Матричный способ решения систем линейных уравнений примеры. Обратная матрица. Решение матричных уравнений. Примеры решения системы линейных уравнений матричным методом

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

Основные понятия.

Определение 1 . Системой m линейных уравнений с n неизвестными называется система вида:

где и - числа.

Определение 2 . Решением системы (I) называется такой набор неизвестных , при котором каждое уравнение этой системы обращается в тождество.

Определение 3 . Система (I) называется совместной , если она имеет хотя бы одно решение и несовместной , если она не имеет решений. Совместная система называется определенной , если она имеет единственное решение, и неопределенной в противном случае.

Определение 4 . Уравнение вида

называется нулевым , а уравнение вида

называется несовместным . Очевидно, что система уравнений, содержащая несовместное уравнение, является несовместной.

Определение 5 . Две системы линейных уравнений называются равносильными , если каждое решение одной системы служит решением другой и, наоборот, всякое решение второй системы является решением первой.

Матричная запись системы линейных уравнений.

Рассмотрим систему (I) (см. §1).

Обозначим:

Матрица коэффициентов при неизвестных

,

Матрица – столбец свободных членов

Матрица – столбец неизвестных

.

Определение 1. Матрица называется основной матрицей системы (I), а матрица - расширенной матрицей системы (I).

По определению равенства матриц системе (I) соответствует матричное равенство:

.

Правую часть этого равенства по определению произведения матриц (см. определение 3 § 5 главы 1 ) можно разложить на множители:

, т.е.

Равенство (2) называется матричной записью системы (I) .

Решение системы линейных уравнений методом Крамера.

Пусть в системе (I) (см. §1) m=n , т.е. число уравнений равно числу неизвестных, и основная матрица системы невырожденная, т.е. . Тогда система (I) из §1 имеет единственное решение

где Δ = det A называется главным определителем системы (I), Δ i получается из определителя Δ заменой i -го столбца на столбец из свободных членов системы (I).

Пример.Решить систему методом Крамера:

.

По формулам (3) .

Вычисляем определители системы:

,

,

,

.

Чтобы получить определитель , мы заменили в определителе первый столбец на столбец из свободных членов; заменяя в определителе 2-ой столбец на столбец из свободных членов, получаем ; аналогичным образом, заменяя в определителе 3-ий столбец на столбец из свободных членов, получаем . Решение системы:

Решение систем линейных уравнений с помощью обратной матрицы.

Пусть в системе(I) (см. §1) m=n и основная матрица системы невырожденная . Запишем систему (I) в матричном виде (см. §2 ):

т.к. матрица A невырожденная, то она имеет обратную матрицу (см. теорему 1 §6 главы 1 ). Умножим обе части равенства (2) на матрицу , тогда

. (3)

По определению обратной матрицы . Из равенства (3) имеем

Решить систему с помощью обратной матрицы

.

Обозначим

; ; .

В примере (§ 3)мы вычислили определитель , следовательно, матрица A имеет обратную матрицу . Тогда в силу (4) , т.е.

. (5)

Найдем матрицу (см. §6 главы 1 )

, , ,

, , ,

, , ,

,

.

Метод Гаусса.

Пусть задана система линейных уравнений:

. (I)

Требуется найти все решения системы (I) или убедиться в том, что система несовместна.

Определение 1. Назовем элементарным преобразованием системы (I) любое из трёх действий:

1) вычёркивание нулевого уравнения;

2) прибавление к обеим частям уравнения соответствующих частей другого уравнения, умноженных на число l;

3) перемена местами слагаемых в уравнениях системы так, чтобы неизвестные с одинаковыми номерами во всех уравнениях занимали одинаковые места, т.е. если, например, в 1-ом уравнении мы поменяли 2-ое и 3-е слагаемые, тогда то же самое необходимо сделать во всех уравнениях системы.

Метод Гаусса состоит в том, что система (I) с помощью элементарных преобразований приводится к равносильной системе, решение которой находится непосредственно или устанавливается её неразрешимость.

