Проблема временного парадокса в современной фантастике. Как путешествовать во времени: все способы и парадоксы Временные парадоксы в реальной жизни

Для чего мы живем? [Взгляд с позиции субъективного реализма] Захаров Константин Валерьевич

Парадоксы времени

Парадоксы времени

Предыдущая глава фактически была посвящена проблеме существования мира в пространстве, теперь же обратим внимание на его существование во времени. Что это вообще такое - время? Очевидный ответ: количественная характеристика потока происходящих изменений. Чем больше изменений в целом, тем больше проходит времени. Можно выбрать определенный вид изменений, отличающийся регулярностью и периодичностью (допустим, обращение Земли вокруг Солнца), и по нему измерять время. Однако не все так просто. Пожалуй, любой из нас мог бы повторить вслед за Блаженным Августином, что он знает ответ на вопрос, что такое время, если его об этом никто не спрашивает, и не знает, если это надо кому-то объяснить.

Прежде всего, всегда ли существовало время и мир во времени? «Пустое» время, в котором не происходит никаких событий, на первый взгляд представляется столь же абсурдным, как и пустое пространство. Однако предположим, что мы можем наблюдать такое время, тогда нам не составило бы труда его измерить, просто сопоставив его с течением событий в нашем привычном времени. Например, мы можем сказать, что на сломанных часах стрелки оставались неподвижными в течение двадцати минут, фиксируя этот временной интервал по исправным часам. Для этого нам не требуется изобретать какую-то новую систему измерений, подобно тому как на оси координат мы можем получить шкалу отрицательных значений, просто зеркально отобразив известную нам шкалу положительных значений. А вот с пустым пространством аналогичный трюк не пройдет. Поскольку оно представимо лишь вне материи (понимаемой в том же смысле, что и в предыдущей главе), а значит и вне сферы бытия, то нам некуда будет приложить даже воображаемую линейку.

Таким образом, если пустое пространство являет собой чистую абстракцию, то «пустое» время все же имеет некоторый смысл. Если сейчас, в данный момент, происходят некие изменения, события, то этого уже достаточно, чтобы задать единицу шкалы времени, которая не утратит свое значение даже в том случае, если мир прекратит свое существование и никаких событий больше происходить не будет. Получается, что время вечно, т. е. время, взятое в целом, - это синоним вечности. При этом его можно подразделить, пока чисто теоретически, на актуальное и потенциальное, т. е. «пустое», свободное от событий.

Еще одной характерной чертой времени, в отличие от пространства, является его односторонняя направленность. То, что «стрела времени» нацелена из прошлого в будущее, определяется последовательностью событий, воспринимаемой нами как их причинно-следственная связь. Иногда эту привычку трактовать смену явлений как цепь причин и следствий пытаются критиковать, но все же трудно отрицать очевидное.

Правда, на стороне критиков тот неопровержимый аргумент, что мы наблюдаем лишь явления, а не сущности, т. е. какая-то часть сущности всегда от нас скрыта, а значит когда-нибудь может проявиться каким-то новым для нас образом, и тогда, казалось бы, известная нам причина породит неожиданные следствия (но вот соберется ли при этом, допустим, пролитое молоко обратно в разбитую бутылку - большой вопрос). Кроме того, нам никогда не дано постигнуть всю цепь причин. Так, разглядывая шедевр живописи, мы можем прийти к заключению, что он возник благодаря таланту художника. Поинтересовавшись историей создания этой картины, мы поймем, что она появилась на свет потому, что была заказана автору. Но мы, положим, так и не узнаем, что если бы не случайная встреча на улице, то родители художника никогда бы не познакомились, и картина не была бы написана. Какая же из этих причин определяющая? Все они, наряду со многими другими, известными и неизвестными нам, были необходимы для того, чтобы картина появилась. Поэтому правильно было бы указать их всех, однако это невозможно.

Вместе с тем, говоря о феномене причинности, мы имеем в виду гораздо более непосредственные и очевидные отношения явлений. Например, если я вижу идущего по дороге мне навстречу человека, то с большой долей уверенности могу предположить, что через секунду он окажется примерно на метр ближе ко мне, а не на пять метров дальше, и не превратится при этом, скажем, в кошку. Еще проще: если я нахожусь в комнате и гляжу в окно, то весьма вероятно, что в следующее мгновение я вновь обнаружу себя находящимся в этой комнате и глядящим в окно. Такого рода причинность является фундаментальным свойством нашего мира (даже закономерности квантовых явлений не противоречат ей, а лишь вносят коррективы, характерные для соответствующего уровня материи).

На чем же основана причинность? Есть ли у этого ряда порождающих друг друга причин начало, т. е. конечная причина? Последователи древнейшей религиозно-философской традиции вместе с современными учеными уверяют, что нет.

Индуизм и другие возникшие на его почве религиозные школы полагают, что мир безначален и представляет собой бесконечно повторяющуюся череду этапов возникновения, развития, упадка и исчезновения - колесо Брахмы. Физики в большинстве своем, кажется, придерживаются аналогичной концепции, именуя ее моделью пульсирующей Вселенной, в которой теоретически прослеживается повторяющийся путь Вселенной от Большого взрыва до ее коллапса.

А как решает эту проблему классическая философия? Ограничимся мнением Канта, выраженным им по поводу следующей антиномии (т. е. пары равноубедительных, но противоположных суждений):

1) мир имеет начало, поскольку в противном случае получается, что до настоящего момента прошло бесконечное количество времени;

2) мир не имеет начала, поскольку в противном случае получается, что время существовало до возникновения мира.

Кант разрешает это противоречие в стиле Александра Македонского, согласно легенде, разрубившего гордиев узел. С его точки зрения, оба приведенных суждения ложны, ибо принадлежат миру явлений, а в мире «вещей-в-себе» возможно некое третье суждение, которое и будет истинным.

В целом разделяя скептицизм Канта в отношении наших теоретических знаний, которые, по сути, всегда относительны и, можно сказать, носят вероятностный характер, нельзя не отметить, что, несмотря на это обстоятельство или даже именно вследствие него, оценивать различные гипотезы целесообразно путем сопоставления этих вероятностей. Сравнив два рассматриваемых утверждения, мы, видимо, все же должны прийти к выводу, что второе значительно менее вероятно.

Действительно, если мир безначален, а бытие мира понимается как последовательность событий - неважно даже, связанных цепью причинности или нет, - то сам факт наступления настоящего момента свидетельствует о том, что бесконечность всех предшествующих моментов и событий прошла (причем речь идет об актуальной, а не о потенциальной бесконечности), т. е. мы получаем сосчитанную, конечную бесконечность, - что может быть абсурднее? Напротив, если мы предположим, что мир имеет начало, то ничего абсурдного в таком предположении не будет. Опровержение этой идеи Кантом основывается лишь на том, что до начала мира актуальное течение времени невозможно. Время, отмеряющее ход событий, в отсутствии событий, разумеется, являет собой бессмыслицу, но «пустое» время, о котором говорилось ранее, вполне допустимо.

Таким образом, разумно принять предположение, что у мира было начало. Однако не означает ли это, что у него будет и конец? Ведь повседневный опыт нас учит, что все, что когда-либо возникло, неизбежно исчезнет. Стало быть, следуя этой логике, если мир возник, то он обязательно придет к своему концу.

Излишне говорить, что подобным интуитивным выводам не всегда стоит доверять. Все наши теоретические схемы основаны на установлении аналогий между наблюдаемыми явлениями. Вместе с тем, мир как целое - это явление уникальное, единичное, для него нет полностью адекватных аналогий. В каком-то смысле мы можем уподобить целое отдельным его частям, но ограниченная применимость такого подхода очевидна. Правильный путь состоит в том, чтобы не останавливаться на первых полученных выводах, а пытаться максимально расширить круг рассматриваемых явлений, выстраивая все связанные аналогиями объекты опыта в единую непротиворечивую картину.

В решении вопроса о продолжительности существования мира нам может кое-чем помочь математика. Простейшей геометрической иллюстрацией времени является прямая линия или, учитывая его одностороннюю направленность, ось координат. Пусть нулевая точка на данной оси - момент возникновения мира. Луч, задающий область отрицательных значений, - это «пустое» время, предшествующее указанному моменту. Сформулируем нашу задачу так: может ли время существования мира быть представлено отрезком в области положительных значений координатной оси, после которого вновь наступит «пустое» время?

Если такое допустимо, то следует предположить, основываясь на теории вероятностей, что возникновение мира, будучи, очевидно, возможным событием, при тех же условиях (одинаковых до начала мира и после его конца) будет повторяться снова и снова в бесконечности времени. Но подобное предположение - о безначальности мира - мы уже делали и отвергли как неверное. Значит, более предпочтительна противоположная гипотеза, утверждающая, что существование мира никогда не прекратится. Тогда ось времени будет состоять из двух лучей, т. е. двух уравновешивающих друг друга бесконечностей. В таком случае возникновение мира может рассматриваться как чудо. Действительно, это слово как нельзя лучше подходит для события, вероятность которого составляет один шанс из бесконечности. С другой стороны, если этот шанс все-таки есть, то в бесконечном временном периоде он неизбежно должен выпасть. Соответственно, для того чтобы мир вернулся в прежнее состояние, до своего возникновения, тоже потребуется бесконечность времени. Иначе говоря, мир никогда не прекратит свое существование, ибо вероятность данного события равна нулю.

Закономерность и невероятность появления нашего мира также можно уяснить, исходя из понимания материи как основы потенциального и актуального бытия. Остановимся на этом подробнее.

Если мы окинем мысленным взором все, что в мире происходит, то везде увидим стремление материальных элементов (т. е. любых материальных объектов) к некоему гармоничному сочетанию, когда все противодействующие друг другу силы и энергии уравнены, к состоянию покоя. Такое состояние подобно равновесию металлического шарика на острие иглы, поэтому практически никогда не достигается, но может рассматриваться как идеальный предел, к которому стремится материя. В одном из основных разделов физики - термодинамике - это общее стремление материи выражено в форме закона возрастания энтропии, обычно интерпретируемого как деструктивная тенденция.

Выравнивание температур в материальных системах, конечно, может в ряде случаев трактоваться как снижение степени упорядоченности материи, приводящее к нежелательным, с нашей точки зрения, последствиям (например, если я люблю горячий кофе с мороженым, то процесс остывания кофе и таяния мороженого, по моему мнению, испортит этот напиток). Однако это справедливо лишь для тех систем, которые, в сущности, лишены целостности, состоят из разрозненных подсистем и сами являются такими подсистемами. Мир же представляет собой абсолютно целостную, замкнутую в себе систему, и внутреннее равновесие этой системы следует считать не хаосом, а скорее его противоположностью - гармоничным единством.

