Физико-химические основы процессов горения и взрывов. Условия возникновения и виды горения. Пожарная безопасность. Горение — химический процесс соединения веществ с кислоро­дом, сопровождающийся выделением тепла и света Основные признаки горения как физик

Процессами горения занимались отечественные и зарубежные ученые и инженеры. Основоположник современной тепловой модели горения является В.А. Михельсон. Автор теории разветвленных цепных реакций, которая является основой положений о механизме горения – Н.Н. Семенов. Кинетика (скорость) химических реакций горения исследовалась – В.Н. Кондратьевым, Н.М. Эмануэль, Зельдович, Франк-Каменецким, Предводителевым, Беляевым, Андреевым, Лейпунским.

Рассмотрим понятия, термины и определения в теории горения и взрыва, условия возникновения и развития процессов горения, основы теплового и цепного механизмов воспламенения и горения.

Под горением понимают быстрый физико-химический окислительно-восстановительный процесс с выделением тепла, способный к самораспространению и часто сопровождающийся свечением и образованием пламени. Классические примеры горения – реакции окисления органических веществ или углерода кислородом воздуха: горение каменного угля, нефти, дров и т.д.

Процесс горения является сложным и состоит из многих связанных между собой отдельных процессов, как физических, так и химических.

Физика горения сводится к процессам тепломассообмена а переноса в реакционной зоне.

Химия горения заключается в протекании о-в реакций, состоящих из ряда элементарных актов и связанных с переходом электронов от одних атомов в веществе к другим – от восстановителю к окислителю.

Окислительно-восстановительные реакции горения могут быть межмолекулярными и внутримолекулярными :

– межмолекулярные реакции протекают с изменением степени окисления атомов в разных молекулах;

внутримолекулярные реакции горения протекают с изменением степени окисления атомов в одной и той же молекуле (обычно это реакция термического разложения веществ).

Горение – относительно быстрый процесс, поэтому к горению относя не все о-в реакции. Медленные реакции (низкотемпературное окисление, биохимическое) и слишком быстрые (взрывчатое превращение) не входят в понятие горения.

Горение обусловливают реакции, время протекания которых обычно измеряется секундами или долями секунд.

Горение сопровождается выделением тепла, поэтому к горению приводят экзотермические реакции. Горение – самоподдерживающийся за счет энергии процесс, поэтому горение обуславливают те экзотермические реакции, суммарная теплота которых достаточна для самораспространения. На практике используют реакции горения, теплота которых достаточна для получения полезного эффекта. Реакции, идущие с затратой тепла извне, не относятся к горению.

В понятие горения включены самые разнообразные химические реакции между элементами и их соединениями и реакции распада соединений.

Горение происходит не только за счет образования оксидов, но и фторидов, хлоридов, нитридов; кроме того – боридов, карбидов, силицидов ряда металлов. Выделение тепла и горение могут происходить при образовании сульфидов и фосфидов некоторых элементов.

Энергия, выделяющаяся при горении в результате протекания химических реакций, расходуется на поддержание процесса горения , а часть ее рассеивается в окружающее пространство . Стационарное (устойчивое) горение наступает при равенстве теплоприхода и теплорасхода на подготовку к горению очередных порций вещества.

В процессе горения обязательны 2 этапа :

– создание молекулярного контакта между реагентами и

– само взаимодействие молекул с образованием продуктов реакции. Скорость превращения исходных продуктов в конечные зависит от скоростисмешения реагентов и от скорости химической реакции.

В предельном случае характеристики горения могут определяться только скоростью химического взаимодействия – кинетическими константами и факторами (кинетический режим горения ), или только скоростью смешения – диффузии (диффузионный режим горения ).

Вещества, участвующие в горении, могут быть в газообразном, жидком и твердом состоянии, перемешаны между собой или не перемешаны.

Если в системе отсутствуют поверхности раздела между реагентами, то такую систему называют гомогенной , если имеются поверхности раздела – гетерогенной.

Горение часто сопровождается свечением продуктов сгорания и образованием пламени. Пламя – газообразная среда, включающая диспергированные конденсированные продукты, в которой происходит физико-химические превращения реагентов.

Для газообразных систем весь процесс горения протекает в пламени. При горении конденсированных систем часть физико-химичсеких превращений (нагревание, плавление, испарение, начальное разложение и взаимодействие реагентов может происходить вне пламени. Известно беспламенное горение, когда процесс протекает только в конденсированной системе практически без газообразования и диспергирования (горение смеси металлов с неметаллами).

Пламя характеризуется видимым излучением, но известны и прозрачные пламена. Наиболее высокотемпературную часть пламени называют основной реакционной зоной, фронтом пламени.

После инициирования процесса горения, он распространяется по всему объему. В отличие от взрыва процесс горения распространяется со скоростью, не превышающей скорость звука.

Если реагенты перед началом горения не были перемешаны, то горение и пламя называют диффузионным , т.к. смешение горючего с окислителем достигается путем диффузии. Простой пример – пламя свечи, здесь окислитель (кислород) и горючее – органическое вещество фитиля (лен, хлопок).