Как было описано в §2 система (I) однозначно определяется своей расширенной матрицей и любое элементарное преобразование системы (I) соответствует элементарному преобразованию расширенной матрицы:

.

Преобразование 1) соответствует вычёркиванию нулевой строки в матрице , преобразование 2) равносильно прибавлению к соответствующей строке матрицы другой её строки, умноженной на число l, преобразование 3) эквивалентно перестановке столбцов в матрице .

Легко видеть, что, наоборот, каждому элементарному преобразованию матрицы соответствует элементарное преобразование системы (I). В силу сказанного, вместо операций с системой (I) мы будем работать с расширенной матрицей этой системы.

В матрице 1-ый столбец состоит из коэффициентов при х 1 , 2-ой столбец - из коэффициентов при х 2 и т.д. В случае перестановки столбцов следует учитывать, что это условие нарушается. Например, если мы поменяем 1-ый и 2-ой столбцы местами, то теперь в 1-ом столбце будут коэффициенты при х 2 , а во 2-ом столбце - коэффициенты при х 1 .

Будем решать систему (I) методом Гаусса.

1. Вычеркнем в матрице все нулевые строки, если такие имеются (т.е. вычеркнем в системе (I) все нулевые уравнения).

2. Проверим, есть ли среди строк матрицы строка, в которой все элементы, кроме последнего, равны нулю (назовём такую строку несовместной). Очевидно, что такой строке соответствует несовместное уравнение в системе (I) , следовательно, система (I) решений не имеет и на этом процесс заканчивается.

3. Пусть матрица не содержит несовместных строк (система (I) не содержит несовместных уравнений). Если a 11 =0 , то находим в 1-ой строке какой-нибудь элемент (кроме последнего) отличный от нуля и переставляем столбцы так, чтобы в 1-ой строке на 1-ом месте не было нуля. Будем теперь считать, что (т.е. поменяем местами соответствующие слагаемые в уравнениях системы (I)).

4. Умножим 1-ую строку на и сложим результат со 2-ой строкой, затем умножим 1-ую строку на и сложим результат с 3-ей строкой и т.д. Очевидно, что этот процесс эквивалентен исключению неизвестного x 1 из всех уравнений системы (I), кроме 1-ого. В новой матрице получаем нули в 1-ом столбце под элементом a 11 :

.

5. Вычеркнем в матрице все нулевые строки, если они есть, проверим, нет ли несовместной строки (если она имеется, то система несовместна и на этом решение заканчивается). Проверим, будет ли a 22 / =0 , если да, то находим во 2-ой строке элемент, отличный от нуля и переставляем столбцы так, чтобы . Далее умножаем элементы 2-ой строки на и складываем с соответствующими элементами 3-ей строки, затем - элементы 2-ой строки на и складываем с соответствующими элементами 4-ой строки и т.д., пока не получим нули под a 22 /

.

Произведенные действия эквивалентны исключению неизвестного х 2 из всех уравнений системы (I), кроме 1-ого и 2-ого. Так как число строк конечно, поэтому через конечное число шагов мы получим, что либо система несовместна, либо мы придём к ступенчатой матрице (см. определение 2 §7 главы 1 ) :

,

Выпишем систему уравнений, соответствующую матрице . Эта система равносильна системе (I)

.

Из последнего уравнения выражаем ; подставляем в предыдущее уравнение, находим и т.д., пока не получим .

Замечание 1. Таким образом, при решении системы (I) методом Гаусса мы приходим к одному из следующих случаев.

1. Система (I) несовместна.

2. Система (I) имеет единственное решение, если в матрице число строк равно числу неизвестных ().

3. Система (I) имеет бесчисленное множество решений, если число строк в матрице меньше числа неизвестных ().

Отсюда имеет место следующая теорема.

Теорема. Система линейных уравнений либо несовместна, либо имеет единственное решение, либо – бесконечное множество решений.

Примеры. Решить систему уравнений методом Гаусса или доказать ее несовместность:

а) ;

б) ;

в) .

а) Перепишем заданную систему в виде:

.

Мы поменяли местами 1-ое и 2-ое уравнение исходной системы, чтобы упростить вычисления (вместо дробей мы с помощью такой перестановки будем оперировать только целыми числами).