Итак, равновесие и покой - высшее, предельное состояние материи, к которому она стремится. Постоянство стремления означает, что это состояние является выражением ее фундаментальных свойств. Логично предположить, что идеальный покой был изначально присущ материи. Почему же она его утратила?

Казалось бы, абсолютный покой потому и абсолютен, что система, которая в нем находится, должна пребывать в таком положении постоянно, и всякое изменение будет потерей этого состояния. Но чем такой покой отличается от полного небытия? Последнее определить очень просто - это все, что вне бытия, что не имеет проявлений. Строго говоря, мы ничего не можем о нем знать, кроме того, что в нем не происходит никаких изменений (любое зафиксированное нами изменение и было бы проявлением). Но материя не есть небытие. Более того, как понятие она ему противоположна. Получается, что материя, находящаяся в состоянии абсолютного покоя, с одной стороны, должна оставаться в нем вечно, а с другой стороны - не может рано или поздно его не нарушить, т. е. не претерпеть изменения, не проявиться. Разумный компромисс достигается, если мы предположим, что потенциальное бытие материи, в бесконечности «пустого» времени являющее собой «пустое» пространство, в результате бесконечно малого изменения превращается в актуальное бытие.

Что именно это за изменение, мы знать не можем; точнее, как и в предыдущей главе, можем сказать, что это то качественное изменение, которое выражается в переходе элементов материи из непроявленного состояния бытия в проявленное. Механизм этого перехода полностью от нас скрыт, поскольку он происходит вне мира явлений, и потому сам переход может нами рассматриваться как случайное событие.

4.10. Парадоксы-антиномии От софизмов следует отличать логические парадоксы (греч. paradoxos – неожиданный, странный). Парадокс в широком смысле слова – это нечто необычное и удивительное, то, что расходится с привычными ожиданиями, здравым смыслом и жизненным опытом.

4.12. Парадоксы-апории Отдельной группой парадоксов являются апории (греч. aporia – затруднение, недоумение) – рассуждения, которые показывают противоречия между тем, что мы воспринимаем органами чувств (видим, слышим, осязаем и т. п.) и тем, что можно мысленно

Парадоксы морали Автономная мораль с ее претензией на абсолютность неизбежно оборачивается парадоксальностью. Обладая изначальностью по отношению к сознательной (целесообразной) человеческой деятельности и будучи тем самым, ее пределом, мораль не может обнаружиться

ПАРАДОКСЫ «...Истина все же скорее возникает из ошибки, чем из спутанности...» Ф. Бэкон «Логические парадоксы озадачили с момента своего открытия и, вероятно, будут озадачивать нас всегда. Мы должны, я думаю, рассматривать их не столько как проблемы, ожидающие решения,

ПАРАДОКСЫ И ХИТРЕЦЫ В Древней Греции пользовался большой популярностью рассказ о крокодиле и матери. Крокодил выхватил у женщины, стоявшей на берегу реки, ее ребенка. На ее мольбу вернуть ребенка крокодил, пролив, как всегда, крокодилову слезу, ответил: - Твое несчастье

b) Коротание времени и смотрение-на-часы. Поскучнение как парализующая озадаченность медленным течением времени Вот что примечательно: мы узнали много чего, но как раз ее, саму скуку, нам не удается схватить - как будто мы искали что-то такое, чего вообще нет. Она - не то,

b) Скучание при чем-либо и изменившийся характер коротания времени: при чем скучания как коротание времени Итак, теперь, для того чтобы обозначить вторую форму скуки по отношению к первой, нам надо еще раз - в определенном отношении - яснее представить первую. В первой

Парадоксы сознания Можно допустить, что все люди обладают сознанием, но это вовсе не означает, что все они отдают себе в этом отчет. Вся эта сфера не предполагает полной однородности. Мы не знаем, как рождается и возникает сознание, мы также не знаем, каковы его связи с

ПАРАДОКСЫ ДЕМОКРАТИИ Американский образец демократии, сформировавшийся в XVIII–XIX веках, фактически представлял демократию меньшинства, типичным носителем которой выступал белый, протестант, домовладелец. Так называемое политическое участие - претензия быть

1. Парадокс времени. Его двойной смысл. Прошлого не было. Преображение времени. Время и забота. Время и творчество Проблема времени есть основная проблема человеческого существования. И не случайно два наиболее значительных философа современной Европы – Бергсон и

Парадоксы – пища для ума Онтологически любой объект является конечной реализацией абстрактных систем (параструктур). Параструктуры являются реализациями фрагментов иерархий подобия. Но не существует единой вселенской иерархии, «всемирная пирамида» невозможна.

Истины и парадоксы Научно-техническая революция поставила ряд сложных философских и психологических вопросов, живо волнующих умы в сегодняшнем мире. Несмотря на ошеломляющую новизну, которую вносит в нашу жизнь бурное развитие науки и техники, многие из этих вопросов

ПАРАДОКСЫ НЕТОЧНОСТИ Говорят, главное во всяком деле - уловить момент. Это относится, пожалуй, и к таким делам, как размышление и рассуждение. Однако здесь «момент» улавливается особенно трудно, и существенную роль в этом играют как раз неточные понятия.- Один мальчик

ПАРАДОКСЫ - ТОЛЬКО СИМПТОМ У Г. Фреге, признаваемого теперь многими величайшим логиком прошлого века, был, к сожалению, очень скверный характер. Кроме того, он был безоговорочен и даже жесток в своей критике современников. Возможно, поэтому его вклад в логику и

Введение. 2

1.Проблема становления. 3

2. Возрождение парадокса времени. 3

3. Основные проблемы и понятия парадокса времени. 5

4. Классическая динамика и хаос. 6

4.1 Теория КАМ... 6

4.2. Большие системы Пуанкаре. 8

5.Решение парадокса времени. 9

5.1.Законы хаоса. 9

5.2.Квантовый хаос. 10

5.3.Хаос и законы физики. 13

6.Теория неустойчивых динамических систем – основа космологии. 14

7.Перспективы неравновесной физики. 16

Пространство и время – основные формы существования материи. Не существует пространства и времени, отделенных от материи, от материальных процессов. Пространство и время вне материи есть не более, чем пустая абстракция.

В трактовке Ильи Романовича Пригожина и Изабеллы Стенгерс время – это фундаментальное измерение нашего бытия.

Наиболее важной проблемой по теме моего реферата является проблема законов природы. Эту проблему "ставит на первый план парадокс времени". Обоснование этой проблемы авторами заключается в том, что люди настолько привыкли к понятию "закон природы", что он воспринимается как нечто само собой разумеющееся. Хотя в других взглядах на мир такая концепция "законов природы" отсутствует. По Аристотелю живые существа не подчиняются никаким законам. Их деятельность обусловлена собственными автономными причинами. Каждое существо стремится к достижению своей собственной истины. В Китае господствовали взгляды о спонтанной гармонии космоса, своего рода статистическое равновесие, связывающие воедино природу, общество и небеса.

Мотивацией для авторов к рассмотрению вопроса парадокса времени послужил тот факт, что парадокс времени не существует сам по себе, с ним тесно связаны два других парадокса: "квантовый парадокс", "космологический парадокс" и понятие хаоса, которые, в конечном счете, могут привести к решению парадокса времени.

На становление парадокса времени было обращено внимание одновременно с естественнонаучной и философской точек зрения в конце XIX века. В работах философа Анри Бергсона время играет главную роль при осуждении взаимодействий между человеком и природой, а так же пределов науки. Для венского физика Людвига Больцмана введение в физику времени как понятия, связано с эволюцией, было целью всей его жизни.

В труде Анри Бергсона "Творческая эволюция" высказывалась мысль о том, что наука успешно развивалась только в тех случаях, когда ей удавалось свести происходящие в природе процессы к монотонному повторению, иллюстрацией чего могут служить детерминистические законы природы. Но всякий раз, когда наука пыталась описывать созидательную силу времени, возникновение нового, она неизбежно терпела неудачу.

Выводы Бергсона были восприняты как выпад против науки.

Одна из целей которую преследовал Бергсон при написании своего труда "Творческая эволюция", было "намерение показать, что целое имеет такую же природу, как и я".

Большинство ученых в настоящее время отнюдь не считают в отличие от Бергсона, что для понимания созидательной деятельности нужна "другая" наука.

В книге "Порядок из хаоса" была изложена история физики XIXвека в центре, которой была проблема времени. Так во второй половине XIXвека возникли две концепции времени соответствующие противоположным картинам физического мира, одна из них восходит к динамике, другая к термодинамике.

Последние десятилетие XX века стали свидетелями возрождения парадокса времени. Большинство проблем обсуждавшихся Ньютоном и Лейбницем все еще актуальны. В частности проблема новизны. Жак Моно был первым кто привлек внимание к конфликту между понятием законов природы, игнорирующих эволюцию и созданием нового.

В действительности рамки проблемы ещё шире. Само существование нашей вселенной бросает вызов второму началу термодинамики.

Подобно возникновению жизни для ЖакаМоно, рождение вселенной воспринимается Азимовым как повседневное событие.

Законы природы более не противопоставляются идее истиной эволюции, включающие в себя инновации, которые с научной точки зрения с научной точки зрения определяются тремя минимальными требованиями.

Первое требование – необратимость, выражающаяся в нарушении симметрии между прошлым и будущим. Но этого не достаточно. Если рассмотреть маятник колебания, которого постепенно затухают или Луну, период вращения которой вокруг собственной оси все более убывают. Еще одним примером могла служить химическая реакции, скорость которой до достижения равновесия обращается в нуль. Такие ситуации не соответствуют истинно эволюционным процессам.

Второе требование – необходимость введения понятия события. По своему определению события не могут быть выведены из детерминистического закона, будь он обратимым во времени или не обратимым: событие как бы его не трактовали, означает, что происходящее не обязательно должно происходить. Следовательно, в лучшем случае можно надеяться на описание события в терминах вероятностей.

Отсюда следует третье требование , которое необходимо ввести. Некоторые события должны обладать способностью, изменять ход эволюции, т.е. эволюция должна быть не стабильной, т.е. характеризоваться механизмом, способным делать некоторые события исходным пунктом нового развития.

Теория эволюции Дарвина служит прекрасной иллюстрацией всех трех сформулированных выше требований. Необратимость очевидна: она существует на всех уровнях от новых экологических ниш, которые в свою очередь открывают новые возможности для биологической эволюции. Теория Дарвина должна была объяснить поразительное событие – возникновение видов, но Дарвин описал это событие как результат сложных процессов.

Дарвинский подход дает лишь модель. Но каждая эволюционная модель должна содержать необратимость события и возможность для некоторых событий стать отправным пунктом для нового порядка.

В отличие от дарвинского подхода термодинамика XIX века, сосредотачивает основное внимание на равновесии отвечающему только первому требованию, т.к. она выражает не семетричность между прошлым и будущим.