Если реагенты предварительно перемешаны (гомогенная смесь), процесс горения называют гомогенным горением . Гетерогенное горение происходит на поверхности раздела фаз. Одно из реагирующих веществ находится в конденсированной фазе, другое (кислород) другое – в газовой фазе. Примерами гетерогенного горения – горение угля, нелетучих металлов.

В технике при горении не всегда выполняется условие полного предварительного перемешивания реагентов и возможны переходные режимы горения.

В зависимости от характера течения газового потока, образующего пламя, различают ламинарные и турбулентные пламена. В ламинарном пламени течение ламинарное, слоистое. Процессы массообмена и переноса осуществляются за счет молекулярной диффузии и конвекции.

Горение – сложный физико‑химический, быстро протекающий процесс, который сопровождается выделением значительного количества тепла и ярким свечением.

Горение происходит в результате окисления вещества, способного к горению (горючего), окислителем (кислородом воздуха, хлором).

Виды возгорания: вспышка, воспламенение, самовоспламенение, самовозгорание.

Горение – это комплекс взаимосвязанных химических и физических процессов.

Свойство горения – это способность возникшего очага пламени перемещаться по всей горючей смеси путем передачи тепла из зоны горения в свежую смесь.

Источники зажигания – это искры, пламя, накаленные предметы, трение, удар.

Для возникновения процесса горения характерно наличие критических условий (по составу смеси, давлению, температуре, геометрическим размерам системы) возникновения и распространения пламени.

Для горения характерны три типичные стадии: возникновение, распространение b погашение пламени.

В зависимости от состояния горючего и окислителя различают три вида горения:

Гомогенное горение газов в среде газообразного окислителя;

Гетерогенное горение жидких b твердых горючих веществ в среде газообразного окислителя;

Горение взрывчатых веществ.

Окислителем является кислород воздуха. Окислителями могут быть фтор, бром, сера, которые при нагревании разлагаются с выделением кислорода.

Вспышка – быстрое сгорание смеси газов с воздухом, которое может возникнуть от соприкосновения смеси с пламенем, искрой, без перехода в горение. На вспышке горение прекращается, так как успевают сгореть только пары.

Воспламенение – это процесс, при котором вещество нагревается до температуры кипения и горит, пока происходит выделение летучих углеводородов.

Самовоспламенение – процесс, когда вещество нагревается от постороннего источника теплоты, постоянно переходя в самонагревание.

Самовозгорание – процесс самонагрева и последующего возгорания вещества без воздействия открытого источника зажигания. Чем ниже температура, при которой происходит процесс самовозгорания, тем вещество более опасно. Процесс самовозгорания может начаться уже при температуре 10‑20 оС.

Самовозгорающиеся вещества делятся на три группы: самовозгорающиеся от воздействия воздуха (растительные масла), вызывающие горение при воздействии на них воды (карбид кальция), самовозгорающиеся при взаимодействии с другими веществами (при контакте веществ).

Пожаро– и взрывоопасность газов характеризуется следующими показателями: концентрационными пределами распространения пламени, минимальной энергией зажигания, температурой горения и скоростью распространения пламени.

Горение бывает двух видов: полное и неполное.

Полное горение происходит при избыточном количестве кислорода и сопровождается образованием паров воды и диоксида углерода.

Неполное горение очень опасно, так как происходит при недостатке кислорода, при этом образуется токсичный оксид углерода.

Два режима горения: первый режим, в котором горючее вещество образует однородную смесь с воздухом до начала горения, второй режим, в котором горючее вещество и окислитель первоначально разделены, а горение протекает в области их перемешивания (диффузионное горение).

Тепловой поток, который поступает из зоны горения к твердому горючему, зависит от энергии, которая выделяется в процессе горения и от условий теплообмена между зоной горения и поверхностью твердого горючего. В этих условиях режим и скорость горения могут зависеть от физического состояния горючего вещества, его распределения в пространстве и характеристик окружающей среды.

В зависимости от скорости распространения пламени горение может происходить в форме дефлаграционного горения, взрыва и детонации.

Взрыв – процесс быстрого выделения большого количества энергии. В результате взрыва взрывоопасная смесь превращается в сильно нагретый газ с высоким давлением, который с большой силой воздействует на окружающую среду и вызывает образование взрывной волны.

Разрушения, вызванные взрывом, обусловлены действием взрывной волны. По мере удаления от места взрыва механическое воздействие взрывной волны ослабевает.

Скорость распространения пламени при взрыве достигает сотен метров в секунду. При ускорении распространения пламени усиливается сжатие несгоревшего газа, оно распространяется по несгоревшему газу в виде последовательных ударных волн, которые соединяются в одну мощную ударную волну сильно сжатого и разогретого газа. В результате возникает устойчивый режим распространения реакции. Разновидность горения, распространяющегося со скоростью, превышающей скорость звука, называют детонацией . Она характеризуется резким скачком давления в месте взрыва, который обладает большим разрушающим действием.

Жидкости и твердые вещества образуют воспламеняющиеся смеси при повышении их до температуры, при которой вследствие испарения в достаточном количестве образуются газообразные продукты. Взрывоопасными являются смеси пыли с воздухом. Витающая в воздухе пыль может находиться во взвешенном состоянии и оседать на стенах, оборудовании.

При горении выделяются ядовитые газы : синильная кислота, фосген и другие, а содержание кислорода в воздухе падает. Вот почему опасен не только и даже не столько огонь, сколько дым и гарь от него. Надо учитывать и возможные реакции организма человека при увеличении концентрации продуктов горения:

угарного газа : 0,01% - слабые головные боли; 0,05% - головокружение; 0,1% - обморок; 0,2% - кома, быстрая смерть; 0,5% - мгновенная смерть;

углекислого газа : до 0,5% - не воздействует; от 0,5 до 7% - учащение сердечного ритма, начало паралича дыхательных центров; свыше 10% - паралич дыхательных центров и смерть.

ТРЕБОВАНИЯ БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ БЫТОВЫХ ГАЗОВЫХ ПРИБОРОВ (И ГАЗОВЫХ ПЛИТ В ЧАСТНОСТИ)

Нормы оснащения помещений ручными огнетушителями

Таблица 1

2

Класс пожара

Пенные и водные огнетушители вместимостью 10 л

Порошковые огнетушители вместимостью, л / массой огнетушащего вещества, кг

Хладоновые огнетушители вместимостью 2 (3) л

Углекислотные огнетушители вместимостью, л / массой огнетушащего вещества, кг

5 (8)/3(5)

А, Б, В (горючие газы и жидкости)

Общественные здания

Примечания :

1. Для тушения пожаров различных классов порошковые огнетушители должны иметь соответствующие заряды: для класса А - порошок ABC (Е); для классов В, С и Е - ВС (Е) или ABC (Е), для класса D - D.

2. Для порошковых огнетушителей и углекислотных огнетушителей приведена двойная маркировка: старая маркировка по вместимости корпуса, л/новая маркировка по массе огнетушащего состава, кг. При оснащении помещений порошковыми и углекислотными огнетушителями допускается использовать огнетушители как со старой, так и с новой маркировкой.

3. Знаком " + + " обозначены рекомендуемые к оснащению объектов огнетушители, знаком " + " - огнетушители, применение которых допускается при отсутствии рекомендуемых и при соответствующем обосновании; знаком " - " - огнетушители, которые не допускаются для оснащения данных объектов.

4. В замкнутых помещениях объемом не более 50 м 3 для тушения пожаров вместо переносных огнетушителей или дополнительно к ним могут быть использованы огнетушители самосрабатывающие порошковые.

Нормы оснащения помещений передвижными огнетушителями

Таблица 2

Предельная защищаемая площадь, м 2

Класс пожара

Воздушно-пенные огнетушители вместимостью 100 л

Комбинированные огнетушители вместимостью (пена, порошок) 100 л

Порошковые огнетушители вместимостью 100 л

Углекислотные огнетушители вместимостью, л

А, Б, В (горючие газы и жидкости)

В (кроме горючих газов и жидкостей), Г

Примечания:

1. Для тушения очагов пожаров различных классов порошковые и комбинированные огнетушители должны иметь соответствующие заряды: для класса А - порошок АВС (Е); для класса В, С и Е - ВС (Е) или АВС (Е); для класса D - D.

2. Значения знаков " + +", " + " и " - " приведены в примечании 2 к таблице 1.

Упрощённо под горением понимают быстропротекающий экзотермический процесс окисления веществ кислородом воздуха с выделением значительного количества тепла и излучением света.

Горение представляет собой сложный физико-химический процесс взаимодействия горючего вещества и окислителя, а также разложения некоторых веществ, характеризующийся самоускоряющимся превращением с выделением большого количества тепла и излучением света. Обычно в качестве окислителя в этом процессе участвует кислород воздуха с концентрацией 21 об. % . Для возникновения и развития процесса горения необходимы горючее вещество, окислитель и источник воспламенения, инициирующий определённую скорость химической реакции между горючим и окислителем.

Горение, как правило, происходит в газовой фазе, поэтому горючие вещества, находящиеся в конденсированном состоянии (жидкости и твёрдые вещества), для возникновения и поддержания горения должны подвергаться газификации (испарению, разложению). Горение отличается многообразием видов и особенностей, обусловливаемых процессами тепломассообмена, газодинамическими факторами, кинетикой химических реакций и другими факторами, а также обратной связью между внешними условиями и характером развития процесса.

2.4.2.1. Классификация процессов горения.

Горение может быть гомогенным и гетерогенным в зависимости от агрегатного состояния горючих веществ и окислителя.

Гомогенное горение протекает в том случае, когда реагирующие компоненты горючей смеси имеют одинаковое агрегатное состояние. Гомогенное горение может быть кинетическим и диффузионным в зависимости от условий смесеобразования горючих компонентов и от соотношения скоростей химических реакций и смесеобразования. Тот или иной режим горения реализуется, например, при пожаре, в зависимости от того, какая из стадий процесса горения является лимитирующей: скорость смесеобразования или скорость химических реакций.

Кинетическим является горение предварительно перемешанных газо- или паровоздушных смесей (лимитирующая стадия процесса – скорость химических реакций), которое часто имеет взрывной характер (если смесь образуется в замкнутом пространстве), т.к. выделяющаяся при этом энергия не успевает отводиться за пределы этого пространства. Кинетическое горение может быть и спокойным, если горючая смесь предварительно создается в малом, незамкнутом пространстве с непрерывной подачей горючего в зону горения.

Диффузионный режим горения реализуется при создании горючей смеси непосредственно в зоне горения, когда окислитель поступает в неё за счет процессов диффузии, например, при гетерогенном горении.

Гетерогенное горение осуществляется при различных агрегатных состояниях горючего вещества и окислителя. В гетерогенном горении важную роль играет интенсивность потока паров, образующихся из конденсированных горючих веществ (жидкости, твёрдые вещества) в реакционную зону.

С газодинамических позиций горение может быть ламинарным и турбулентным .

Ламинарный режим процесса горения осуществляется в том случае, когда компоненты горючей смеси поступают в зону реакции при малых значениях критерия Рейнольдса (0 < R e < 200), т.е. в основном за счёт молекулярной диффузии. Процесс характеризуется малыми скоростями газовыхпотоков горючего и окислителя и послойным распространением реакционной зоны (фронта пламени) в пространстве. Скорость горения в этом случае зависит от скорости образования горючей смеси.

Турбулентный режим процесса реализуется тогда, когда компоненты горючей смеси поступают в зону реакции при больших значениях критерия Рейнольдса (230 < R e < 10000). Горение в этом режиме происходит при увеличении скорости газовыхпотоков , когда нарушается ламинарность их движения. В турбулентном режиме горения завихрение газовых струй улучшает перемешивание реагирующих компонентов, при этом увеличивается площадь поверхности, через которую происходит молекулярная диффузия, результатом чего является увеличение скорости распространения пламени в пространстве.

По скорости распространения пламени в пространстве горение делится на:

дефлаграционное (скорость распространения пламени несколько м/с );

взрывное (скорость распространения пламени десятки и сотни м/с , но не более скорости распространения звука в воздухе (344 м/с ));

детонационное (скорость распространения пламени больше скорости звука в воздухе).

В зависимости от глубины протекания химических реакций горение может быть полным и неполным .

При полном горении реакция протекает до конца, т.е. до образования веществ, неспособных далее взаимодействовать друг с другом, с горючим и окислителем (исходное соотношение горючего вещества и окислителя при этом называется стехиометрическим ). В качестве примера рассмотрим полное горение метана, протекающее по реакции

CH 4 + 2O 2 = CO 2 + 2H 2 O + Q

Где Q – теплота, выделяющаяся в результате протекания экзотермической реакции, Дж .

При полном горении углеводородов продуктами реакции являются углекислый газ и вода, т. е. нетоксичные и негорючие вещества. Полное горение может реализоваться как при стехиометрическом соотношении горючего и окислителя, так и при избытке окислителя по отношению к его стехиометрическому содержанию в горючей смеси.

Неполное горение характеризуется незавершённостью химической реакции, т.е. продукты реакции при наличии окислителя могут далее взаимодействовать с ним. Происходит неполное горение при недостаточном (по сравнению со стехиометрическим) содержании окислителя в горючей смеси. В результате неполного горения, например, углеводородов, происходит образование токсичных и горючих компонентов таких, как CO , H 2 , бензпирен, С (сажа), органические смолы и др., всего около 300 химических соединений и элементов.

При прочих равных условиях при полном горении развиваются более высокие температуры, нежели при неполном.

2.4.2.2. Основные механизмы процессов горения.

Горение сопровождается выделением тепла и излучением света и возникает в условиях прогрессивного самоускорения процесса, связанного с накоплением в системе тепла (тепловое горение ) или катализирующих активных промежуточных продуктов реакции (цепное горение ).

Тепловое горение возможно при экзотермической реакции, скорость которой быстро возрастает под влиянием накапливающегося в системе тепла, приводящего к повышению температуры. При достижении температуры, при которой приход тепла от реакции превышает тепловые потери в окружающую среду, происходит саморазогрев системы, заканчивающийся самовоспламенением горючей смеси. В этих условиях наблюдается спонтанное развитие реакции, сопровождаемой нагревом образующихся продуктов до такой температуры, при которой они начинают излучать свет (более 900 °С ). К тепловому горению относятся процессы и с участием кислорода воздуха, и без него (разложение взрывчатых веществ, озона, ацетилена, пероксидов (например, Н 2 О 2), взаимодействие некоторых металлов с галогенами, серой и др.).

Цепное горение возможно только при реакциях, для которых основой воспламенения или взрыва является цепной процесс. Последний сопровождается образованием неустойчивых промежуточных продуктов реакции, регенерирующих активные центры (атомы и молекулы, имеющие свободные химические связи), которые ускоряют процесс. Накопление достаточного количества активных центров способствует переходу цепного процесса в тепловой и возрастанию температуры смеси до точки её самовоспламенения. Возникают такие активные центры в результате повышения скорости теплового колебательного движения молекул, а приумножаются за счёт разветвления цепей. На начальных стадиях реакций, протекающих по цепному механизму, химическая энергия реагирующих веществ переходит в основном в образование новых активных центров. Процесс изменения концентрации активных центров описывается уравнением:

где n – число активных центров в зоне реакции;

τ – время;

w 0 – скорость зарождения активных центров;

φ – константа, характеризующая разность скоростей разветвления и обрыва цепей.

С позиций молекулярно-кинетической теории (МКТ) строения материи химические реакции горения происходят в результате взаимодействия молекул горючего и окислителя. Силы молекулярного взаимодействия между двумя компонентами горючей смеси проявляются на очень малом расстоянии, а с увеличением последнего резко убывают. Поэтому взаимодействие между молекулами горючего и окислителя возможно лишь при полном их сближении, которое можно рассматривать как соударение. Следовательно, химической реакции между горючим и окислителем должны предшествовать смешение компонентов и физический акт упругого соударения молекул.

Число соударений молекул газа в единице объёма легко рассчитывается. Так, например, для стехиометрической смеси водорода и кислорода (2Н 2 + О 2) при температуре 288 К и атмосферном давлении (~ 101325 Па ) число соударений за 1 с в 1 см 3 достигает 8,3·10 28 . Если бы все эти соударения приводили к химической реакции, то вся смесь прореагировала бы очень быстро. Практика же показывает, что в этих условиях реакция горения не протекает вообще, т.к. все эти соударения не приводят к химическому взаимодействию.

Для того чтобы химическая реакция произошла, реагирующие молекулы должны находиться в возбуждённом состоянии. Такое возбуждение может быть химическим, когда атомы молекул обладают одной или двумя свободными валентностями (такие молекулы называются радикалами и обозначаются, например, СН 3 , ОН , СН 2 и т.п.) и физическим когда в результате медленного нагревания молекулы приобретают кинетическую энергию выше критического значения.

Молекулы, обладающие необходимым запасом энергии для разрыва или ослабления существующих связей, называются активными центрами химической реакции.

Разность между средними уровнями запаса энергии молекул в активном состоянии и находящихся в нормальном, т.е. неактивном, невозбуждённом состоянии, называется энергией активации (Е а ). Чем выше численное значение энергии активации, тем труднее заставить данную пару реагентов вступить в химическую реакцию и наоборот. Поэтому энергия активации является как бы косвенным показателем степени пожарной опасности горючих веществ.

Оценить величину энергии активации можно по формуле:

где Е а – энергия активации, Дж ;

k – постоянная Больцмана, равная 1,38·10 –23 Дж/К ;

Т – абсолютная температура, К .

Характер протекания основного химического процесса горения зависит от ряда физических процессов:

– передвижения реагирующих веществ и продуктов реакции (процессы диффузии);

– выделения и распространения тепла (процессы теплопередачи);

– аэро- и гидродинамических условий, обеспечивающих перенос тепла и вещества (процессы конвекции).

Необходимость учёта этих факторов значительно усложняет изучение и теоретическое описание процессов горения.

Горение твёрдых веществ, не образующих при нагревании газовой (паровой) фазы, является гетерогенным и протекает на поверхности раздела фаз, поэтому наряду с рассмотренными выше факторами, влияющими на характер процесса, исключительно важную роль играют размеры и природа поверхности твёрдой фазы (это особенно важно для аэрозолей).

2.4.2.3. Импульсы воспламенения.

Для возникновения горения кроме горючего вещества и окислителя необходим начальный энергетический импульс (чаще всегос выделением тепла), который вызывает воспламенение небольшого объёма горючей смеси, после чего горение распространяется по всему пространству, в котором она распределена.

Импульс воспламенения может возникнуть при протекании физических, химических и микробиологических процессов, способствующих образованию тепла. В зависимости от характера этих процессов импульсы соответственно и подразделяются на физические , химические , и микробиологические.

Так как при воздействии на систему физического импульса выделяется тепло, не являющееся результатом химического процесса, то этот импульс рассматривается как тепловой. Действие теплового импульса, вызывающего нагревание системы, может быть:

контактным – передача тепла осуществляется за счёт соприкосновения горючей смеси с его источником;

радиационным – передача тепла горючей смеси происходит электромагнитным излучением от источника нагрева;

конвекционным – передача тепла горючей системе происходит веществом (воздухом или иным газом, находящимся в движении);

гидравлическим (динамическим) – образование тепла за счёт быстрого уменьшения объёма газовой смеси, сопровождающегося повышением давления последней.

Основными источниками теплового импульса являются:

– открытое пламя (температура ~ 1500 °С );

– нагретые поверхности (температура > 900 °С );

– механические искры (температура ~ 1200 °С )

– электрические искры (температура до 6000 °С ).

При химическом и микробиологическом импульсах накопление тепла в системе происходит за счёт химической реакции, физико-химического процесса (например, адсорбции) и жизнедеятельности микроорганизмов, для которых горючее вещество является пищей.

2.4.2.4. Скорость реакций горения.

Скорость процесса горения в общем виде определяется по уравнению:

где а , b – концентрации реагирующих компонентов;

τ – время,

где m, n – концентрации продуктов горения.

Повышение скорости горения сопровождается увеличением количества тепла, поступающего в систему в единицу времени, и, как следствие, ростом температуры горения.

2.4.2.5. Температура горения.

При горении не всё выделенное тепло тратится на повышение температуры реакционной смеси, т. к. часть его расходуется в виде потерь на:

– химический и физический недожог, учитываемый коэффициентом недожога (β );

– электромагнитное излучение пламени, зависящее от температуры излучающего тела, его агрегатного состояния и химической природы. Эта зависимость определяется коэффициентом черноты излучающего тела(ε ) и длиной волны электромагнитного излучения;

– кондуктивно-конвективные потери.

Исходя из этого, в процессах горения различают 3 основных вида температур:

– калориметрическую;

– теоретическую (расчётную);

– фактическую.

Калориметрическая температура достигается в том случае, когда всё тепло, выделившееся в процессе горения, расходуется на нагрев продуктов горения, например, при горении бензола – 2533 К , бензина – 2315 К , водорода – 2503 К , природного газа – 2293 К .

Теоретическая (расчётная) температура определяется с учётом потерь тепла на диссоциацию продуктов горения. Значительная диссоциация продуктов горения углеводородных горючих веществ начинается при температуре > 2000 К . Такие высокие температуры при пожарах в производственных условиях практически не встречаются, поэтому потери тепла на диссоциацию в этих случаях, как правило, не учитываются.

Фактическая температура горения определяется с учётом потерь тепла в окружающую среду и практически для всех горючих веществ составляет ~ 1300 – 1700 К .

Горе́ние - сложный -химический процесс

Горение - это интенсивные химические окислительные реакции, которые сопровождаются выделением тепла и свечением. Горение возникает при наличии горючего вещества, окислителя и источника воспламенения. В качестве окислителей в процессе горения могут выступать кислород, азотная кислота, пероксид натрия, бертолетова соль, перхлораты, нитросоединения и др. В качестве горючего - многие органические соединения, сера, сероводород, колчедан, большинство металлов в свободном виде, оксид углерода, водород и т. д.

Горе́ние - сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе , сопровождающийся интенсивным выделением . Химическая энергия, запасённая в компонентах исходной смеси, может выделяться также в виде и света. Светящаяся зона называется фронтом пламени или просто .

сыграло ключевую роль в развитии человеческой цивилизации. открыл людям возможность приготовления пищи и обогрева жилищ, а впоследствии - развития и создания новых, более совершенных инструментов и технологий.

Горение до сих пор остаётся основным источником энергии в мире и останется таковым в ближайшей обозримой перспективе. В 2010 году примерно 90 % всей энергии, производимой человечеством на Земле, добывалось сжиганием или , и, по прогнозам , эта доля не упадёт ниже 80 % до 2040 года при одновременном росте энергопотребления на 56 % в период с 2010 по 2040 год . С этим связаны такие современной цивилизации, как истощение , окружающей среды и .

Особенности горения, отличающие его от прочих видов , - это большой и большая , приводящая к сильной зависимости скорости реакции от температуры. Реакции горения, как правило, идут по разветвлённо-цепному механизму с прогрессивным самоускорением за счёт выделяющегося в реакции тепла. Вследствие этого горючая смесь, способная храниться при комнатной температуре неограниченно долго, может воспламениться или при достижении критической температуры воспламенения ( ) или при инициировании внешним источником энергии (вынужденное воспламенение, или зажигание).

Если продукты, образующиеся при сгорании исходной смеси в небольшом объёме за короткий промежуток времени, совершают значительную механическую работу и приводят к ударным и тепловым воздействиям на окружающие объекты, то это явление называют взрывом. Процессы горения и взрыва составляют основу для создания , , и различных видов обычных вооружений.

Более 90 % всей энергии, используемой человечеством сегодня, вырабатывается в процессе горения. Начало научным исследованиям теории горения было положено российским ученым Михельсоном В.А.

Горение – сложный физико-химический процесс превращения исходных горючих веществ и материалов в продукты сгорания, сопровождающийся интенсивным выделением тепла, дыма и световым излучением факела пламени.

Для возникновения такой физико-химической реакции, лежащей в основе любого пожара, необходимо наличие трех обязательных компонентов: горючей среды, источника зажигания и окислителя.

Горючая среда – среда, способная самостоятельно гореть после удаления источника зажигания.

Источник зажигания – это тепловой источник с достаточной для зажигания температурой, энергией и длительностью действия.

Различают горение кинетическое и диффузионное.

Кинетическое горение представляет собой горение предварительно перемешанных горючих газов и окислителя.

Диффузионное горение – это горение, при котором окислитель поступает в зону горения извне. Диффузионное горение, в свою очередь, бывает ламинарным (спокойным) и турбулентным (неравномерным) во времени и в пространстве.

В зависимости от агрегатного состояния исходного горючего вещества различают гомогенное , гетерогенное горение и горение конденсированных систем .

При гомогенном горении окислитель и горючее находятся в одинаковом агрегатном состоянии. К этому типу относится горение газовых смесей (природного газа, водорода, пропана и т.п. с окислителем – обычно кислородом воздуха).

При гетерогенном горении исходные вещества (например, твердое или жидкое горючее и газовый окислитель) находятся в разных агрегатных состояниях. Твердые вещества, превращенные в пыль (угольную, текстильную, растительную, металлическую), при перемешивании с воздухом образуют пожаровзрывоопасные пылевоздушные смеси.

Горение конденсированных систем связано с переходом вещества из конденсированного состояния в газ.

В зависимости от скорости распространения пламени горение может быть дефлаграционным − со скоростью несколько м/с, взрывным − скорость порядка десятков и сотен м/с и детонационным − сотни и тысячи м/с.

Для дефлаграционного или нормального распространения горения характерна передача тепла от слоя к слою. В результате этого фронт пламени перемещается в сторону горючей смеси.

Взрывным горением называется процесс горения со стремительным высвобождения энергии и образованием при этом избыточного давления (более 5 кПа).

При детонационном горении (детонации) распространение пламени происходит со скоростью, близкой к скорости звука или превышающей ее.

Детонация есть процесс химического превращения системы окислитель − восстановитель, представляющий собой совокупность ударной волны, распространяющейся с постоянной скоростью, и следующей за фронтом зоны химических превращений исходных веществ. Химическая энергия, выделяющаяся в детонационной волне, подпитывает ударную волну, не давая ее затухать.

Скорость детонационной волны есть характеристика каждой конкретной системы. Для гетерогенных систем характерна малоскоростная детонация, обусловленная спецификой реакции газ - твердое вещество. При детонации газовых смесей скорости распространения пламени составляют (1-3)∙10 3 м/с и более, а давление во фронте ударной волны (1-5)МПа и более.

Горению свойственны опасные факторы, которые называются опасными факторами пожара .

Под пожаром понимается неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

К опасным факторам пожара (согласно ГОСТ 12.1.004-91) относятся:

Пламя и искры;

Повышенная температура окружающей среды;

Пониженная концентрация кислорода;

Токсические продукты горения

Термического разложения.

Пламя − это видимая часть пространства (пламенная зона), внутри которой протекают процессы окисления, дымообразования и тепловыделения, а также генерируются токсические газообразные продукты и поглощается кислород из окружающего пространства.

Пламя в количественном отношении в основном характеризуется следующими величинами:

Площадью горения (F 0 , м 2), - скоростью выгорания (Ψ , кг/с), - мощностью тепловыделения (Q гор , Вт) - оптическим количеством дыма (ΨD , Непер∙м 2 ∙кг -1).

Особенностями горения на пожаре, в отличие от других видов горения, являются: склонность к самопроизвольному распространению огня; сравнительно невысокая степень полноты сгорания и интенсивное выделение дыма, содержащего продукты полного и неполного окисления.

На пожарах образуются три зоны:

- Зона горени я − часть пространства, в котором происходит подготовка веществ к горению (подогрев, испарение, разложение) и собственно горение.

- Зона теплового воздействия − часть пространства, примыкающая к зоне горения, в которой тепловое воздействие приводит к заметному изменению состояния материалов и конструкций, и где не возможно пребывание людей без специальной тепловой защиты.

- Зона задымления − часть пространства, примыкающая к зоне горения и расположенная как в зоне теплового воздействия, так и вне ее и заполненная дымовыми газами в концентрациях, угрожающих жизни и здоровью людей.

Горение может осуществляться в двух режимах: самовоспламенения и распространения фронта пламени .

Распространение пламени − процесс распространения горения по поверхности вещества и материалов за счет теплопроводности, тепловой радиации (излучения) и конвекции.

Оценивая динамику развития пожара можно выделить несколько его основных фаз:

- 1 фаза (до 10 мин) − начальная стадия, включающая переход возгорания в пожар за время примерно 1-3 минуты и рост зоны горения в течение 5-6 минут. При этом происходит преимущественно линейное распространение огня вдоль горючих веществ и материалов, что сопровождается обильным дымовыделением.

- 2 фаза − стадия объемного развития пожара, занимающая по времени 30-40 минут, характеризуется бурным процессом горения с переходом в объемное горение. Процесс распространения пламени происходит дистанционно за счет передачи энергии горения на другие материалы. Максимальных значений достигает температура (до 800-900 о С) и скорости выгорания.

Стабилизация пожара при максимальных его значениях происходит на 20-25 минуте и продолжается еще 20-30 минут, при этом выгорает основная масса горючих материалов.

- 3 фаза − фазы затухания пожара, т.е. догорание в виде медленного тления. После чего пожар прекращается.

Согласно ИСО № 3941-77 пожары делятся на следующие классы:

- класс А − пожары твердых веществ, в основном органического происхождения, горение которых сопровождается тлением (древесина, текстиль, бумага);

- класс В − пожары горючих жидкостей или плавящихся твердых веществ;

- класс С − пожары газов;

- класс Д − пожары металлов и их сплавов;

- класс Е − пожары, связанные с горением электроустановок.

Характеристиками горючей смеси по показателям пожаро- взрывоопасности являются:

Группы горючести,

Концентрационные пределы распространения пламени (воспламенения),

Температура вспышки, - температура воспламенения и самовоспламенения.

Группа горючести − показатель, который применим к следующим агрегатным состояниям веществ:

- газы − вещества, абсолютное давление паров которых при температуре 50 о С равно или более 300 кПа или критическая температура которых менее 50 о С;

- жидкости − вещества с температурой плавления (каплепадения) менее 50 о С;

- твердые вещества и материалы с температурой плавления (каплепадения) более 50 о С;

- пыли − диспергированные вещества и материалы с размером частиц менее 850 мкм.

Горючесть − способность вещества или материала к горению. По горючести они подразделяются на три группы.

Негорючие (несгораемые ) − вещества и материалы, не способные к горению на воздухе. Негорючие вещества могут быть пожароопасными, (например, окислители, а также вещества, выделяющие горючие продукты при взаимодействии в водой, кислородом воздуха или друг с другом).

Трудногорючие (трудносгораемые ) − вещества и материалы, способные возгораться в воздухе от источника зажигания, но неспособные самостоятельно гореть после его удаления.

Горючие (сгораемые ) − вещества и материалы, способные самовозгораться, а также возгораться в воздухе от источника зажигания и самостоятельно гореть после его удаления.

Из этой группы выделяют легко воспламеняющиеся вещества и материалы − способные воспламенятся от кратковременного (до 30 с) воздействия источника зажигания с низкой энергией (пламя спички, искра, тлеющая сигарета и т.п.).

Концентрационные пределы воспламенения − минимальная и максимальная концентрация (массовая или объемная доля горючего в смеси с окислительной средой), выраженная в %, г/м 3 или л/м 3 , ниже (выше) которой смесь становится неспособной к распространению пламени.

Различают нижний и верхний концентрационные пределы распространения пламени (соответственно НКПРП и ВКПРП ).

НКПРП (ВКПРП) − минимальное (максимальное) содержание горючего в смеси (горючее вещество – окислительная среда), при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания. Например, для смеси природного газа, состоящего в основном из метана, концентрационный предел воспламенения (детонационного горения) составляет 5-16 %, а взрыв пропана возможен при содержании в 1 м 3 воздуха 21 л газа, а возгорание − при 95 л.

Температура вспышки (t всп ) − минимальная температура горючего вещества, при которой на его поверхности образуются газы и пары, способные вспыхивать в воздухе от источника зажигания, но скорость их образования еще недостаточна для устойчивого горения.

В зависимости от численного значения t всп жидкости их относят к легковоспламеняющимся (ЛВЖ) и горючим (ГЖ ). В свою очередь ЛВЖ подразделяются на три разряда в соответствии с ГОСТ 12.1.017-80.

Особо опасные ЛВЖ − это горючие жидкости с t всп от −18 о С и ниже в закрытом или от −13 о С в открытом пространстве. К ним относятся ацетон, диэтиловый эфир, изопентан и др.

Постоянно опасные ЛВЖ − это горючие жидкости с t всп от −18 о С до +23 о С в закрытом или от −13 о С до 27 о С в открытом пространстве. К ним относятся бензол, толуол, этиловый спирт, этилацетат и др.

Опасные при повышенной температуре ЛВЖ − это горючие жидкости с t всп от 23 о С до 61 о С в закрытом или выше 27 о С до 66 о С в открытом пространстве. К ним относятся скипидар, уайт-спирит, хлорбензол и др.

Температура вспышки используется для определения категорий помещений зданий и наружных установок по взрывопожарной и пожарной опасности согласно НПБ 105-03, а также при разработке мероприятий для обеспечения пожаро- и взрывобезопасности ведения процессов

Температура самовоспламенения − самая низкая температура вещества, при которой происходит резкое увеличение скорости энергии.

Понятие «взрыв » используется во всех процессах, которые могут вызвать существенное повышение давления в окружающей среде.

На основании ГОСТ Р 22.08-96 взрыв − это процесс выделения энергии за короткий промежуток времени, связанный с мгновенным физико-химическим изменением состояния вещества, приводящим к возникновению скачка давления или ударной волны, сопровождающейся образованием сжатых газов или паров, способных производить работу.

На взрывоопасных объектах возможны следующие виды взрывов:

- взрывные процессы − неконтролируемое резкое высвобождение энергии в ограниченном пространстве;

- объемный взрыв − образование облаков топливно-воздушных или других газообразных, пылевоздушных смесей и их быстрыми взрывными превращениями;

- физические взрывы − взрывы трубопроводов, сосудов, находящихся под высоким давлением или перегретой жидкостью.

Аварийный взрыв – чрезвычайная ситуация, возникающая на потенциально опасном объекте в любой момент времени в ограниченном пространстве спонтанно, по стечению обстоятельств или в результате ошибочных действий работающего на нем персонала

Причинами взрывов, в основном, являются:

Нарушение технологического регламента;

Внешние механические воздействия;

Старение оборудование и установок;

Конструкторские ошибки;

Изменение состояния герметизируемой среды;

Ошибки обслуживающего персонала;

Неисправность контрольно-измерительных, регулирующих и предохранительных устройств.