Составляем расширенную матрицу:

.

Нулевых строк нет; несовместных строк нет, ; исключим 1-ое неизвестное из всех уравнений системы, кроме 1-го. Для этого умножим элементы 1-ой строки матрицы на «-2» и сложим с соответствующими элементами 2-ой строки, что равносильно умножению 1-го уравнения на «-2» и сложению со 2-ым уравнением. Затем умножим элементы 1-ой строки на «-3» и сложим с соответствующими элементами третьей строки, т.е. умножим 2-ое уравнение заданной системы на «-3» и сложим с 3-им уравнением. Получим

.

Матрице соответствует система уравнений

Назначение сервиса . С помощью данного онлайн-калькулятора вычисляются неизвестные {x 1 , x 2 , ..., x n } в системе уравнений. Решение осуществляется методом обратной матрицы . При этом:
  • вычисляется определитель матрицы A ;
  • через алгебраические дополнения находится обратная матрица A -1 ;
  • осуществляется создание шаблона решения в Excel ;
Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word .

Инструкция . Для получения решения методом обратной матрицы необходимо задать размерность матрицы. Далее в новом диалоговом окне заполнить матрицу A и вектор результатов B .

Напомним, что решением системы линейных уравнений называется всякая совокупность чисел {x 1 , x 2 , ..., x n } , подстановка которых в эту систему вместо соответствующих неизвестных обращает каждое уравнение системы в тождество.
Система линейных алгебраических уравнений обычно записывается как (для 3-х переменных): См. также Решение матричных уравнений .

Алгоритм решения

  1. Вычисляется определитель матрицы A . Если определитель равен нулю, то конец решения. Система имеет бесконечное множество решений.
  2. При определителе отличном от нуля, через алгебраические дополнения находится обратная матрица A -1 .
  3. Вектор решения X ={x 1 , x 2 , ..., x n } получается умножением обратной матрицы на вектор результата B .

Пример №1 . Найти решение системы матричным методом. Запишем матрицу в виде:


Алгебраические дополнения.
A 1,1 = (-1) 1+1
1 2
0 -2
∆ 1,1 = (1 (-2)-0 2) = -2

A 1,2 = (-1) 1+2
3 2
1 -2
∆ 1,2 = -(3 (-2)-1 2) = 8

A 1,3 = (-1) 1+3
3 1
1 0
∆ 1,3 = (3 0-1 1) = -1

A 2,1 = (-1) 2+1
-2 1
0 -2
∆ 2,1 = -(-2 (-2)-0 1) = -4

A 2,2 = (-1) 2+2
2 1
1 -2
∆ 2,2 = (2 (-2)-1 1) = -5

A 2,3 = (-1) 2+3
2 -2
1 0
∆ 2,3 = -(2 0-1 (-2)) = -2

A 3,1 = (-1) 3+1
-2 1
1 2
∆ 3,1 = (-2 2-1 1) = -5

A 3,2 = (-1) 3+2
2 1
3 2
∆ 3,2 = -(2 2-3 1) = -1

·
3
-2
-1

X T = (1,0,1)
x 1 = -21 / -21 = 1
x 2 = 0 / -21 = 0
x 3 = -21 / -21 = 1
Проверка:
2 1+3 0+1 1 = 3
-2 1+1 0+0 1 = -2
1 1+2 0+-2 1 = -1

Пример №2 . Решить СЛАУ методом обратной матрицы.
2 x 1 + 3x 2 + 3x 3 + x 4 = 1
3 x 1 + 5x 2 + 3x 3 + 2x 4 = 2
5 x 1 + 7x 2 + 6x 3 + 2x 4 = 3
4 x 1 + 4x 2 + 3x 3 + x 4 = 4

Запишем матрицу в виде:

Вектор B:
B T = (1,2,3,4)
Главный определитель
Минор для (1,1):

= 5 (6 1-3 2)-7 (3 1-3 2)+4 (3 2-6 2) = -3
Минор для (2,1):

= 3 (6 1-3 2)-7 (3 1-3 1)+4 (3 2-6 1) = 0
Минор для (3,1):

= 3 (3 1-3 2)-5 (3 1-3 1)+4 (3 2-3 1) = 3
Минор для (4,1):

= 3 (3 2-6 2)-5 (3 2-6 1)+7 (3 2-3 1) = 3
Определитель минора
∆ = 2 (-3)-3 0+5 3-4 3 = -3

Пример №4 . Записать систему уравнений в матричной форме и решить с помощью обратной матрицы.
Решение :xls

Пример №5 . Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера ; 2) записать систему в матричной форме и решить ее средствами матричного исчисления.
Методические рекомендации . После решения методом Крамера, найдите кнопку "Решение методом обратной матрицы для исходных данных". Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется.
Решение . Обозначим через А - матрицу коэффициентов при неизвестных; X - матрицу-столбец неизвестных; B - матрицу-столбец свободных членов:

-1 3 0
3 -2 1
2 1 -1
Вектор B:
B T =(4,-3,-3)
С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B.
Если матрица А - невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А -1 . Умножив обе части уравнения на А -1 , получим: А -1 *А*Х = А -1 *B, А -1 *А=Е.
Это равенство называется матричной записью решения системы линейных уравнений . Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А -1 .
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆=-1 (-2 (-1)-1 1)-3 (3 (-1)-1 0)+2 (3 1-(-2 0))=14
Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Пусть имеем невырожденную матрицу А:
Вычисляем алгебраические дополнения.
A 1,1 =(-1) 1+1
-2 1
1 -1
∆ 1,1 =(-2 (-1)-1 1)=1
A 1,2 =(-1) 1+2
3 1
0 -1
∆ 1,2 =-(3 (-1)-0 1)=3
A 1,3 =(-1) 1+3
3 -2
0 1
∆ 1,3 =(3 1-0 (-2))=3
A 2,1 =(-1) 2+1
3 2
1 -1
∆ 2,1 =-(3 (-1)-1 2)=5
A 2,2 =(-1) 2+2
-1 2
0 -1
∆ 2,2 =(-1 (-1)-0 2)=1
A 2,3 =(-1) 2+3
-1 3
0 1
∆ 2,3 =-(-1 1-0 3)=1
A 3,1 =(-1) 3+1
3 2
-2 1
∆ 3,1 =(3 1-(-2 2))=7
·
4
-3
-3
X=1/14
-3))
Главный определитель
∆=4 (0 1-3 (-2))-2 (1 1-3 (-1))+0 (1 (-2)-0 (-1))=16
Транспонированная матрица
∆ 1,1 =(0 1-(-2 3))=6
A 1,2 =(-1) 1+2
1 3
-1 1
∆ 1,2 =-(1 1-(-1 3))=-4
A 1,3 =(-1) 1+3
1 0
-1 -2
∆ 1,3 =(1 (-2)-(-1 0))=-2
A 2,1 =(-1) 2+1
2 0
-2 1
∆ 2,1 =-(2 1-(-2 0))=-2
A 2,2 =(-1) 2+2
4 0
-1 1
∆ 2,2 =(4 1-(-1 0))=4
A 2,3 =(-1) 2+3
4 2
-1 -2
∆ 2,3 =-(4 (-2)-(-1 2))=6
A 3,1 =(-1) 3+1
2 0
0 3
∆ 3,1 =(2 3-0 0)=6
A 3,2 =(-1) 3+2
4 0
1 3
∆ 3,2 =-(4 3-1 0)=-12
A 3,3 =(-1) 3+3 1/16
6 -4 -2
-2 4 6
6 -12 -2
E=A*A -1 =
(4 6)+(1 (-2))+(-1 6) (4 (-4))+(1 4)+(-1 (-12)) (4 (-2))+(1 6)+(-1 (-2))
(2 6)+(0 (-2))+(-2 6) (2 (-4))+(0 4)+(-2 (-12)) (2 (-2))+(0 6)+(-2 (-2))
(0 6)+(3 (-2))+(1 6) (0 (-4))+(3 4)+(1 (-12)) (0 (-2))+(3 6)+(1 (-2))

=1/16
16 0 0
0 16 0
0 0 16
A*A -1 =
1 0 0
0 1 0
0 0 1

Пример №7 . Решение матричных уравнений.
Обозначим:

A =
3 0 5
2 1 4
-1 3 0
Алгебраические дополнения
A 1,1 = (-1) 1+1
1 3
4 0
∆ 1,1 = (1*0 - 4*3) = -12
A 1,2 = (-1) 1+2
0 3
5 0
∆ 1,2 = -(0*0 - 5*3) = 15
A 1,3 = (-1) 1+3
0 1
5 4
∆ 1,3 = (0*4 - 5*1) = -5
A 2,1 = (-1) 2+1
2 -1
4 0
∆ 2,1 = -(2*0 - 4*(-1)) = -4
A 2,2 = (-1) 2+2
3 -1
5 0
∆ 2,2 = (3*0 - 5*(-1)) = 5
A 2,3 = (-1) 2+3
3 2
5 4
∆ 2,3 = -(3*4 - 5*2) = -2
A 3,1 = (-1) 3+1
2 -1
1 3
∆ 3,1 = (2*3 - 1*(-1)) = 7
· 1/-1
-12 15 -5
-4 5 -2
7 -9 3
= Вектор B:
B T =(31,13,10)

X T =(4.05,6.13,7.54)
x 1 = 158 / 39 =4.05
x 2 = 239 / 39 =6.13
x 3 = 294 / 39 =7.54
Проверка .
-2 4.05+-1 6.13+6 7.54=31
1 4.05+-1 6.13+2 7.54=13
2 4.05+4 6.13+-3 7.54=10

Пример №9 . Обозначим через А - матрицу коэффициентов при неизвестных; X - матрицу-столбец неизвестных; B - матрицу-столбец свободных членов:

-2 1 6
1 -1 2
2 4 -3
Вектор B:
B T =(31,13,10)

X T =(5.21,4.51,6.15)
x 1 = 276 / 53 =5.21
x 2 = 239 / 53 =4.51
x 3 = 326 / 53 =6.15
Проверка .
-2 5.21+1 4.51+6 6.15=31
1 5.21+-1 4.51+2 6.15=13
2 5.21+4 4.51+-3 6.15=10

Пример №10 . Решение матричных уравнений.
Обозначим:

Алгебраические дополнения
A 11 = (-1) 1+1 ·-3 = -3; A 12 = (-1) 1+2 ·3 = -3; A 21 = (-1) 2+1 ·1 = -1; A 22 = (-1) 2+2 ·2 = 2;
Обратная матрица A -1 .
· 1/-9
-3 -3
-1 2
=
1 -2
1 1
Ответ:
X =
1 -2
1 1

Метод обратной матрицы не представляет ничего сложного, если знать общие принципы работы с матричными уравнениями и, конечно, уметь производить элементарные алгебраические действия.

Решение системы уравнений методом обратной матрицы. Пример.

Удобнее всего постигать метод обратной матрицы на наглядном примере. Возьмем систему уравнений:

Первый шаг, который необходимо сделать для решения этой системы уравнений - найти определитель. Поэтому преобразим нашу систему уравнений в следующую матрицу:

И найдем нужный определитель:

Формула, использующаяся для решения матричных уравнений, выглядит следующим образом:

Таким образом, для вычисления Х нам необходимо определить значение матрицы А-1 и умножить его на b. В этом нам поможет другая формула:

Ат в данном случае будет транспонированной матрицей - то есть, той же самой, исходной, но записанной не строками, а столбцами.

Не следует забывать о том, что метод обратной матрицы , как и метод Крамера, подходит только для систем, в которых определитель больше или меньше нуля. Если же определитель равен нулю, нужно использовать метод Гаусса.

Следующий шаг - составление матрицы миноров, представляющей собой такую схему:

В итоге мы получили три матрицы - миноров, алгебраических дополнений и транспонированную матрицу алгебраических дополнений. Теперь можно переходить к собственно составлению обратной матрицы. Формулу мы уже знаем. Для нашего примера это будет выглядеть так.

Матричный способ решения систем линейных уравнений

Рассмотрим систему линейных уравнений следующего вида:

$\left\{\begin{array}{c} {a_{11} x_{1} +a_{12} x_{2} +...+a_{1n} x_{n} =b_{1} } \\ {a_{21} x_{1} +a_{22} x_{2} +...+a_{2n} x_{n} =b_{2} } \\ {...} \\ {a_{n1} x_{1} +a_{n2} x_{2} +...+a_{nn} x_{n} =b_{n} } \end{array}\right. .$

Числа $a_{ij} (i=1..n,j=1..n)$ - коэффициенты системы, числа $b_{i} (i=1..n)$ - свободные члены.

Определение 1

В случае, когда все свободные члены равны нулю, система называется однородной, в противном случае - неоднородной.

Каждой СЛАУ можно поставить в соответствие несколько матриц и записать систему в так называемом матричном виде.

Определение 2

Матрица коэффициентов системы называется матрицей системы и обозначается, как правило, буквой $A$.

Столбец свободных членов образует вектор-столбец, который, как правило, обозначается буквой $B$ и называется матрицей свободных членов.

Неизвестные переменные образуют вектор-столбец, который, как правило, обозначается буквой $X$ и называется матрицей неизвестных.

Описанные выше матрицы имеют вид:

$A=\left(\begin{array}{cccc} {a_{11} } & {a_{12} } & {...} & {a_{1n} } \\ {a_{21} } & {a_{22} } & {...} & {a_{2n} } \\ {...} & {...} & {...} & {...} \\ {a_{n1} } & {a_{n2} } & {...} & {a_{nn} } \end{array}\right),B=\left(\begin{array}{c} {b_{1} } \\ {b_{2} } \\ {...} \\ {b_{n} } \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {...} \\ {x_{n} } \end{array}\right).$

Используя матрицы, СЛАУ можно переписать в виде $A\cdot X=B$. Такую запись часто называют матричным уравнением.

Вообще говоря, в матричном виде записать можно любую СЛАУ.

Примеры решения системы с помощью обратной матрицы

Пример 1

Дана СЛАУ: $\left\{\begin{array}{c} {3x_{1} -2x_{2} +x_{3} -x_{4} =3} \\ {x_{1} -12x_{2} -x_{3} -x_{4} =7} \\ {2x_{1} -3x_{2} +x_{3} -3x_{4} =5} \end{array}\right. $. Записать систему в матричном виде.

Решение:

$A=\left(\begin{array}{cccc} {3} & {-2} & {1} & {-1} \\ {1} & {-12} & {-1} & {-1} \\ {2} & {-3} & {1} & {-3} \end{array}\right),B=\left(\begin{array}{c} {3} \\ {7} \\ {5} \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right).$

$\left(\begin{array}{cccc} {3} & {-2} & {1} & {-1} \\ {1} & {-12} & {-1} & {-1} \\ {2} & {-3} & {1} & {-3} \end{array}\right)\cdot \left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right)=\left(\begin{array}{c} {3} \\ {7} \\ {5} \end{array}\right)$

В случае, когда матрица системы является квадратной, СЛАУ можно решить уравнения матричным способом.

Имея матричное уравнение $A\cdot X=B$, можно выразить из него $X$ следующим способом:

$A^{-1} \cdot A\cdot X=A^{-1} \cdot B$

$A^{-1} \cdot A=E$ (свойство произведения матриц)

$E\cdot X=A^{-1} \cdot B$

$E\cdot X=X$ (свойство произведения матриц)

$X=A^{-1} \cdot B$

Алгоритм решения системы алгебраических уравнений с помощью обратной матрицы:

  • записать систему в матричном виде;
  • вычислить определитель матрицы системы;
  • если определитель матрицы системы отличен от нуля, то находим обратную матрицу;
  • решение системы вычисляем по формуле $X=A^{-1} \cdot B$.

Если матрица системы имеет определитель, не равный нулю, то данная система имеет единственное решение, которое можно найти матричным способом.

Если матрица системы имеет определитель, равный нулю, то данную систему нельзя решить матричным способом.

Пример 2

Дана СЛАУ: $\left\{\begin{array}{c} {x_{1} +3x_{3} =26} \\ {-x_{1} +2x_{2} +x_{3} =52} \\ {3x_{1} +2x_{2} =52} \end{array}\right. $. Решить СЛАУ методом обратной матрицы, если это возможно.

Решение:

$A=\left(\begin{array}{ccc} {1} & {0} & {3} \\ {-1} & {2} & {1} \\ {3} & {2} & {0} \end{array}\right),B=\left(\begin{array}{c} {26} \\ {52} \\ {52} \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right). $

Нахождение определителя матрицы системы:

$\begin{array}{l} {\det A=\left|\begin{array}{ccc} {1} & {0} & {3} \\ {-1} & {2} & {1} \\ {3} & {2} & {0} \end{array}\right|=1\cdot 2\cdot 0+0\cdot 1\cdot 3+2\cdot (-1)\cdot 3-3\cdot 2\cdot 3-2\cdot 1\cdot 1-0\cdot (-1)\cdot 0=0+0-6-18-2-0=-26\ne 0} \end{array}$ Так как определитель не равен нулю, то матрица системы имеет обратную матрицу и, следовательно, система уравнений может быть решена методом обратной матрицы. Полученное решение будет единственным.

Решим систему уравнений с помощью обратной матрицы:

$A_{11} =(-1)^{1+1} \cdot \left|\begin{array}{cc} {2} & {1} \\ {2} & {0} \end{array}\right|=0-2=-2; A_{12} =(-1)^{1+2} \cdot \left|\begin{array}{cc} {-1} & {1} \\ {3} & {0} \end{array}\right|=-(0-3)=3;$

$A_{13} =(-1)^{1+3} \cdot \left|\begin{array}{cc} {-1} & {2} \\ {3} & {2} \end{array}\right|=-2-6=-8; A_{21} =(-1)^{2+1} \cdot \left|\begin{array}{cc} {0} & {3} \\ {2} & {0} \end{array}\right|=-(0-6)=6; $

$A_{22} =(-1)^{2+2} \cdot \left|\begin{array}{cc} {1} & {3} \\ {3} & {0} \end{array}\right|=0-9=-9; A_{23} =(-1)^{2+3} \cdot \left|\begin{array}{cc} {1} & {0} \\ {3} & {2} \end{array}\right|=-(2-0)=-2;$

$A_{31} =(-1)^{3+1} \cdot \left|\begin{array}{cc} {0} & {3} \\ {2} & {1} \end{array}\right|=0-6=-6; A_{32} =(-1)^{3+2} \cdot \left|\begin{array}{cc} {1} & {3} \\ {-1} & {1} \end{array}\right|=-(1+3)=-4;$

$A_{33} =(-1)^{3+3} \cdot \left|\begin{array}{cc} {1} & {0} \\ {-1} & {2} \end{array}\right|=2-0=2$

Искомая обратная матрица:

$A^{-1} =\frac{1}{-26} \cdot \left(\begin{array}{ccc} {-2} & {6} & {-6} \\ {3} & {-9} & {-4} \\ {-8} & {-2} & {2} \end{array}\right)=\frac{1}{26} \cdot \left(\begin{array}{ccc} {2} & {-6} & {6} \\ {-3} & {9} & {4} \\ {8} & {2} & {-2} \end{array}\right)=\left(\begin{array}{ccc} {\frac{2}{26} } & {\frac{-6}{26} } & {\frac{6}{26} } \\ {\frac{-3}{26} } & {\frac{9}{26} } & {\frac{4}{26} } \\ {\frac{8}{26} } & {\frac{2}{26} } & {\frac{-2}{26} } \end{array}\right)=\left(\begin{array}{ccc} {\frac{1}{13} } & {-\frac{3}{13} } & {\frac{3}{13} } \\ {-\frac{3}{26} } & {\frac{9}{26} } & {\frac{2}{13} } \\ {\frac{4}{13} } & {\frac{1}{13} } & {-\frac{1}{13} } \end{array}\right).$

Найдем решение системы:

$X=\left(\begin{array}{ccc} {\frac{1}{13} } & {-\frac{3}{13} } & {\frac{3}{13} } \\ {-\frac{3}{26} } & {\frac{9}{26} } & {\frac{2}{13} } \\ {\frac{4}{13} } & {\frac{1}{13} } & {-\frac{1}{13} } \end{array}\right)\cdot \left(\begin{array}{c} {26} \\ {52} \\ {52} \end{array}\right)=\left(\begin{array}{c} {\frac{1}{13} \cdot 26-\frac{3}{13} \cdot 52+\frac{3}{13} \cdot 52} \\ {-\frac{3}{26} \cdot 26+\frac{9}{26} \cdot 52+\frac{2}{13} \cdot 52} \\ {\frac{4}{13} \cdot 26+\frac{1}{13} \cdot 52-\frac{1}{13} \cdot 52} \end{array}\right)=\left(\begin{array}{c} {2-12+12} \\ {-3+18+8} \\ {8+4-4} \end{array}\right)=\left(\begin{array}{c} {2} \\ {23} \\ {8} \end{array}\right)$

$X=\left(\begin{array}{c} {2} \\ {23} \\ {8} \end{array}\right)$ - искомое решение системы уравнений.

Уравнения вообще, линейные алгебраические уравнения и их системы, а также методы их решения занимают в математике, как теоретической, так и прикладной, особое место.

Это связано с тем обстоятельством, что подавляющее большинство физических, экономических, технических и даже педагогических задач могут быть описаны и решены с помощью разнообразных уравнений и их систем. В последнее время особую популярность среди исследователей, ученых и практиков приобрело математическое моделирование практически во всех предметных областях, что объясняется очевидными его преимуществами перед другими известными и апробированными методами исследования объектов различной природы, в частности, так называемых, сложных систем. Существует великое многообразие различных определений математической модели, данных учеными в разные времена, но на наш взгляд, самое удачное, это следующее утверждение. Математическая модель – это идея, выраженная уравнением. Таким образом, умение составлять и решать уравнения и их системы – неотъемлемая характеристика современного специалиста.

Для решения систем линейных алгебраических уравнений наиболее часто используются методы: Крамера, Жордана-Гаусса и матричный метод.

Матричный метод решения - метод решения с помощью обратной матрицы систем линейных алгебраических уравнений с ненулевым определителем.

Если выписать коэффициенты при неизвестных величинах xi в матрицу A, неизвестные величины собрать в вектор столбец X, а свободные члены в вектор столбец B, то систему линейных алгебраических уравнений можно записать в виде следующего матричного уравнения A · X = B, которое имеет единственное решение только тогда, когда определитель матрицы A не будет равен нулю. При этом решение системы уравнений можно найти следующим способом X = A -1 · B , где A -1 - обратная матрица.

Матричный метод решения состоит в следующем.

Пусть дана система линейных уравнений с n неизвестными:

Её можно переписать в матричной форме: AX = B , где A - основная матрица системы, B и X - столбцы свободных членов и решений системы соответственно:

Умножим это матричное уравнение слева на A -1 - матрицу, обратную к матрице A : A -1 (AX ) = A -1 B

Так как A -1 A = E , получаем X = A -1 B . Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A . Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A : detA ≠ 0.

Для однородной системы линейных уравнений, то есть когда вектор B = 0 , действительно обратное правило: система AX = 0 имеет нетривиальное (то есть не нулевое) решение только если detA = 0. Такая связь между решениями однородных и неоднородных систем линейных уравнений носит название альтернативы Фредгольма.

Пример решения неоднородной системы линейных алгебраических уравнений .

Убедимся в том, что определитель матрицы, составленный из коэффициентов при неизвестных системы линейных алгебраических уравнений не равен нулю.

Следующим шагом будет вычисление алгебраических дополнений для элементов матрицы, состоящей из коэффициентов при неизвестных. Они понадобятся для нахождения обратной матрицы.