее более двух делителей, называется составным . Например, числа 4, 8, 15, 27 - составные числа.

Признак делимости произведения нескольких чисел: если хотя бы один из множителей делится на некоторое число, то и произведение делится на это число. Произведение 24 15 77 делится на 12 , поскольку множитель этого числа 24 делится на 12 .

Признак делимости суммы (разности) чисел: если каждое слагаемое делится на некоторое число, то и вся сумма делится на это число. Если а: b и c: b , то (а + c) : b . А если а: b , а c не делится на b , то a + c не делится на число b .

Если а: c и c: b , то а: b . Исходя из того, что 72: 24 и 24: 12, делаем вывод, что 72: 12.

Представление числа в виде произведения степеней простых чисел называют разложением числа на простые множители .

Основная теорема арифметики : любое натуральное число (кроме 1 ) либо является простым , либо его можно разложить на простые множители только одним способом.

При разложении числа на простые множители используют признаки делимости и применяют запись «столбиком» В таком случае делитель располагается справа от вертикальной черты, а частное записывают под делимым.

Например, задание: разложить на простые множители число 330 . Решение:

Признаки делимости на 2, 5, 3, 9, 10, 4, 25 и 11.

Существуют признаки делимости на 6, 15, 45 и т. д., то есть на числа, произведение которых можно разложить на множители 2, 3, 5, 9 и 10 .

Наибольший общий делитель

Наибольшее натуральное число, на которое делится нацело каждое из двух данных натуральных чисел, называется наибольшим общим делителем этих чисел (НОД ). Например, НОД (10; 25) = 5; а НОД (18; 24) = 6; НОД (7; 21) = 1.

Если наибольший общий делитель двух натуральных чисел равен 1 , то эти числа называются взаимно простыми .

Алгоритм нахождения наибольшего общего делителя (НОД)

НОД часто используется в задачах. Например, между учениками одного класса поделили поровну 155 тетрадей и 62 ручки. Сколько учеников в этом классе?

Решение: Нахождение количества учащихся этого класса сводится к нахождению наибольшего общего делителя чисел 155 и 62, поскольку тетради и ручки поделили поровну. 155 = 5 31; 62 = 2 31. НОД (155; 62) = 31 .

Ответ: 31 ученик в классе.

Наименьшее общее кратное

Кратным натурального числа а называется натуральное число, которое делится на а без остатка. Например, число 8 имеет кратные: 8, 16, 24, 32 , … Любое натуральное число имеет бесконечно много кратных.

Наименьшее общее кратное (НОК) называется наименьшее натуральное число, которое кратно этим числам.

Алгоритм нахождения наименьшего общего кратного (НОК ):

НОК также часто применяется в задачах. Например, два велосипедиста одновременно стартовали по велотреку в одном направлении. Один делает круг за 1 мин, а другой - за 45 с. Через какое наименьшее количество минут после начала движения они встретятся на старте?

Решение: Количество минут, через которое они снова встретятся на старте, должно делиться на 1 мин , а также на 45 с . В 1 мин = 60 с. То есть необходимо найти НОК (45; 60).
45 = 3 2 5;
60 = 2 2 3 5.
НОК (45; 60) = 2 2 3 2 5 = 4 9 5 = 180 .
В результате получается, что велосипедисты встретятся на старте через 180 с = 3 мин.

Ответ: 3 мин.

Деление с остатком

Если натуральное число а не делится нацело на натуральное число b , то можно выполнить деление с остатком . В таком случае полученное частное называется неполным . Справедливо равенство:

а = b n + r,

где а - делимое, b - делитель, n - неполное частное, r - остаток. Например, пусть делимое равно 243 , делитель - 4 , тогда 243: 4 = 60 (остаток 3) . То есть а = 243, b = 4, n = 60, r = 3, тогда 243 = 60 4 + 3 .

Числа, которые делятся на 2 без остатка, называются четными : а = 2n , n N.

Остальные числа называются нечетными : b = 2n + 1 , n N.

Это конспект по теме «Натуральные числа. Признаки делимости» . Чтобы продолжить, выберите дальнейшие действия:

  • Перейти к следующему конспекту: