Пептидная связь и ее характерные черты. Особенности пептидной связи. К свойствам пептидной связи относятся

α-Аминокислоты могут ковалентно связы­ваться друг с другом с помощью пептидных свя­зей. Карбоксильная группа одной аминокислоты ковалентно связывается с аминогруппой другой аминокислоты. При этом возникает R-CO-NH -R связь, называемая пептидной связью. При этом происходит отщепление мо­лекулы воды.

При помощи пептидных связей из аминокислот образуются белки и пептиды. Пептиды, содержащие до 10 аминокислот, называют олигопептиды. Час­то в названии таких молекул указывают количе­ство входящих в состав олигопептида аминокис­лот: трипептид, пентапептид, октапептид и т.д. Пептиды, содержащие более 10 аминокислот, называют «полипептиды», а полипептиды, состоя­щие из более чем 50 аминокислотных остатков, обычно называют белками. Мономеры аминокислот, входящих в состав бел­ков, называют «аминокислотные остатки». Амино­кислотный остаток, имеющий свободную амино­группу, называется N-концевым и пишется слева, а имеющий свободную C-карбоксильную груп­пу - С-концевым и пишется справа. Пептиды пи­шутся и читаются с N-конца.

Связь между α-углеродным атомом и α-аминогруппой или α-карбоксильной группой спо­собна к свободным вращениям (хотя ограниче­на размером и характером радикалов), что позволяет полипептидной цепи принимать раз­личные конфигурации.

Пептидные связи обычно расположены в транс-конфигурации, т.е. α-углеродные атомы располагаются по разные стороны от пептид­ной связи. В результате боковые радикалы ами­нокислот находятся на наиболее удалённом рас­стоянии друг от друга в пространстве. Пептидные связи очень прочны и являются ковалентными .

В организме человека вырабатывается мно­жество пептидов, участвующих в регуляции раз­личных биологических процессов и обладающих высокой физиологической активностью. Такими являются целый ряд гормонов – окситоцин (9 аминокислотных остатков), вазопрессин (9), брадикинин (9) регулирующий тонус сосудов, тиреолиберин (3), антибиотики – грамицидин, пептиды, обладающие обезболивающим дей­ствием (энкефалины(5) и эндорфины и другие опиоидные пептиды). Обезболивающий эф­фект этих пептидов в сотни раз превосходит анальгезирующий эффект морфина;

Применение аминокислот на основе свойств.

Аминокислоты, преимущественно α-аминокислоты, необходимы для синтеза белков в живых организмах. Нужные для этого аминокислоты человек и животные получают в виде пищи, содержащей различные белки. Последние подвергаются в пищеварительном тракте расщеплению на отдельные аминокислоты, из которых затем синтезируются белки, свойственные данному организму. Некоторые аминокислоты применяются в медицинских целях. Многие аминокислоты служат для подкормки животных.



Производные аминокислот используются для синтеза волокна, например капрона.

Вопросы для самоконтроля

· Написать электронное строение азота и водорода.

· Написать электронную и структурную формулу аммиака.

· Что такое углеводородный радикал?

· Какие вы знаете углеводородные радикалы?

· Замените в молекуле аммиака один водород на метильный радикал.

· Как вы считаете, что это за соединение и как оно называется?

· Какое вещество получится, если заменить остальные атомы водорода на углеводородные радикалы, например, метильные?

· Как изменятся свойства полученных соединений?

· Определите формулу органического вещества, если известно, что плотность его паров по водороду равна 22,5, массовая доля углерода – 0,533,массовая доля водорода – 0,156 и массовая доля азота – 0,311. (Ответ: С 2 Н 7 N.)

· Учебник Г.Е.Рудзитис, Ф.Г.Фельдман. Страница 173, № 6, 7.

ü Что такое кислота?

ü Что такое функциональная группа?

ü Какие вы помните функциональные группы?

ü Что такое аминогруппа?

ü Какими свойствами обладает аминогруппа?

ü Какими свойствами обладает кислота?

ü Как вы считаете, какую реакцию среды будет давать молекула, содержащая кислотную и основную группу?

ü ТЕСТ


1 вариант.

1) В состав аминокислот входят функциональные группы:

а) -NH2 и –ОН

б) -NH2 и –СОН

в) -NH2 и –СООН

г) -ОH и –СООН

2. Аминокислоты можно рассматривать как производные:

а) алкенов;

б) спиртов;

в) карбоновых кислот;

г) углеводов.

3. Аминокислоты вступают в реакцию

а) полимеризацию;

б) поликондесацию;

в) нейтрализацию.

4.Связь между аминокислотами в полимере:

а) водородная;

б) ионная;

в) пептидная.

5. Незаменимые аминокислоты - это …



2 вариант.

1.Общая формула аминокислот:

а)R-СН2 (NH2)-СООН;

2. В растворе аминокислот среда

а) щелочная;

б) нейтральная;

в) кислотная.

3. Аминокислоты могут взаимодействовать друг с другом при этом образуя:

а) углеводы;

б) нуклеиновые кислоты;

в) полипептиды;

г)крахмал.

4. Аминокислоты – это...

а) органические основания;

б) кислоты

в) органические амфотерные соединения.

5. Аминокислоты применяют в …


ü Из каких неорганических веществ можно получить аминоуксусную кислоту? Напишите соответствующие уравнения реакций.

ü Задача. Определите формулу аминокислоты, если массовые доли углерода, водорода, кислорода и азота соответственно равны: 48%, 9,34%, 42,67% и 18, 67%. Напишите все возможные структурные формулы и назовите их.


ПЛАН ЗАНЯТИЯ № 16

Дисциплина: Химия.

Тема: Белки.

Цель занятия: Изучить первичную, вторичную, третичную структуры белков. Химические свойства белков: горение, денатурация, гидролиз, цветные реакции. Биологические функции белков.

Планируемые результаты

Предметные: сформированность представлений о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функ­циональной грамотности человека для решения практических задач;

Метапредметные: использование различных видов познавательной деятельности и основных интеллектуальных операций (постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов) для решения поставленной задачи;

Личностные: чувство гордости и уважения к истории и достижениям отечественной хими­ческой науки; химически грамотное поведение в профессиональной деятельности и в быту при обращении с химическими веществами, материалами и процессами;

Норма времени: 2 часа

Вид занятия: Лекция.

План занятия:

Оснащение: Учебник.

Литература:

1. Химия 10 класс: учеб. для общеобразоват. организаций с прил. на электрон. Носителе (DVD) / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил.

2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 - изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.

Преподаватель: Тубальцева Ю.Н.


Тема 16. БЕЛКИ.

1. Белки. Первичная, вторичная, третичная структуры белков.

2. Химические свойства белков: горение, денатурация, гидролиз, цветные реакции.

3. Биологические функции белков.

1) Белки. Первичная, вторичная, третичная структуры белков.

1 – Состав белка: С – 54%, О – 23%, Н – 7%, N – 17%, S – 2% и другие: Zn, P, Fe, Cu, Mg, Mn

В 1903 г. немецкий ученый Э.Г.Фишер предложил пептидную теорию, которая стала ключом к тайне строения белка. Фишер предположил, что белки представляют собой полимеры из остатков аминокислот, соединенных пептидной связью NH–CO. Идея о том, что белки – это полимерные образования, высказывалась еще в 1888 г. русским ученым А.Я.Данилевским.

2 - Белки – ВМС – протеины

“Протос” от греческого – “первичный, важнейший”. Белки – природные полимеры, состоящие из АК.

Mr (альбумина)=36000

Mr (миозина)=150000

Mr (гемоглобина)=68000

Mr (коллагена)=350000

Mr (фибриногена)=450000

Формула белка молока – казеина C 1894 H 3021 O 576 N 468 S 21

Белки – это природные высокомолекулярные природные соединения (биополимеры), построенные из альфа-аминокислот, соединенных особой пептидной связью. В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100 000 белков.

Число аминокислотных остатков, входящих в молекулы, различно: инсулин – 51, миоглобин – 140. Отсюда M r белка от 10 000 до нескольких миллионов.

Белки подразделяют на протеины (простые белки) и протеиды (сложные белки).

4 - 20 АК – “кирпичики” белкового здания, соединяя их в разном порядке, можно выстроить неисчислимое множество веществ с самыми разными свойствами. Химики пытаются расшифровать строение белковых молекул-великанов. Задача эта очень трудная: природа тщательно прячет “чертежи”, по которым выстроены эти частицы.

В 1888 году русский биохимик А.Я. Данилевский указал на то, что в молекулах белков содержатся повторяющиеся пептидные группы атомов –С–N–

В начале ХХ столетия немецкому ученому Э.Фишеру и другим исследователям удалось синтезировать соединения, в молекулы, которых входило 18 остатков различных АК, соединенных пептидными связями.

5 - Первичная структура белка – это последовательное чередование АК (полипептидная цепь ППЦ). Пространственная конфигурация белковой молекулы, напоминающая спираль образуется благодаря многочисленным водородным связям между группами.

– СО– и –NH–

Такая структура белка называется вторичной. В пространстве закрученная спираль ППЦ образует третичную структуру белка, которая поддерживается взаимодействием разных функциональных групп ППЦ.

–S–S– (дисульфидный мостик)

–СООН и –ОН (сложноэфирный мостик)

–СООН и –NH 2 (солевой мостик)

Некоторые белковые макромолекулами могут соединяться друг с другом и образовывать крупные молекулы. Полимерные образования белков называются четвертичными структурами (гемоглобин только при такой структуре способен присоединять и транспортировать О 2 в организм)

2) Химические свойства белков: горение, денатурация, гидролиз, цветные реакции.

1. Для белков характерны реакции, в результате которых выпадает осадок . Но в одних случаях полученный осадок при избытке воды растворяется, а в других – происходит необратимое свертывание белков, т.е. денатурация.

Денатурация – это изменение третичной и четвертичной структур белковой макромолекулы под влиянием внешних факторов (повышение или понижение температуры, давления, механического воздействия, действия химических реагентов, УФ – излучения, радиации, ядов, солей тяжелых металлов (свинец, ртуть и др.))

Полипептиды это белки, которые обладают повышенной конденсационной степенью. Они имеют широкое распространение среди организмов как растительного, так и животного происхождения. То есть здесь речь идет о компонентах, которые являются обязательными. Они отличаются чрезвычайным разнообразием, причем нет грани четкого характера между такими веществами и обычными белками. Если говорить о разнообразии таких веществ, то надо отметить что когда они формируются, в этом процессе участвуют не менее 20 аминокислот протеногенного типа, а если говорить о количестве изомеров, то их можно быть до бесконечности.

Именно поэтому молекулы белкового типа имеют столько возможностей, которые практически безграничны, когда речь идет об их полифункциональности. Так что, понятно почему белки называют основной всего живого, что есть на Земле. Белки называют ещё и одними из самых сложных веществ, которые когда либо были сформированы природой, также они очень уникальны. Так же, как и протеин, белки способствуют активному развитию живых организмов.

Если говорить максимально конкретно, то речь идет о веществах, которые представляют собой биополимеры, в основе которых лежат аминокислоты, содержащие не менее сотни остатков аминокислотного типа. Причем, здесь также есть деление – есть такие вещества, которые относятся к низкомолекулярной группе, они включает в себя всего несколько десятков остатков аминокислот, есть также вещества, которые относятся к высокомолекулярным группам, в них таких остатков существенно больше. Полипептид же это такое вещество, которое отличается действительно большим разнообразием в своей структуре и организации.

Группы полипептидов

Все эти вещества в условном порядке делятся на две группы, при таком делении принимаются во внимание особенности их структуры, которые оказывают непосредственное влияние на их функциональность:

  • К первой группе можно отнести вещества, которые отличаются типичной белковой структурой, то есть сюда входит цепочка линейного типа и непосредственно аминокислоты. Они встречаются во всех живых организмах, причем, самый большой интерес здесь имеют вещества с повышенной активностью гормонального типа.
  • Что касается второй группы, то здесь находятся те соединения, структура которых имеет не самые типичные для белков особенности.

Что представляет собой полипептидная цепь

Полипептидная цепь представляет белковую структуру в состав которой входят аминокислоты, все это имеет прочную связь соединениями пептидного типа. Если говорить о первичной структуре, то речь идет о простейшем уровне структуры молекулы белкового типа. Такая организационная форма отличается повышенной стабильностью.

Когда в клетках начинают образовываться пептидные связи, то первым делом активацию начинает группа карбоксильного типа одной аминокислоты, а уже потом начинает активное соединение с другой подобной группой. То есть полипептидные цепи характеризуются постоянно чередующимися фрагментами таких связей. Здесь есть целый ряд определенных факторов, оказывающих существенное влияние на форму структуры первичного типа, однако этим их влияние не ограничивается. Существует активное влияние на те организации такой цепи, которые имеют высший уровень.

Если говорить об особенностях такой организацинной формы, то они заключаются в следующем:

  • происходит регулярное чередование структур, относящимся к жесткому типу;
  • есть участки, которые обладают относительной подвижностью, они имеют возможность вращаться вокруг связей. Именно особенности такого рода оказывают влияние на то, каким образом полипептидная цепь укладывается в пространстве. Причем с пептидными цепями могут осуществляться разного рода организационные моменты под воздействием множества факторов. Может быть отсоединение одной из структур, когда пептиды формируются в отдельную группу и отделяются от одной цепи.

Белковая структура вторичного типа

Здесь речь идет о варианте цепной укладки таким образом, чтобы была организована упорядоченная структура, такое становится возможным, благодаря водородным связям между группами пептидов одной цепи с такими же группами другой цепи. Если брать во внимание конфигурацию такой структуры, то она может быть:

  1. Спирального типа, такое название произошло, благодаря своеобразной форме.
  2. Слоисто-складчатого типа.

Если говорить о спиральной группе, то это такая белковая структура, которая сформирована в форме спирали, которая образуется, не выходя за пределы одной цепи полипептидного типа. Если говорить о внешнем виде, то она во многом схожа с обычной электрической спиралью, которая есть в плитке, работающей на электричестве.

Что касается слоисто-складчатой структуры, то здесь цепь отличается изогнутой конфигурацией, её формирование осуществляется на основе связей водородного типа, причем, здесь все ограничивается пределами одного участка конкретной цепи.

Мономеры аминокислот, входящие в состав полипептидов, называют аминокислотными остатками. Аминокислотный остаток, имеющий свободную аминогруппу, называют N-концевым и записывают слева пептидной цепи, а имеющий свободную α-карбо-ксильную группу – С-концевым, и записывают справа. Цепь повто-ряющихся атомов –СН – СО – NH– в полипетидной цепи называется пептидным остовом.

Полипептидная цепь имеет следующий общий вид:

где R 1 , R 2 , R 3 , … R n – радикалы аминокислот, образующие боковую цепь.

В проявлении биологических функций пептидов и белков большую роль играет электронное и пространственное строение пептидной группы:

Наличие р-π-сопряжения в пептидной группе приводит к частичной двоесвязанности связи С – N. Длина пептидной связи С – N равна 0,132 нм, а длина связи N – С α составляет 0,147 нм. Одинарная связь С – N в пептидах примерно на 40% имеет характер двойной связи, а двойная связь С = О приблизительно на 40% является одинарной. Это обстоятельство приводит к двум важным последствиям:

1) иминогруппа (– NH –) пептидной связи не обладает заметно выраженной способностью отщеплять или присоединять протон;

2) свободное вращение вокруг связи C – N отсутствует.

Частичая двоесвязанность связи С – N означает, что пептидная группа представляет собой плоский участок пептидной цепи. Плоскости пептидных групп расположены под углом друг к другу:

Вокруг связей С – С α и N – С α возможно вращение, хотя и ограниченное размерами и характером радикалов, что позволяет полипептидной цепи принимать различные конфигурации.

Пептидная связь является единственной ковалентной связью, при помощи которой аминокислотные остатки соединяются друг с другом, образуя остов белковой молекулы.

Пептидные связи обычно расположены в транс-конфигурации, т.е. α-углеродные атомы располагаются по разные стороны от пептидной связи. В результате боковые радикалы аминокислот находятся в пространстве на наиболее удаленном расстоянии друг от друга.

Hоменклатура пептидов

При названии полипептида к названию всех аминокислотных остатков, кроме последнего, добавляют суффикс -ил , концевая аминокислота имеет окончание -ин . Например, пептид мет-асп-вал-про имеет полное название метионил аспарагил валил пролин.

Кислотно-основные свойства пептидов

Многие короткие пептиды были получены в чистом кристал-лическом виде. Высокие температуры их плавления указывают на то, что из нейтральных растворов пептиды кристаллизуются в виде диполярных ионов. Поскольку ни одна из α-карбоксильных групп и ни одна из α-аминогрупп, участвующих в образовании пептидных связей, не может ионизироваться в интервале рН от 0 до 14, кислотно-основные свойства пептидов определяются свободной NH 2 группой N-концевого остатка и свободной карбоксильной группой С-концевого остатка пептида и теми R-группами, которые способны к ионизации. В длинных пептидных цепях число ионизированных R-групп обычно велико по сравнению с двумя ионизированными группами концевых остатков пептида. Поэтому для характеристики кислотно-основных свойств пептидов мы будем рассматривать короткие пептиды.

Свободная α-аминогруппа и свободная концевая карбоксильная группа в пептидах разделены значительно большим расстоянием, чем в простых аминокислотах, и поэтому электростатические взаимо-действия между ними ослаблены. Величины рK для концевых карбоксильных групп в пептидах несколько выше, а для концевых α-аминогрупп несколько ниже, чем в соответствующих свободных аминокислотах. У R-групп в коротких пептидах и в соответствующих свободных аминокислотах величины рK заметно не различаются.

Для определения области рН, в которой может находиться изоэлектрическая точка исследуемого короткого пептида, достаточно сравнить число свободных аминогрупп и число свободных карбоксильных групп, включая N- и С-концевые группы. Если число аминогрупп превышает число карбоксильных групп, изоэлектри-ческая точка пептида будет лежать в щелочной области рН, так как для предотвращения протонирования аминогрупп необходима щелочь. Если число карбоксильных групп превышает число аминогрупп, изоэлектрическая точка будет находиться в кислой области рН, так как кислая среда подавляет диссоциацию карбоксильных групп.

Пептидная связь образуется при реакции аминогруппы одной аминокислоты и карбоксильной группы другой с выделением молекулы воды:

СН 3 -СН(NH 2)-COOH + CH 3 - СН(NH 2)-COOH → СН 3 -СН(NH 2)-CO-NH-(CH 3) СН-COOH + H 2 O

Связанные пептидной связью аминокислоты образуют полипептидную цепь. Пептидная связь имеет плоскостную структуру: атомы С, О и N находятся в sp 2 -гибридизации; у атома N имеется р-орбиталь с неподеленной парой электронов; образуется р-p-сопряженная система, приводящая к укорочению связи С-N (0,132 нм) и ограничению вращения (барьер вращения составляет ~63 кДж/моль). Пептидная связь имеет преимущественно транс -конфигурацию относительно плоскости пептидной связи. Подобное строение пептидной связи сказывается на формировании вторичной и третичной структуры белка. Пептидная связь ‒ жесткая, ковалентная, генетически детерминированная. В структурных формулах изображается в виде одинарной связи, однако на самом деле эта связь между углеродом и азотом носит характер частично двойной связи:

Это вызвано различной электроотрицательностью атомов С, N и O. Вокруг пептидной связи вращение невозможно, все четыре атома лежат в одной плоскости, т.е. компланарны. Вращение же других связей вокруг полипептидного остова достаточно свободно.

Первичная структура была открыта профессором Казанского университета А.Я. Данилевским в 1989 г. В 1913 году Э. Фишером были синтезированы первые пептиды. Последовательность аминокислот для каждого белка уникальна и закреплена генетически.

Трипептид: глицилаланиллизин

Для определения первичной структуры отдельной, химически гомогенной полипептидной цепи методом гидролиза выясняют аминокислотный состав: соотношение каждой из двадцати аминокислот в образце гомогенного полипептида. Затем приступают к определению химической природы концевых аминокислот полипептидной цепи, содержащей одну свободную NH 2 -группу и одну свободную СООН-группу.

Для определения природы N-концевой аминокислоты предложен ряд методов, в частности, метод Сэнжера (за его разработку Ф. Сэнжер был удостоен Нобелевской премии в 1958 г.). Этот метод основан на реакции арилирования полипептида 2,4-динитрофторбензолом. Раствор полипептида обрабатывают 2,4-динитрофторбензолом, который взаимодействует со свободной α-аминогруппой пептида. После кислотного гидролиза продукта реакции только одна аминокислота оказывается связанной с реактивом в виде 2,4-динитрофениламинокислоты. В отличие от других аминокислот она имеет желтый цвет. Ее выделяют из гидролизата и идентифицируют методом хроматографии.

Для определения С-концевой аминокислоты часто используют ферментативные методы. Обработка полипептида карбоксипептидазой, которая разрывает пептидную связь с того конца пептида, где содержится свободная СООН-группа, приводит к освобождению С-концевой аминокислоты, природа которой может быть идентифицирована методом хроматографии. Существуют и другие методы определения С-концевой аминокислоты, в частности, химический метод Акабори, основанный на гидразинолизе полипептида.

Следующий этап работы связан с определением последовательности аминокислот в полипептиде. Для этого вначале проводят частичный (химический и ферментативный) гидролиз полипептидной цепи на короткие пептидные фрагменты, последовательность которых может быть точно определена. После гидролиза с помощью электрофореза и хроматографии составляют пептидные карты. Затем устанавливают последовательность аминокислот в выделенных пептидах и первичную структуру всей молекулы.

Способны соединяться между собой пептидными св. (образуется полимерная молекула).

Пептидная связь - между α-карбоксильной группой одной аминок. и α-аминогр.другой аминок..

При наименовании добавляют суффикс "-ил", последняя аминок. не изм. свое название.

(аланил-серил-триптофан)

Свойства пептидной связи

1. Трансположение радикалов аминокислот по отношению к С-N связи

2. Копланарность - все атомы, входящие в пептидную группу находятся в одной плоскости, при этом "Н" и "О" расположены по разные стороны от пептидной связи.

3. Наличие кетоформы(о-с=n) и енольной(о=с-т-н) формы

4. Способность к образованию двух водородных связей с другими пептидами

5. Пептидная связь имеет частично характер двойной связи, длина меньше чем одинарной связи, является жесткой структурой, вращение вокруг нее затруднено.

Для обнаружения белков и пептидов- биуретовая реакции(из голубого в фиолетовый)

4)ФУНКЦИИ БЕЛКОВ:

Структурные белки (коллаген, кератин),

Ферментативные (пепсин, амилаза),

Транспортные (трансферрин, альбумин, гемоглобин),

Пищевые (белки яйца, злаков),

Сократительные и двигательные (актин, миозин, тубулин),

Защитные (иммуноглобулины, тромбин, фибриноген),

Регуляторные (соматотропный гормон, адренокортикотропный гормон, инсулин).

УРОВНИ ОРГАНИЗАЦИИ БЕЛКОВОЙ СТРУКТУРЫ

Белок – последовательность аминок., связанных друг с другом пептидными связями.

Пептид - аминок. не больше 10

Полипептид- от 10 до

Белок- более 40 аминок.

ПЕРВИЧНАЯ СТРУКТУРА -линейная молекула белка , образ. при соединении аминок. в цепь.

полиморфизм белков- может передаться по наследству и остаться в популяции

Последовательность и соотношение аминокислот в первичной структуре определяет формирование вторичной, третичной и четвертичной структур.

ВТОРИЧНАЯ СТРУКТУРА- взаимод. пепт. групп с обр. водор. связей. Раз-ют 2 вида структур- укладка в виде каната и гормошки.

Два варианта вторичной структуры: α-спираль (α-структура или паралеьн.) и β-складчатый слой (β-структура или антипарал.).

В одном белке, как правило, присутствуют обе структуры, но в разном долевом соотношении.

В глобулярных белках преобладает α-спираль, в фибриллярных – β-структура.

Вторичная структура образуется только при участии водородных связей между пептидными группами: атом кислорода одной группы реагирует с атомом водорода второй, одновременно кислород второй пептидной группы связывается с водородом третьей и т.д.