Однако за последние 20 лет термодинамика претерпела значительные изменения. Второе начало термодинамики более не ограничивается описанием выравнивания различий, которым сопровождается приближение к равновесию.

Парадокс времени "ставит перед нами проблему законов природы". Эта проблема требует более детального рассмотрения. По Аристотелю живые существа не подчиняются никаким законам. Их деятельность обусловлена их собственными автономными внутренними причинами. Каждое существо стремится к достижению своей собственной истины. В Китае господствовали взгляды о спонтанной гармонии космоса, своего рода статистическом равновесии, связывающем воедино природу, общество и небеса.

Не маловажную роль сыграли и христианские представления о Боге как о устанавливающем законы для всего живого.

Для Бога все есть данность. Новое, выбор или спонтанные действия относительны с человеческой точки зрения. Подобные теологические воззрения, казалось, полностью подкреплялись открытием динамических законов движения. Теология и наука достигли согласия.

Понятие хаоса вводится, т.к. хаос позволяет разрешить парадокс времени и приводит к включению стрелы времени в фундаментальное динамическое описание. Но хаос делает и нечто большее. Он привносит вероятность в классическую динамику.

Парадокс времени не существует сам по себе. С ним тесно связаны два других парадокса: "квантовый парадокс" и "космологический парадокс".

Между парадоксом времени и квантовым парадоксом существует тесная аналогия. Сущность квантового парадокса заключается в том, что ответственность за коллапс несет наблюдатель и производимые им наблюдения. Следовательно аналогия между двумя парадоксами заключается в том, что человек отвечает за все особенности, связанные со становлением и событиями в нашем физическом описании.

Теперь, надо отметить третий парадокс – космологический парадокс. Современная космология приписывает нашей вселенной возраст. Вселенная родилась в результате большого взрыва около 15млд. лет назад. Ясно, что это было событием. Но в традиционную формулировку понятий законов природы события не входят. Это и поставило физику на грань величайшего кризиса. Хокинг написал о Вселенной так: "…она просто должна быть, и все!".

С появлением работ Колмогорова, продолженных Арнольдом и Мозером, - так называемой теории КАМ - проблему не интегрируемости перестали рассматривать как проявление сопротивления природы прогрессу, а начали рассматривать как новый отправной пункт дальнейшего развития динамики.

Теория КАМ рассматривает влияние резонансов на траектории. Следует отметить, что простой случай гармонического осциллятора с постоянной частотой, не зависящей от переменной действия J, является исключением: частоты зависят от значений принимаемых переменными действия J. В различных точках фазового пространства фазы различны. Это приводит к тому, что в одних точках фазового пространства динамической системы существует резонанс, тогда как в других точках резонанса нет. Как известно, резонансы соответствуют рациональным соотношениям между частотами. Клас­сический результат теории чисел сводится к утверждению, что мера рациональных чисел по сравнению с мерой иррациональных чисел рав­на нулю. Это означает, что резонансы встречаются редко: большинство точек в фазовом пространстве нерезонансные. Кроме того, в отсутствие возмущений, резонансы приводят к пери­одическому движению (так называемые резонансные торы), тогда как в общем случае мы имеем квазипериодическое движение (нерезонансные торы). Можно сказать кратко: периодические движения - не правило, а исключение.

Таким образом, мы вправе ожидать, что при введении возмущений характер движения на резонансных торах резко изменится (по теореме Пуанкаре), в то время как квазипериодическое движение изменится незначительно, по крайней мере при малом параметре возмущения (теория КАМ требует выполнения дополнительных условий, которые мы не будем здесь рассматривать). Основной результат теории КАМ состоит в том, что теперь мы имеем два совершенно различных типа траекторий: слегка изменившиеся квазипериодические траектории и стохастические j траектории, возникшие при разрушении резонансных торов .

Наиболее важный результат теории КАМ - появление стохастических траекторий - подтверждается численными экспериментами. Рассмотрим систему с двумя степенями свободы. Ее фазовое пространство содержит две координаты q 1, q 2 и два импульса p1, р2. Вычисления производятся при данном значении энергии H ( q 1, q 2, p 1, p 2), и поэтому остается только три независимых переменных. Чтобы избежать построения траекторий в трехмерном пространстве, условимся рассматривать только пересечение траекторий с плоскостью q 2 p 2. Для еще большего упрощения картины мы будем строить только половину этих пересечений, а именно учитывать только такие точки, в которых траектория «пронзает» плоскость сечения снизу вверх. Таким приемом пользовался еще Пуанкаре, и он называется сечением Пуанкаре (или отображением Пуанкаре). В сечении Пуанкаре отчетливо видно качественное различие между периодическими и стохастическими траекториями.

Если движение периодическое, то траектория пересекает плоскость q2p2 в одной точке. Если движение квазипериодическое, т.е ограничено поверхностью тора, то последовательные точки пересечения заполняют на плоскости q 2 p 2 замкнутую кривую. Если же движение стохастическое, то траектория случайным образом блуждает в некоторых областях фазового пространства, и точки ее пересечения так же случайным образом заполняют некоторую область на плоскости q2р2.

Еще один важный результат теории КАМ состоит в том, что, увеличивая параметр связи, мы тем самым увеличиваем области, в которых преобладает стохастичность. При некотором критическом значении параметра связи возникает хаос: в этом случае мы имеем положительный показатель Ляпунова, соответствующий экспоненциальному разбеганию со временем любых двух близких траекторий. Кроме того, в случае полностью развитого хаоса облако точек пересечения, порождаемое траекторией, удовлетворяет уравнениям типа уравнения диффузии.

Уравнения диффузии обладают нарушенной сим­метрией во времени. Они описывают приближение к равномерному распределению в будущем (т. е. при t -> +∞). Поэтому весьма интересно, что в компьютерном эксперименте, исходя из программы, составленной на основе классической динамики, мы получаем эволюцию с нарушенной симметрией во времени.

Следует подчеркнуть, что теория КАМ не приводит к динамической теории хаоса.Ее главный вклад состоит в другом: теория КАМ показала, что при малых значениях параметра связи мы имеем проме­жуточный режим, в котором сосуществуют траектории двух типов - регулярные и стохастические. С другой стороны, нас интересует глав­ным образом то, что произойдет в предельном случае, когда снова останется лишь один тип траекторий. Эта ситуация соответствует так называемым большим системам Пуанкаре (БСП). К их рассмотрению мы сейчас переходим.

При рассмотрении предложенной Пуанкаре классификации динамических систем на интегрируемые и неинтегрируемые мы отметил, что резонансы встречаются редко, поскольку возникают в случае рациональных соотношений между частотами. Но при переходе к БСП ситуация радикально изменяется: в БСП резонансы играют главную роль.

Рассмотрим в качестве примера взаимодействие между какой-нибудь частицей и полем. Поле можно рассматривать как суперпозицию осцилляторов с континуумом частот wk . В отличие от поля частица совершает колебания с одной фиксированной частотой w 1 . Перед нами пример неинтегрируемой системы Пуанкаре. Резонансы будут возникать всякий раз, когда wk =w 1 . Во всех учебниках физики показано, что испускание излучения обусловлено именно такими резонансами между заряженной частицей и полем. Испускание излучения представляет собой необратимый процесс, связанный с резонансами Пуанкаре.

Новая особенность состоит в том, что частота wk есть непрерывная функция индекса k , соответствующая длинам волн осцилляторов поля. Такова специфическая особенность больших систем Пуанкаре, т. е. хаотических систем, у которых нет регулярных траекторий, сосуществующих со стохастическими траекториями. Большиесистемы Пуанкаре (БСП) соответствуют важным физическим ситуациям, в действительности - большинству ситуаций, с которыми мы сталкиваемся в природе. Но БСП позволяют также исключить расходимости Пуанкаре, т. е. устранить основное препятствие на пути к интегрированию уравнений движения. Этот результат, заметно приумножающий мощь динамического описания, разрушает отождествление ньютоновской или гамильтоновой механики и обратимого во времени детерминизма, поскольку уравнения для БСП в общем случае приводят к принципиально вероятностной эволюции с нарушенной симметрией во времени.

Обратимся теперь к квантовой механике. Между проблемами, с которыми мы сталкиваемся в классической и квантовой теории, существует аналогия, поскольку предложенная Пуанкаре классификация систем, на интегрируемые и неинтегрируемые остается в силе и для квантовых систем.

Трудно говорить о «законах хаоса», пока мы рассматриваем отдельные траектории. Мы имеем дело с негативными аспектами хаоса, такими как экспоненциальное разбегание траекторий и не вычислимость. Ситуация резко меняется, когда мы переходим к вероятностному описанию. Описание в терминах вероятностей остается в силе при любых временах. Поэтому и законы динамики надлежит формулировать на вероятностном уровне. Но этого не достаточно. Чтобы включить в описание нарушение симметрии во времени, мы должны выйти из обычного гильбертова пространства. В рассмотренных ними здесь простых примерах необратимые процессы определялись только временем Ляпунова, но все приведенные соображения могут быть обобщены и на более сложные отображения, описывающие необратимы! процессы другого типа, например, диффузию .

Полученное нами вероятностное описание несводимо: это неизбежное следствие того, что собственные функции принадлежат к классу обобщенных функций. Как уже упоминалось, этот факт можно использовать в качестве отправного пункта нового, более общегоопределенияхаоса. В классической динамике хаос определяется "экспоненциаль­ным разбеганием" траекторий, но такое определение хаоса не допускает обобщения на квантовую теорию. В квантовой теории нет "экспоненциального разбегания" волновых функций и, следовательно, не существует чувствительности к началь­ным условиям в обычном смысле. Тем не менее, существуют квантовые системы, характеризующи­еся несводимыми вероятностными описаниями. Помимо прочего такие системы имеют принципиальное значение для нашего описания при­роды. Как и прежде, фундаментальные законы физики применительно к таким системам формулируются в виде вероятностных утверждений (а не в терминах волновых функций). Можно сказать, что такие системы не позволяют отличить чистое состояние от смешанных состояний. Даже если мы выберем в качестве исходного, чистое состояние, оно со временем превратится в смешанное состояние.

Исследование описанных в этой главе отображений представляет большой интерес. Эти простые примеры позволяют наглядно предста­вить, что мы имеем в виду, говоря о третьей, несводимой, формулировке законов природы. Тем не менее, отображения - не более чем абстракт­ные геометрические модели. Теперь же мы обратимся к динамическим системам на основе гамильтонова описания - фундамента современ­ной концепции законов природы.

Квантовый хаос отождествляется с существованием несводимого вероятностного представления. В случае с БСП в основе такого представления лежат резонансы Пуанкаре.

Следовательно, квантовый хаос связан с разрушением инварианта движения вследствие резонансов Пуанкаре. Это свидетельствует о том, что в случае БСП невозможно переходить от амплитуд |φ i + > к вероятностям |φ i + > <φ i + |. Фундаментальное уравнение в данном случае записывается в терминах вероятности. Даже если начать с чистого состояния ρ=|ψ> <ψ|, оно разрушится в ходе движения системы к равновесию.

Разрушение состояния может быть связано с разрушением волновой функции. В данном случае эволюция "коллапса" настолько важна, что имеет смысл проследить ее на примере.

Пусть существует волновая функция ψ(0) в некоторый начальный момент времени t=0. Уравнение Шредингера преобразует ее в ψ(t)=

e - itH ψ(0). Всякий раз, когда приходится иметь дело с несводимыми представлениями, выражение ρ=ψψ должно утрачивать смысл, иначе было бы возможно переходить от ρ к ψ и наоборот.

Именно это и происходит с неисчезающими взаимодействиями в потенциальном рассеянии.

На рис.1 отражены графики зависимости sin(ώt)/ώот ώ

рис.1 Схематический график величины sin(ώt)/ώ

Имея волновую функцию можно вычислить матрицу плотности

.

Это выражение плохо определено, но в сочетании с пробными функциями оба плохо определенных выражения имеют смысл:

Рассмотрим диагональные элементы матрицы плотности:

График этой функции приведен на рис.2

рис. 2 схематический график величины

В сочетании с пробной функцией f(ω) требуется вычислить

И наоборот, амплитуда волны в сочетании с пробной функцией остается постоянной во времени, т.к.

.

Причина столь различного поведения функций становится ясной если сравнить графики функций приведенных на рис.1 и 2: функция sinωt/ωпринимает как положительные, так и отрицательные значения, тогда как функция принимает только положительные значения и дает "более больший вклад в интеграл".

Полученные заключения могут быть подтверждены моделированием вероятности Р как функции от k при возрастающих значениях t. Графики приведены на рис.5.

Теперь можно отметить, что коллапс распространяется в пространстве причинно, в соответствии с общими требованиями теории относительности, исключающими эффекты распространяющиеся мгновенно.

рис. 3 моделирование вероятности P как функции от k при возрастающих значениях t.

Кроме того, для достижения равновесия за конечное время, рассеяние должно неоднократно повторится, т.е. необходимы системы N тел с непрекращающимися взаимодействиями.

Хаос неоднократно определялся через существование несводимых вероятностных представлений. Такое определение позволяет охватить гораздо более широкую область, чем первоначально предполагали основатели современной динамической теории хаоса, в частности, А. Н. Колмогоров и Я. Г. Синай. Хаос обусловлен чувствительностью к начальным условиям и, следовательно, экспоненциальным разбеганием траекторий. Это приводит к несводимым вероятностным представлениям. Описание в терминах траекторий уступило место вероятностному описанию. Следовательно, можно принять это фундаментальное свойство за отличительную особенность хаоса. Развивается неустойчивость, которая вынуждает нас отказаться от описания в терминах отдельных траекторий или отдельных волновых функций.

Существует принципиальное различие между классическим хаосом и квантовым хаосом. Квантовая теория непосредственно связана с волновыми свойствами. Постоянная Планка приводит к дополнительной по сравнению с классическим поведением когерентности. В результате условия для квантового хаоса становятся более ограниченными, чем условия для классического хаоса. Классический хаос, возникает даже в малых системах, например, в отображенной и системах, исследуемых теорией КАМ. Квантовый аналог таких малых систем обладает квазипериодическим поведением. Многие авторы пришли к заключению, что квантового хаоса вообще не существует. Но это не так. Во-первых, требуется, чтобы спектр был непрерывным (т. е. чтобы квантовые системы были «большими»). Во-вторых, квантовый хаос определяется как связанный с возникновением несводимых вероятностных представлений.

Традиционная квантовая теория имеет большое число слабых мест. Формулировка этой теории продолжает традицию классической теории - в том смысле, что следует идеалу вневременного описания. Для простых динамических систем, таких как гармонический осциллятор, это вполне естественно. Но даже в этом случае можно ли описывать такие системы изолированно? Их невозможно наблюдать в отрыве от поля, приводящего к квантовым переходам и испусканию сигналов (фотонов).

Чтобы включить в картину эволюционные элементы, необходимо перейти к формулировке законов природы в терминах несводи­мого вероятностного описания.

Космология должна опираться на теорию неустойчивых динамических систем. В какой-то мере это всего лишь программа, но, с другой стороны, в рамках физической теории она существует в настоящее время.

Кроме того, введение вероятности на фундаментальном уровне устраняет некоторые препятствия на пути к построению последовательной теории гравитации. В своей работе Унру и Вальд писали, что указанная трудность может быть прослежена непосредственно до конфликта между ролью времени в квантовой теории и природой времени в общей теории относительности. В квантовой механике все измерения производятся в "моменты времени": физический смысл имеют только величины, относящиеся к мгновенному состоянию системы. С другой стороны, в общей теории относительности измерима только геометрия пространства-времени. Действительно, как мы видели, квантовая теория измерений соответствует мгновенным, акаузальным процессам. С точки зрения авторов, это обстоятельство является сильным аргументом против «наивной комбинации» квантовой теории и общей теории относительности, включающей в себя и такое понятие, как «волновая функция Вселенной». Но, такой подход позволяет избежать парадоксов, связанных с квантовыми измерениями.

Рождение нашей Вселенной является наиболее наглядным примером неустойчивости, приводящей к необратимости. Какова судьба нашей Вселенной в настоящее время? Стандартная модель предсказывает, что в конце концов, наша Вселенная обречена на смерть ибо в результате непрерывного расширения (тепловая смерть), либо в результате последующего сжатия («страшный треск»). Для Вселенной, слившейся под знаком неустойчивости из вакуума Минковского, это уже не так. Ничто в настоящее время не мешает нам предположить возможность повторных неустойчивостей. Эти неустойчивости могут развиваться в различных масштабах.

Современная теория поля считает, что помимо частиц (с положительной энергией),существуют полностью заполненные состо­яния с отрицательной энергией. При некоторых условиях, например в сильных полях, пары частиц, переходят из вакуума в состояния с по­ложительной энергией. Процесс рождения пары частиц из вакуума необратим. Последующие превращения оставляют части­цы в состояниях с положительной энергией. Таким образом, Вселенная (рассматриваемая как совокупность частиц с положительной энергией) не замкнута. Следовательно, предложенная Клаузиусом формулировка второго начала неприменима! Даже Вселенная в целом представляет собой открытую систему.

Именно в космологическом контексте формулировка законов природы как несводимых вероятностных представлений влечет за собой наиболее поразительные следствия. Многие физики полагают, что про­гресс физики должен привести к созданию объединенной теории. Гейзенберг называл ее «Urgleichung» («протоуравнение»), но ныне ее чаще называют «теорией всего». Если такая универсальная теория когда-нибудь будет сформулирована, она должна будет включать в себя динамическую неустойчивость и, таким образом, учитывать нарушение симметрии во времени, необратимость и вероятность. И тогда надежду на построение такой «теории всего», из которой можно было бы вывести полное описание физической реальности, придется оставить. Вместо посылок для дедуктивного вывода можно надеяться обрести принципы согласованного «повествования», из которых следовали бы не только законы, но и события, что придавало бы смысл вероятностному возникновению новых форм, как регулярного поведения, таки неустойчивостей. В этой связи можно привести аналогичные заключения Вальтера Тирринга: «Протоуравнение (если такая вещь вообще существует) должно потенциально содержать все возможные пути, которые могла бы избрать Вселенная, и, следовательно, множество "линий задержки". Располагая таким уравнением, физика оказалась в ситуации, аналогичной той, которая создалась в математике около 1930 г., когда Гёдель показал, что математические конструкции могу быть непротиворечивыми и тем не менее содержать истинные утверждения. Аналогично, "протоуравнение" не будет противоречить опыту, в противном случае его следовало бывидоизменить, но оно далеко не будет определять все. По мере того как Вселенная эволюционирует, "обстоятельства создают свои законы". Именно к такому представлению о Вселенной, развивающейся по своим внутренним законам, мы приходим на основе несводимойформулировки законов природы.

Физика неравновесных процессов - это наука, проникающая во все сферы жизни. Невозможно представить себе жизнь в мире, лишенном взаимосвязей, созданной необратимыми процессами. Необратимость играет существенную конструктивную роль. Она приводит к множеству явлений таких, как образова­ние вихрей, лазерное излучение, колебание химической реакции.

В 1989 г. состоялась Нобелевская конференция в Колледже Густава Адольфа (г.Сент-Питер, штат Миннесота). Она была озаглавлена "Конец Нау­ки", но смысл и содержание этих слов были не оптимистичны. Организаторы конференции выступили с заявлением: "... Мы подошли к концу науки, что наука как некая универсальная, объективная разновидность человеческой дея­тельности завершилась" . Физическая реальность, описываемая сегодня, является временной. Она охватывает законы и события, достоверности и веро­ятности. Вторжение времени в физику отнюдь не свидетельствует об утрате объективности или "умопостигаемости". Наоборот, оно открывает путь новым формам объективной познаваемости.

Переход от ньютоновского описания в терминах траектории или шредингеровского описания в терминах волновых функций к описанию в терминах ансамб­лей не влечёт за собой потери информации. Наоборот, такой подход позволяет включить новые существенные свойства в фундаментальное описание неустой­чивых хаотических систем. Свойства диссипатических систем перестают быть только феноменологическими, а становятся свойствами, не сводимым к тем или иным особенностям отдельных траекторий или волновой функцией.

Новая формулировка законов динамики позволяет решать и некоторые технические проблемы. В связи с тем, что даже простые ситуации приводят к не интегрированным системам Пуанкаре. Поэтому физики обратились к теории S-матрицы, т.е. идеализации рассеяния, происходящего в течение ограниченного времени. Однако такое упрощение применительно только для простых систем.

Описанный подход приводит к более согласованному и единообразному описанию природы. Между фундаментальными знаниями физики и всеми уровнями описания, включающими в себя химию, биологию и гуманитарные науки, существовал разрыв. Новая перспектива создаёт глубокую связь между науками. Время перестаёт быть иллюзией, относящей человеческий опыт к не­которой субъективности, лежащей вне природы.

Возникает следующий вопрос: если хаос играет объединенную роль от классической механики до квантовой физики и космологии, то нельзя ли по­строить "теорию всего на свете" (ТВС)? Такую теорию построить нельзя. Эта идея претендует на то, чтобы постичь замыслы Бога, т.е. выйти на фундаментальный уровень, исходя из которого, можно вывести детерминистически все явления. Теория хаоса имеет другую унификацию. ТВС, содержащий хаос, не могла бы выйти к вневременному описанию. Более высокие уровни допускались бы фундамен­тальными уровнями, но не следовали бы из них.

Основная цель предложенного метода - поиск "узкой тропинки, затеряв­шейся где-то между двумя концепциями, ..." - наглядная иллюстрация творческого подхода в науке. Роль творчества в науке часто недооценивалась. Наука - дело коллективное. Решение научной проблемы, чтобы оно было при­емлемым, должно удовлетворять точным критериям и требованиям. Однако эти ограничения не исключают творческого начала, напротив, бросают ему вызов.

Прокладывая тропинку, оказалось, что значи­тельная часть конкретного мира вокруг нас до сих пор "ускользала из ячеек на­учной сети" (по Уайтхеду). Перед нами открылись новые горизонты, возникли новые вопросы, появились новые ситуации, таящие опасность и риск.

Центральной проблемой, которую ставили Пригожин И. и Стенгерс И., была проблема "законов природы", которая вытекает из парадокса времени. Следовательно, ее решение дает ответ на парадокс времени.

Пригожин И. и Стенгерс И. связывают свое решение парадокса времени с тем фактом, что открытие динамической неустойчивости привело к тому, что пришлось отказаться от отдельных траекторий. Поэтому хаос превратился в орудие физики, которое дало решение парадоксу времени, так как говорилось в начале работы, парадокс времени зависит от хаоса, а динамический хаос лежит в основе всех наук.


Понятие "стрела времени" было введено в 1928 году Эддингтоном в книге "Природа физического мира".

Теория Колмогорова – Арнольда – Мозера

Математическая запись матрицы плотности

Введение. 2

1.Проблема становления. 3

2. Возрождение парадокса времени. 3

3. Основные проблемы и понятия парадокса времени. 5

4. Классическая динамика и хаос. 6

4.1 Теория КАМ... 6

4.2. Большие системы Пуанкаре. 8

5.Решение парадокса времени. 9

5.1.Законы хаоса. 9

5.2.Квантовый хаос. 10

5.3.Хаос и законы физики. 13

6.Теория неустойчивых динамических систем – основа космологии. 14

7.Перспективы неравновесной физики. 16

Пространство и время – основные формы существования материи. Не существует пространства и времени, отделенных от материи, от материальных процессов. Пространство и время вне материи есть не более, чем пустая абстракция.

В трактовке Ильи Романовича Пригожина и Изабеллы Стенгерс время – это фундаментальное измерение нашего бытия.

Наиболее важной проблемой по теме моего реферата является проблема законов природы. Эту проблему "ставит на первый план парадокс времени". Обоснование этой проблемы авторами заключается в том, что люди настолько привыкли к понятию "закон природы", что он воспринимается как нечто само собой разумеющееся. Хотя в других взглядах на мир такая концепция "законов природы" отсутствует. По Аристотелю живые существа не подчиняются никаким законам. Их деятельность обусловлена собственными автономными причинами. Каждое существо стремится к достижению своей собственной истины. В Китае господствовали взгляды о спонтанной гармонии космоса, своего рода статистическое равновесие, связывающие воедино природу, общество и небеса.

Мотивацией для авторов к рассмотрению вопроса парадокса времени послужил тот факт, что парадокс времени не существует сам по себе, с ним тесно связаны два других парадокса: "квантовый парадокс", "космологический парадокс" и понятие хаоса, которые, в конечном счете, могут привести к решению парадокса времени.

На становление парадокса времени было обращено внимание одновременно с естественнонаучной и философской точек зрения в конце XIX века. В работах философа Анри Бергсона время играет главную роль при осуждении взаимодействий между человеком и природой, а так же пределов науки. Для венского физика Людвига Больцмана введение в физику времени как понятия, связано с эволюцией, было целью всей его жизни.

В труде Анри Бергсона "Творческая эволюция" высказывалась мысль о том, что наука успешно развивалась только в тех случаях, когда ей удавалось свести происходящие в природе процессы к монотонному повторению, иллюстрацией чего могут служить детерминистические законы природы. Но всякий раз, когда наука пыталась описывать созидательную силу времени, возникновение нового, она неизбежно терпела неудачу.

Выводы Бергсона были восприняты как выпад против науки.

Одна из целей которую преследовал Бергсон при написании своего труда "Творческая эволюция", было "намерение показать, что целое имеет такую же природу, как и я".

Большинство ученых в настоящее время отнюдь не считают в отличие от Бергсона, что для понимания созидательной деятельности нужна "другая" наука.

В книге "Порядок из хаоса" была изложена история физики XIXвека в центре, которой была проблема времени. Так во второй половине XIXвека возникли две концепции времени соответствующие противоположным картинам физического мира, одна из них восходит к динамике, другая к термодинамике.

Последние десятилетие XX века стали свидетелями возрождения парадокса времени. Большинство проблем обсуждавшихся Ньютоном и Лейбницем все еще актуальны. В частности проблема новизны. Жак Моно был первым кто привлек внимание к конфликту между понятием законов природы, игнорирующих эволюцию и созданием нового.

В действительности рамки проблемы ещё шире. Само существование нашей вселенной бросает вызов второму началу термодинамики.

Подобно возникновению жизни для ЖакаМоно, рождение вселенной воспринимается Азимовым как повседневное событие.

Законы природы более не противопоставляются идее истиной эволюции, включающие в себя инновации, которые с научной точки зрения с научной точки зрения определяются тремя минимальными требованиями.

Первое требование – необратимость, выражающаяся в нарушении симметрии между прошлым и будущим. Но этого не достаточно. Если рассмотреть маятник колебания, которого постепенно затухают или Луну, период вращения которой вокруг собственной оси все более убывают. Еще одним примером могла служить химическая реакции, скорость которой до достижения равновесия обращается в нуль. Такие ситуации не соответствуют истинно эволюционным процессам.

Второе требование – необходимость введения понятия события. По своему определению события не могут быть выведены из детерминистического закона, будь он обратимым во времени или не обратимым: событие как бы его не трактовали, означает, что происходящее не обязательно должно происходить. Следовательно, в лучшем случае можно надеяться на описание события в терминах вероятностей.

Отсюда следует третье требование , которое необходимо ввести. Некоторые события должны обладать способностью, изменять ход эволюции, т.е. эволюция должна быть не стабильной, т.е. характеризоваться механизмом, способным делать некоторые события исходным пунктом нового развития.

Теория эволюции Дарвина служит прекрасной иллюстрацией всех трех сформулированных выше требований. Необратимость очевидна: она существует на всех уровнях от новых экологических ниш, которые в свою очередь открывают новые возможности для биологической эволюции. Теория Дарвина должна была объяснить поразительное событие – возникновение видов, но Дарвин описал это событие как результат сложных процессов.

Дарвинский подход дает лишь модель. Но каждая эволюционная модель должна содержать необратимость события и возможность для некоторых событий стать отправным пунктом для нового порядка.

В отличие от дарвинского подхода термодинамика XIX века, сосредотачивает основное внимание на равновесии отвечающему только первому требованию, т.к. она выражает не семетричность между прошлым и будущим.

Однако за последние 20 лет термодинамика претерпела значительные изменения. Второе начало термодинамики более не ограничивается описанием выравнивания различий, которым сопровождается приближение к равновесию.

Парадокс времени "ставит перед нами проблему законов природы". Эта проблема требует более детального рассмотрения. По Аристотелю живые существа не подчиняются никаким законам. Их деятельность обусловлена их собственными автономными внутренними причинами. Каждое существо стремится к достижению своей собственной истины. В Китае господствовали взгляды о спонтанной гармонии космоса, своего рода статистическом равновесии, связывающем воедино природу, общество и небеса.

Не маловажную роль сыграли и христианские представления о Боге как о устанавливающем законы для всего живого.

Для Бога все есть данность. Новое, выбор или спонтанные действия относительны с человеческой точки зрения. Подобные теологические воззрения, казалось, полностью подкреплялись открытием динамических законов движения. Теология и наука достигли согласия.

Понятие хаоса вводится, т.к. хаос позволяет разрешить парадокс времени и приводит к включению стрелы времени в фундаментальное динамическое описание. Но хаос делает и нечто большее. Он привносит вероятность в классическую динамику.

Парадокс времени не существует сам по себе. С ним тесно связаны два других парадокса: "квантовый парадокс" и "космологический парадокс".

Между парадоксом времени и квантовым парадоксом существует тесная аналогия. Сущность квантового парадокса заключается в том, что ответственность за коллапс несет наблюдатель и производимые им наблюдения. Следовательно аналогия между двумя парадоксами заключается в том, что человек отвечает за все особенности, связанные со становлением и событиями в нашем физическом описании.

Теория КАМ рассматривает влияние резонансов на траектории. Следует отметить, что простой случай гармонического осциллятора с постоянной частотой, не зависящей от переменной действия J, является исключением: частоты зависят от значений принимаемых переменными действия J. В различных точках фазового пространства фазы различны. Это приводит к тому, что в одних точках фазового пространства динамической системы существует резонанс, тогда как в других точках резонанса нет. Как известно, резонансы соответствуют рациональным соотношениям между частотами. Клас­сический результат теории чисел сводится к утверждению, что мера рациональных чисел по сравнению с мерой иррациональных чисел рав­на нулю. Это означает, что резонансы встречаются редко: большинство точек в фазовом пространстве нерезонансные. Кроме того, в отсутствие возмущений, резонансы приводят к пери­одическому движению (так называемые резонансные торы), тогда как в общем случае мы имеем квазипериодическое движение (нерезонансные торы). Можно сказать кратко: периодические движения - не правило, а исключение.

Идея, что можно попасть в прошлое или будущее, породила целый жанр хронофантастики, - и кажется, что все возможные парадоксы и подводные камни нам давно известны. Теперь мы читаем и смотрим такие произведения не ради того, чтобы взглянуть на другие эпохи, а ради путаницы, которая неизбежно возникает при попытках нарушить ход времени. Какие же фокусы со временем лежат в основе всех хроноопер и какие сюжеты можно собрать из этих кирпичиков? Давайте разбираться.

Разбудите, когда наступит будущее

Самая простая задача для путешественника во времени - попасть в будущее. В таких историях можно даже не продумывать, как именно устроен временной поток: поскольку будущее на наше время не влияет, сюжет почти не будет отличаться от полёта на другую планету или в сказочный мир. В каком-то смысле все мы и так путешествуем во времени - со скоростью одна секунда в секунду. Вопрос только в том, как увеличить скорость.

В XVIII-XIX веках одним из фантастических явлений считались сновидения. Летаргический сон приспособили для путешествий в будущее: Рип ван Винкль (герой одноимённого рассказа Вашингтона Ирвинга) проспал двадцать лет и очутился в мире, где все его близкие уже умерли, а его самого успели забыть. Такой сюжет сродни ирландским мифам о народе холмов, который тоже умел манипулировать временем: тот, кто провёл под холмом одну ночь, возвращался через сотню лет.

Этот метод «попадания» не устаревает

С помощью снов писатели того времени объясняли любые фантастические допущения. Если рассказчик сам допускает, что диковинные миры ему привиделись, какой с него спрос? К такой хитрости прибегнул Луи-Себастьен де Мерсье, описывая «сон» об утопическом обществе («Год 2440»), - а это уже полноценное путешествие во времени!

Впрочем, если путешествие в будущее нужно правдоподобно обосновать, сделать это без противоречий с наукой тоже несложно. Прославленный «Футурамой» метод криогенной заморозки в теории может сработать - поэтому сейчас многие трансгуманисты стараются сохранить свои тела после смерти в надежде, что медицинские технологии будущего позволят их оживить. Правда, по сути это просто адаптированный под современность сон ван Винкля, поэтому сложно сказать, считать ли это «настоящим» путешествием.

Быстрее света

Для тех, кто хочет всерьёз поиграть со временем и углубиться в дебри физики, лучше подойдёт путешествие со скоростью света.


Теория относительности Эйнштейна позволяет на околосветовых скоростях сжимать и растягивать время, чем в фантастике с удовольствием пользуются. Знаменитый «парадокс близнецов» гласит, что если долго носиться по космосу на околосветовой скорости, за год-другой таких полётов на Земле пройдёт пара веков.

Более того: математик Гёдель предложил для уравнений Эйнштейна такое решение, при котором во вселенной могут возникать временные петли - нечто вроде порталов между разными временами. Именно этой моделью воспользовались в фильме « », сперва показав разницу в течении времени возле горизонта чёрной дыры, а потом и прокинув с помощью «кротовой норы» мостик в прошлое.

Все сюжетные повороты, которые сейчас придумывают авторы хроноопер, уже были у Эйнштейна и Гёделя (снято на iPhone 5)

Можно ли таким образом попасть в прошлое? Учёные в этом сильно сомневаются, но фантастам их сомнения не мешают. Достаточно заявить, что превышать скорость света запрещено только простым смертным. А Супермен может сделать вокруг Земли пару оборотов и вернуться в прошлое, чтобы предотвратить гибель Лоис Лейн. Да что там скорость света - даже сон может работать в обратном направлении! А у Марка Твена янки получил ломом по голове и при дворе короля Артура.

Конечно, в прошлое летать интереснее - как раз потому, что оно неразрывно связано с настоящим. Если автор вводит в историю машину времени, он обычно хочет как минимум запутать читателя временными парадоксами. Но чаще всего главная тема в таких историях - борьба с предопределением. Можно ли изменить собственную судьбу, если она уже известна?

Причина или следствие?

Ответ на вопрос о предопределении - как и сама концепция путешествия во времени - зависит от того, по какому принципу устроено время в конкретном фантастическом мире.

Терминаторам законы физики не указ

В реальности главная проблема с путешествием в прошлое не скорость света. Если отправить назад во времени что угодно, хотя бы сообщение, это нарушит фундаментальный закон природы: принцип причинности. Даже самое захудалое пророчество - уже в каком-то смысле путешествие во времени! Все известные нам научные принципы строятся на том, что сперва происходит событие, а потом у него возникают последствия. Если следствие опережает причину, это ломает законы физики.

Чтобы «починить» законы, надо придумать, как мир реагирует на такую аномалию. Тут-то фантасты и дают волю воображению.

Если жанр фильма - комедия, то риска «сломать» время обычно нет: все поступки героев слишком малозначительны, чтобы повлиять на будущее, и главная задача - выпутаться из собственных проблем

Можно заявить, что время - единый и неделимый поток: между прошлым и будущим как бы натянута нить, по которой можно перемещаться.

Именно в такой картине мира возникают самые известные петли и парадоксы: например, если в прошлом убить своего дедушку, можно исчезнуть из вселенной. Появляются парадоксы из-за того, что эта концепция (философы называют её «Б-теорией») утверждает: прошлое, настоящее и будущее столь же реальны и неизменны, как и привычные нам три измерения. Будущее пока что неизвестно - но рано или поздно мы увидим тот единственный вариант событий, который должен произойти.

Такой фатализм порождает самые ироничные истории о путешественниках во времени. Когда пришелец из будущего пытается исправить события прошлого, он внезапно обнаруживает, что сам стал их причиной, - более того, так было всегда. Время в таких мирах не переписывается - в нём просто возникает причинно-следственная петля, и любые попытки что-то изменить лишь закрепляют изначальный вариант. Этот парадокс одним из первых подробно описал в новелле «По собственным следам» (1941), где оказывается, что герой выполнял задание, полученное от самого себя.

Герои мрачного сериала «Тьма» от Netflix отправляются в прошлое, чтобы расследовать преступление, но поневоле вынуждены сами совершать поступки, которые к этому преступлению ведут

Бывает и хуже: в более «гибких» мирах неосторожный поступок путешественника может привести к «эффекту бабочки». Вмешательство в прошлое переписывает разом весь временной поток - и мир не просто меняется, а напрочь забывает, что изменился. Обычно только сам путешественник помнит, что раньше всё было иначе. В трилогии « » за прыжками Марти не мог уследить даже док Браун - но он хотя бы полагался на слова товарища, когда тот описывал изменения, а обычно таким историям просто никто не верит.

В общем, однопоточное время - штука запутанная и безысходная. Многие авторы решают себя не ограничивать и прибегают к помощи параллельных миров.

Сюжет, в котором герой оказывается в мире, где его рождение кто-то отменил, пошёл от рождественского фильма «Эта прекрасная жизнь» (1946)

Раздвоение времени

Эта концепция не только позволяет избавиться от противоречий, но ещё и захватывает воображение. В таком мире возможно всё: каждую секунду он делится на бесконечное множество похожих друг на друга отражений, отличающихся парой мелочей. Путешественник во времени на самом деле ничего не меняет, а лишь скачет между разными гранями мультиверсума. Такой сюжет очень любят в сериалах: почти в любом шоу найдётся серия, где герои оказываются в альтернативном будущем и пытаются вернуть всё на круги своя. На бесконечном поле и резвиться можно бесконечно - и никаких парадоксов!

Сейчас в хронофантастике чаще всего используют модель с параллельными мирами (кадр из «Звёздного пути»)

Но самое интересное начинается, когда авторы отказываются от «Б-теории» и решают, что фиксированного будущего не бывает. Может, неизвестность и неопределённость и есть нормальное состояние времени? В такой картине мира конкретные события происходят только на тех отрезках, на которых есть наблюдатели, а остальные моменты - всего лишь вероятность.

Прекрасный пример такого «квантового времени» показал Стивен Кинг в « ». Когда Стрелок невольно создал временной парадокс, он едва не сошёл с ума, потому что помнил одновременно две линии событий: в одной он путешествовал в одиночку, в другой со спутником. Если герою попадались на глаза свидетельства, напоминавшие о прошлых событиях, воспоминания об этих точках складывались в одну непротиворечивую версию, но промежутки были словно в тумане.

Квантовый подход в последнее время популярен - отчасти благодаря развитию квантовой физики, а отчасти потому, что он позволяет показывать ещё более запутанные и драматичные парадоксы.

Марти Макфлай едва не стёр себя из реальности, помешав своим родителям познакомиться. Пришлось срочно всё исправлять!

Взять, например, фильм «Петля времени» (2012): как только молодое воплощение героя совершало какие-то действия, пришелец из будущего тут же их вспоминал - а до того в его памяти царил туман. Поэтому он старался не вмешиваться лишний раз в своё прошлое - например, не показывал молодому себе фотографию будущей жены, чтобы не сорвать их первую неожиданную встречу.

«Квантовый» подход виден и в « »: раз Доктор предупреждает спутников о специальных «фиксированных точках» - событиях, которые нельзя изменить или обойти, - значит, вся остальная ткань времени подвижна и пластична.

Впрочем, даже вероятностное будущее блекнет по сравнению с мирами, где Время обладает собственной волей - или на его страже стоят существа, подстерегающие путешественников. В такой вселенной законы могут работать как угодно - и хорошо ещё, если со стражами можно договориться! Самый яркий пример - лангольеры , которые после каждой полуночи съедают вчерашний день вместе со всеми, кому не повезло там оказаться.

Как работает машина времени

На фоне такого разнообразия вселенных сама техника путешествий во времени - вопрос второстепенный. Со времён машины времени не изменились: можно придумать новый принцип действия, но вряд ли это повлияет на сюжет, и со стороны путешествие будет выглядеть примерно одинаково.

Машина времени Уэллса в экранизации 1960 года. Вот где стимпанк!

Чаще всего принцип работы вообще не объясняют: человек залезает в кабинку, любуется гудением и спецэффектами, а потом выбирается уже в другом времени. Этот способ можно назвать мгновенным скачком: ткань времени словно прокалывается в одной точке. Нередко для такого прыжка сперва надо разогнаться - набрать скорость в обычном пространстве, а техника уже переведёт этот импульс в скачок во времени. Так поступали и героиня аниме «Девочка, покорившая время», и док Браун на знаменитом DeLorean из трилогии «Назад в будущее». Видимо, ткань времени - из тех препятствий, которые штурмуют с разбега!

DeLorean DMC-12 - редкая машина времени, которая вправе называться машиной (JMortonPhoto.com & OtoGodfrey.com )

Но иногда бывает наоборот: если считать время четвёртым измерением, в трёх обычных измерениях путешественник должен оставаться на месте. Машина времени помчит его по временной оси, и в прошлом или будущем он появится ровно в той же точке. Главное, чтобы там не успели ничего построить, - последствия могут быть очень неприятными! Правда, в такой модели не учитывают вращение Земли - на самом-то деле неподвижных точек не бывает, - но в крайнем случае всё можно списать на магию. Именно так работал : каждый оборот волшебных часов соответствовал одному часу, но с места путешественники не двигались.

Суровее всего с такими «статичными» путешествиями обошлись в фильме «Детонатор» (2004): там машина времени проматывала ровно минуту за минуту. Чтобы попасть во вчерашний день, надо было просидеть в железной коробке целых 24 часа!

Иногда модель, в которой больше трёх измерений, трактуют ещё хитрее. Вспомним теорию Гёделя, согласно которой между разными временами можно прокладывать петли и тоннели. Если она верна, через дополнительные измерения можно попробовать пробраться в другое время - чем и воспользовался герой « ».

В более ранней фантастике по схожему принципу работала «воронка времени»: некое подпространство, куда можно попасть специально (на TARDIS Доктора Кто) или случайно, как произошло с экипажем эсминца в фильме «Филадельфийский эксперимент» (1984). Полёт по воронке обычно сопровождается головокружительными спецэффектами, а выходить из корабля не рекомендуется, чтобы не потеряться во времени навсегда. Но по сути это всё та же обычная машина времени, доставляющая пассажиров из одного года в другой.

Внутри временных воронок почему-то всегда бьют молнии и иногда летают титры

Если же авторы не хотят углубляться в дебри теорий, аномалия времени может существовать сама по себе, без всяких приспособлений. Достаточно войти не в ту дверь, и вот герой уже в далёком прошлом. Тоннель это, точечный прокол или магия - кто его разберёт? Главный вопрос - как выбраться обратно!

Чего сделать нельзя

Впрочем, обычно фантастика всё-таки работает по правилам, пусть и вымышленным, - поэтому для путешествий во времени часто придумывают ограничения. Например, можно вслед за современными физиками заявить, что перемещать тела быстрее скорости света (то есть в прошлое) всё-таки нельзя. Но в некоторых теориях есть частица под названием «тахион», на которую это ограничение не действует, потому что у неё нет массы… Может, сознание или информацию всё-таки можно отправить в прошлое?

Когда за путешествия во времени берётся Макото Синкай, у него всё равно получается трогательная история о дружбе и любви («Твоё имя»)

В реальности, скорее всего, так смухлевать не получится - всё из-за того же принципа причинности, которому до типа частиц нет дела. Но в фантастике «информационный» подход кажется более правдоподобным - да ещё и оригинальным. Он позволяет герою, например, оказаться в собственном молодом теле или отправиться в путешествие по чужим сознаниям, как происходило с героем сериала «Квантовый скачок». А в аниме Steins;Gate поначалу умели отправлять в прошлое только SMS - попробуй измени ход истории с такими ограничениями! Но от ограничений сюжеты только выигрывают: чем сложнее задача, тем интереснее смотреть, как её решают.

Гибрид телефона с микроволновкой для связи с прошлым (Steins;Gate)

Иногда дополнительные условия накладывают и на обычные, физические путешествия во времени. Например, зачастую машина времени не может отправить никого в прошлое раньше того момента, когда она была изобретена. А в аниме «Меланхолия Харухи Судзумии» путешественники во времени разучились отправляться в прошлое дальше определённой даты, потому что в этот день произошла катастрофа, повредившая ткань времени.

И тут начинается самое интересное. Незамысловатые скачки в прошлое и даже временные парадоксы - это лишь вершина айсберга хронофантастики. Если время можно изменить или даже повредить, что ещё с ним можно сделать?

Парадокс на парадоксе

Путешествия во времени мы любим за путаницу. Даже простой скачок в прошлое порождает такие завихрения, как «эффект бабочки» и «парадокс дедушки», - в зависимости от того, как устроено время. Но на этом приёме можно строить куда более сложные комбинации: например, прыгнуть в прошлое не единожды, а несколько раз подряд. Так создаётся стабильная временная петля, или «день сурка».

У вас бывает дежа-вю?
- А разве ты меня об этом уже не спрашивала?

Зациклить можно один день или несколько - главное, чтобы всё заканчивалось «сбросом» всех изменений и путешествием обратно в прошлое. Если мы имеем дело с линейным и неизменным временем, такие петли сами возникают из причинно-следственных парадоксов: герой получает записку, отправляется в прошлое, пишет эту записку, отправляет самому себе… Если же время каждый раз переписывается или порождает параллельные миры, получается идеальная ловушка: человек раз за разом переживает одни и те же события, но любые изменения всё равно заканчиваются сбросом на исходную позицию.

Чаще всего такие сюжеты посвящены попыткам разгадать причину временной петли и вырваться из неё. Иногда петли завязаны на эмоции или трагические судьбы персонажей - особенно этот элемент любят в аниме («Девочка-волшебница Мадока», «Меланхолия Харухи Судзумии», «Когда плачут цикады»).

Но у «дней сурка» есть несомненный плюс: они позволяют за счёт бесконечных попыток рано или поздно добиться успеха в любом начинании. Недаром Доктор Кто, попав в такую ловушку, вспоминал легенду о птичке, которая за многие тысячи лет по крошке сточила каменную скалу, а его коллега ухитрился своими «переговорами» довести до белого каления внеземного демона! В таком случае разрушить петлю можно не геройским поступком или прозрением, а обычным упорством, - и по пути научиться паре-тройке полезных навыков, как случилось с героем «Дня сурка».

В «Грани будущего» инопланетяне используют временные петли в качестве оружия - чтобы просчитать идеальную тактику боя

Ещё один способ построить из обычных прыжков более сложную конструкцию - синхронизировать два отрезка времени. В фильме «Люди Икс: Дни минувшего будущего» и в «Разведчике времени» временной портал умели открывать только на фиксированное расстояние. Грубо говоря, в полдень воскресенья можно переместиться в полдень субботы, а час спустя - уже только в час дня. При таком ограничении в истории о путешествии в прошлое появляется элемент, которого там, казалось бы, не может быть - цейтнот! Да, можно отправиться назад и попытаться что-то исправить, но в будущем время идёт своим чередом - и герой, например, может опоздать вернуться.

Чтобы усложнить путешественнику жизнь, можно сделать прыжки во времени случайными - отобрать у него контроль над происходящим. В сериале «Остаться в живых» такая беда случилась с Десмондом, который слишком плотно взаимодействовал с временной аномалией. Но ещё в 1980-х на той же идее построили сериал «Квантовый скачок». Герой постоянно оказывался в разных телах и эпохах, но не знал, сколько продержится в этом времени, - и уж тем более не мог вернуться «домой».

Крутим время

Героиня игры Life is Strange встаёт перед трудным выбором: отменить все правки, которые она вносила в ткань времени ради спасения подруги, или погубить целый город

Второй приём, с помощью которого разнообразят путешествия во времени, - изменение скорости. Если можно промотать пару лет, чтобы оказаться в прошлом или будущем, почему бы, например, не поставить время «на паузу»?

Как показал ещё Уэллс в рассказе «Новейший ускоритель», даже замедление времени для всех, кроме себя - очень мощный инструмент, а уж если его совсем остановить, можно куда-нибудь тайно проникнуть или выиграть дуэль - причём совершенно незаметно для противника. А в веб-сериале «Червь» один супергерой умел «замораживать» предметы во времени. С помощью этого нехитрого приёма можно было, например, пустить под откос поезд, поставив у него на пути обычный лист бумаги, - ведь застывший во времени объект не может измениться или сдвинуться!

Застывшие во времени враги - это очень удобно. В шутере Quantum Break в этом можно убедиться лично

Скорость можно изменить и на отрицательную, и тогда получатся знакомые читателям Стругацких контрамоты - люди, живущие «в обратную сторону». Такое возможно только в мирах, где работает «Б-теория»: вся временная ось уже предопределена, вопрос только в том, в каком порядке мы её воспринимаем. Чтобы ещё сильнее запутать сюжет, можно запустить в разных направлениях двух путешественников во времени. Так случилось с Доктором и Ривер Сонг в сериале «Доктор Кто»: они скакали по эпохам туда-сюда, но первая (для Доктора) их встреча для Ривер была последней, вторая - предпоследней, и так далее. Чтобы избежать парадоксов, героине приходилось следить, чтобы случайно не проспойлерить Доктору его будущее. Потом, правда, порядок их встреч превратился в полную чехарду, но героям «Доктора Кто» к такому не привыкать!

Миры со «статичным» временем порождают не только контрамотов: нередко в фантастике появляются существа, которые одновременно видят все точки своего жизненного пути. Трафальмадорцы из «Бойни номер пять» благодаря этому относятся к любым злоключениям с философским смирением: для них даже смерть - всего лишь одна из многочисленных деталей общей картины. Доктор Манхэттен из « » из-за такого нечеловеческого восприятия времени отдалился от людей и ударился в фатализм. Абраксас из «Бесконечного путешествия» регулярно путался в грамматике, силясь понять, какое событие уже произошло, а какое будет завтра. А у инопланетян из рассказа Теда Чана «История твоей жизни» возник особенный язык: все, кто его выучил, тоже начинали одновременно видеть прошлое, настоящее и будущее.

Фильм «Прибытие», снятый по мотивам «Истории твоей жизни», начинается с флешбэков… Или нет?

Впрочем, если контрамоты или трафальмадорцы действительно путешествуют во времени, то со способностями Ртути или Флэша всё не так очевидно. Ведь на самом деле это они ускоряются относительно всех остальных - разве можно считать, что на самом деле замедляется весь мир вокруг?

Физики заметят, что теория относительности недаром называется именно так. Можно и мир ускорить, и наблюдателя замедлить - это одно и то же, вопрос только в том, что взять за точку отсчёта. А биологи скажут, что никакой фантастики здесь нет, ведь время - понятие субъективное. Обычная муха тоже видит мир «в слоу-мо» - так быстро её мозг обрабатывает сигналы. Но можно не ограничиваться мухой или Флэшем, ведь в некоторых хронооперах существуют параллельные миры. Кто мешает пустить в них время с разной скоростью - или даже в разные стороны?

Известный пример такого приёма - «Хроники Нарнии», где формально путешествий во времени нет. Но время в Нарнии течёт куда быстрее, чем на Земле, поэтому одни и те же герои попадают в разные эпохи - и наблюдают историю сказочной страны от её создания до падения. А вот в комиксе Homestuck, который, пожалуй, можно назвать самой запутанной историей о путешествиях во времени и параллельных мирах, два мира запустили в разных направлениях - и при контактах между этими вселенными возникала та же неразбериха, что у Доктора с Ривер Сонг.

Если циферблаты ещё не изобрели, песочные часы тоже сойдут («Принц Персии»)

Убить время

На основе любого из этих приёмов можно написать рассказ, от которого даже у Уэллса затрещала бы голова. Но современные авторы с удовольствием пользуются всей палитрой сразу, завязывая в клубок временные петли и параллельные миры. Парадоксы при таком подходе накапливаются пачками. Даже при одном прыжке в прошлое путешественник может ненароком убить своего дедушку и исчезнуть из реальности - а то и стать собственным отцом. Пожалуй, лучше всех над «парадоксом причинности» поиздевался в рассказе «Все вы, зомби», где герой оказывается сам себе и папой, и мамой.

По рассказу «Все вы, зомби» снят фильм «Патруль времени» (2014). Практически все его персонажи - это один и тот же человек

Само собой, парадоксы надо как-то разрешать, - поэтому в мирах с линейным временем оно часто восстанавливается само, по воле судьбы. Например, почти все начинающие путешественники первым делом решают убить Гитлера. В мирах, где время можно переписывать, он погибнет (но по закону подлости получившийся мир будет ещё хуже). У Асприна в «Разведчиках времени» покушение провалится: либо пистолет заклинит, либо ещё что-нибудь произойдёт.

А в мирах, где фатализм не в почёте, приходится следить за сохранностью прошлого самостоятельно: для таких случаев создают специальную «полицию времени», которая отлавливает путешественников, пока они не натворили бед. В фильме «Петля времени» роль такой полиции взяла на себя мафия: прошлое для них - слишком ценный ресурс, чтобы позволять кому-то его портить.

Если нет ни судьбы, ни хронополицейских, путешественники рискуют попросту сломать время. В лучшем случае получится как в цикле Джаспера Ффорде «Четверг Нонетот», где полиция времени доигралась до того, что случайно отменила само изобретение путешествий во времени. В худшем - разрушится ткань реальности.

Как не раз показывали в «Докторе Кто», время - вещь хрупкая: от одного взрыва могут пойти трещины в мироздании по всем эпохам, а из-за попытки переписать «фиксированную точку» может схлопнуться и прошлое, и будущее. В Homestuck после подобного инцидента мир пришлось пересоздавать заново, а в все эпохи смешались воедино, из-за чего события книг теперь невозможно соединить в непротиворечивую хронологию… Ну а в манге Tsubasa: Reservoir Chronicle стёртому из реальности сыну собственного клона пришлось заменить себя новым человеком, чтобы в уже случившихся событиях было хоть какое-то действующее лицо.

Некоторые герои мультиверсума Tsubasa существуют минимум в трёх воплощениях и происходят из других произведений той же студии

Любимое развлечение фанатов - рисовать для самых запутанных произведений хронологии

Звучит безумно? Но за такое безумие мы и любим путешествия во времени - они раздвигают границы логики. Когда-то, должно быть, и обычный скачок в прошлое мог свести непривычного читателя с ума. Сейчас же хронофантастика по-настоящему сияет на длинных дистанциях, когда авторам есть где развернуться, а временные петли и парадоксы наслаиваются друг на друга, порождая самые невообразимые комбинации.

Увы, часто бывает, что конструкция складывается под собственным весом: либо скачков во времени становится слишком много, чтобы был смысл за ними следить, либо авторы на ходу меняют правила вселенной. Сколько раз уже Скайнет переписывал прошлое? И кто сейчас сможет сказать, по каким правилам работает время в «Докторе Кто»?

Зато, если хронофантастика при всех своих парадоксах получается стройной и внутренне непротиворечивой, она запоминается надолго. Именно этим подкупают BioShock Infinite, Tsubasa: Reservoir Chronicle или Homestuck. Чем сложнее и запутаннее сюжет, тем более сильное впечатление остаётся у тех, кто добрался до конца и сумел окинуть взглядом сразу всё полотно.

* * *

Путешествия во времени, параллельные миры и переписывание реальности неразрывно связаны, поэтому сейчас без них не обходится почти ни одно фантастическое произведение - будь то фэнтези наподобие «Игры престолов» или научно-фантастическое исследование новейших теорий физики, как в «Интерстелларе». Мало какой сюжет даёт такой же простор для воображения - ведь в истории, где любое событие можно отменить или повторить несколько раз, возможно всё. При этом элементы, из которых складываются все эти истории, довольно просты.

Похоже, за последние сто лет авторы сделали со временем всё, что только возможно: пускали вперёд, назад, по кругу, в один поток и в несколько… Поэтому лучшие из таких историй, как и во всех жанрах, держатся на персонажах: на пришедшей ещё из древнегреческих трагедий теме борьбы с судьбой, на попытках исправить собственные ошибки и на тяжёлом выборе между разными ветками событий. Но как бы ни скакала хронология, история всё равно будет развиваться только в одном направлении - в том, которое интереснее всего зрителям и читателям.

Традиционно еще одной причиной, по которой большинство ученых отбрасывают идею путешествий во времени, являются временные парадоксы. Например, если вернуться назад во времени и убить своих родителей до момента своего рождения, то рождение станет невозможным. Так что, для начала, некак вернуться назад во времени и убить своих родителей. Не самый лучший пример, но это важно, т.к. наука основывается на логически последовательных идеях; такого временного парадокса было бы достаточно, чтобы отбросить идею о путешествии во времени. Эти временные парадоксы разделяются на несколько категорий:
Дедушкин парадокс. Согласно этому парадоксу, возможно изменить прошлое таким образом, что существование настоящего становится невозможным. Например, отправившись в отдаленное прошлое, чтобы взглянуть на динозавров, можно случайно наступить на маленькое мохнатое существо, которое, возможно, было первым предком рода человеческого. Уничтожив своего предка, собственное существование ствновится логически
невозможным.

Информационный парадокс. Согласно этому парадоксу, информация приходит из будущего, а это означает, что у нее нет начала. Например можно представить, что какой-то ученый создал таки машину времени и отправляется в прошлое, чтобы поведать секрет путешествия во времени самому себе в юные годы. У этого секрета не будет начала , тк. та машина времени, которую создаст ученый, не будет изобретена им самим) - секрет ее конструкции будет передан ему его старшим воплощением.

Парадокс Билкера. Предположим, человек знает, каким будет его будущее, и совершает какой-то поступок, что делает существование такого будущего невозможным. Например, вы создается машина времени, которая может унести человека в будущее, и вот он обнаруживает, что ему суждено жениться на женщине по имени Анна. Однако назло року он решает жениться на женщине по имени Галя, т.о. делая невозможным существование такого будущего.

Сексуальный парадокс. Согласно этому парадоксу, вы являетесь своим собственным отцом, что невозможно биологически. Герой истории, написанной британским философом Д. Гаррисоном, не только является собственным отцом, но и съедает самого себя. В классическом произведении Р. Хайнлайна «Все вы зомби» герой одновременно и собственный отец, и мать, и дочь, и сын - т.е. в нем воплощено все фамильное дерево. Раскрыть тайну сексуального парадокса в действительности довольно сложно, поскольку это требует знаний как в области теории путешествий во времени, так и в механике ДНК. Но он таки имеет право на жизнь - советую прочитать Хайнлайна и Гаррисона.

В «Конце вечности» А. Азимов рисует в своем воображении «временную полицию», которая отвечает за предотвращение подобных парадоксов. В фильме «Терминатор» сюжет основан на информационном парадоксе - ученые изучают микрочип, взятый у робота из далекого будущего, затем они создают целую расу роботов, которые наделены сознанием, и те завоевывают весь мир. Другими словами, сама конструкция этих роботов не была создана каким-либо изобретателем; она просто взята из обломков одного из роботов далекого будущего. В фильме «Назад в будущее» Дж. Фокс пытается избежать «дедушкиного парадокса», когда возвращается назад во времени и встречается со своей матерью-подростком, которая тут же влюбляется в него. Но если она отвергнет ухаживания отца Фокса, то само существование Майкла будет поставлено под угрозу.

Сценаристы охотно нарушают законы физики, создавая голливудские блокбастеры. Но в кругу физиков к таким парадоксам относятся очень серьезно. Любое решение подобных парадоксов должно быть совместимо с теорией относительности и квантовой теорией. Например, для совмещения с теорией относительности река времени должна быть бесконечной. В общей теории относительности время представлено как гладкая протяженная поверхность, которую нельзя разорвать и на которой не может образоваться рябь. Топология ее может измениться, но просто так остановиться река не может. Это означает, что если убить своих родителей до момента собственного рождения, то нельзя исчезнуть. Такой вариант развития событий противоречил бы законам физики.

В настоящее время физики делятся на 2 группы, поддерживая 2 возможных решения этих временных парадоксов. Русский космолог И. Новиков считает, что мы вынуждены действовать таким образом, словно парадоксы неизбежны. Его подход называется «школой непротиворечивости». Если река времени мягко поворачивает вспять и снова замыкается на самой себе, создавая водоворот,то, согласно предположениям Новикова, если мы решим вернуться назад во времени, что было бы чревато созданием временного парадокса, то некая «невидимая рука» должна вмешаться и предотвратить прыжок в прошлое. Но в подходе Новикова существуют проблемы со свободной волей . Если мы вернемся назад во времени и встретим своих собственных родителей, то можно подумать, что в своих действиях мы руководствуемся собственной волей; Новиков считает, что еще не открытый закон физики запрещает любое действие, которое изменило бы будущее (например, такое действие, как убийство собственных родителей или предотвращение факта собственного рождения). Он отмечает: «Мы не можем отправить путешественника во времени в сады Эдема, чтобы попросить Еву не
рвать яблоко с дерева».Что же это за загадочная сила, не позволяющая изменить прошлое и создать временной парадокс? «Такое давление на нашу волю необычно и загадочно, но все же оно имеет свои параллели, - пишет
Новиков. - Например, я могу изъявить волю прогуляться по потолку без всякого специального снаряжения. Закон гравитации не позволит мне этого сделать; я упаду на пол, если попытаюсь это сделать, а потому моя свобода воли ограничена».

Но временные парадоксы могут происходить и тогда, когда неодушевленное вещество (вовсе не обладающее свободной волей или силой намерения) забрасывается в прошлое. Предположим, что перед битвой Александра Великого с царем персов Дарием III в 330 году до н. э. ученые отправляют в прошлое пулеметы с инструкцией на древнеперсидском по их использованию. Вся последующая европейская история изменилась бы (и, возможно, обнаружилось бы, что вместо одного из европейских языков теперь разговаривают на каком-то диалекте персидского).

По сути, даже мельчайшее вмешательство в прошлое может стать причиной самых неожиданных парадоксов в настоящем. Например, в теории хаоса используется метафора «эффект бабочки». В критические моменты формирования климата Земли достаточно малейшего трепета крыльев бабочки, чтобы пустить по воде рябь, способную нарушить баланс сил и вызвать грозу страшной силы. Даже мельчайшие неодушевленные объекты, будучи отправлены в прошлое, неизбежно изменят прошлое самым непредсказуемым образом, что станет причиной временного парадокса.

Вторым способом разрешения временного парадокса является вариант, при котором река времени мягко разветвляется на две реки, или рукава, образуя две различные Вселенные. Другими словами, если отправиться в прошлое и убить своих родителей до момента собственного рождения, то одновременно погибли бы люди, которые генетически не отличаются от родителей в альтернативной вселенной, в той, где путешественник во времени никогда не родится. Но его родители в его родной Вселенной останутся живы.

Вторая гипотеза называется «теорией многих миров»: суть ее в том, что все возможные многочисленные миры могут существовать одновременно. Это исключает бесконечное количество расхождений, обнаруженное Хокингом, пт.к. излучение не будет раз за разом проходить сквозь портал, как в пространстве Мизнера (см. предыдущие посты). Если оно и проникнет сквозь портал, то только один раз. Каждый раз, проходя сквозь портал, оно будет входить в новую вселенную.

И этот парадокс восходит, возможно, к глобальному вопросу квантовой теории: как может быть кот и живым, и мертвым в одно и то же время?

Для ответа на этот вопрос физикам пришлось принять во внимание два шокирующих решения: либо Существует Космический Разум, следящий за всеми нами, либо существует бесконечное количество квантовых вселенных.