Таблица функции характеристика примеры белков. Структура и функции белков. Основные биологические функции белков

Благодаря сложности, разнообразию форм и состава, белки играют важную роль в жизнедеятельности клетки и организма в целом. Функции их разнообразны.

Функция Примеры и пояснения
1. Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
2. Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
3. Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
4. Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки - антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений
5. Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных
6. Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
7. Запасающая В организме животных белки как правило не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется в организме, образуя комплекс с белком ферритином.
8. Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов - воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
9. Каталитическая Одна из важнейших функций белков. Обеспечивается белками - ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобисфосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты илиэнзимы особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты – глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы - кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр – небольшой участок фермента (от трех до двенадцати аминокислотных остатков), именно в котором происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа

характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция.

Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э.Фишера (1890) и Д.Кошланда (1959). Э.Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с "ключом", фермент – с «замком».

Д.Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия.

Большинство неорганических катализаторов ускоряют химические реакции при очень высоких температурах, имеют максимальную эффективность в сильнокислой или сильнощелочной среде, при высоких давлениях, а большинство ферментов активны при температурах 35-45˚С, физиологических значениях кислотности раствора и при нормальном атмосферном давлении; скорость ферментативных реакций в десятки тысяч (а иногда и в миллионы раз) выше скорости реакций, идущих с участием неорганических катализаторов. Например, пероксид водорода без катализаторов разлагается медленно: 2Н 2 О 2 → 2Н 2 О + О 2 . В присутствии солей железа (катализатора) эта реакция идет несколько быстрее. Фермент каталаза (М=252000) за 1 сек. расщепляет 100 тыс. молекул Н 2 О 2 (М=34). Известно более 2000 различных ферментов, представленных белками с высокой молекулярной массой.

Скорость ферментативных реакций зависит от 1) температуры, 2) концентрации фермента, 3) коцентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Рис. . Зависимость скорости реакции от концентрации фермента, субстрата, рН, температуры
Большинство ферментов может работать только при температуре от 0 о до 40 о С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10°С. При температуре выше 40°С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества молекул субстрата скорость ферментативной реакции растет до тех пор, пока не произойдет насыщение активных центров фермента – если активный центр каталазы расщепляет в секунду 100 000 молекул субстрата, то при количестве молекул субстрата более 100 000 на активный центр скорость реакции не возрастет.

Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин – 2,0, амилаза слюны – 6,8, липаза поджелудочной железы – 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят – ингибиторами .

Классификация ферментов . По типу катализируемых химических превращений ферменты разделены на 6 классов: 1) оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому – дегидрогеназа), 2) трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому – трансаминаза), 3) гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта – амилаза, липаза), 4) лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи «С-С», «С-N», «С-О», «С-S» – декарбоксилаза), 5) изомеразы (внутримолекулярная перестройка – изомераза), 6) лигазы (соединение двух молекул в результате образования связей «С-С», «С-N», «С-О», «С-S» – синтетаза

    Структура белковых молекул. Связь свойств, функций и активности белков с их структурной организацией (специфичность, видовая принадлежность, эффект узнавания, динамичность, эффект кооперативного взаимодействия).

Белки - это высокомолекулярные азотсодержащие вещества, состоящие из остатков аминокислот, связанных между собой пептидными связями. Белки иначе называют протеинами;

Простые белки построены из аминокислот и при гидролизе распадаются соответственно только на аминокислоты. Сложные белки - это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождаются небелковая часть или продукты ее распада. Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: протамины, гистоны, альбумины, глобулины, проламины, глютелины и др.

Классификация сложных белков основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают: фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), нуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы).

3. Структура белка.

Последовательность расположения аминокислотных остатков в полипептидной цепи белковой молекулы получила название первичной структуры белка . Первичная структура белка, помимо большого числа пептидных связей, обычно содержит также небольшое число дисульфидных (-S-S-) связей. Пространственная конфигурация полипептидной цепи, точнее тип полипептидной спирали, определяет вторичную структуру белка , она представлена в основном α-спиралью, которая фиксирована водородными связями. третичная структура -полипептидная цепь, свернутая целиком или частично в спираль, расположена или упакована в пространстве (в глобуле). Известная стабильность третичной структуры белка обеспечивается за счет водородных связей, межмолекулярных ван-дер-ваальсовых сил, электростатического взаимодействия заряженных групп и т д.

Четвертичная структура белка - структура, состоящая из оп­ределенного числа полипептидных цепей, занимающих строго фик­сированное положение относительно друг друга.

Классический пример белка, имеющего четвертичную структуру, являеться гемоглобин.

Физические свойства белков: высокая вязкость растворов,

незначительная диффузия, способность к набуханию в больших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление и высокое онкотическое давление, способность к поглощению Уф-лучей при 280 нм, как и аминокислоты, амфотерны благодаря наличию свободных NH2-и СООН-групп и характеризуются соответственно всеми св-вами кислот и оснований. Обладают явно выраженными гидрофильными свойствами. Их растворы обладают очень низким осмотическим давлением, высокой вязкостью и незначительной способностью к диффузии. Белки способны к набуханию в очень больших пределах. С коллоидным состоянием белков связано явление светорассеяния, лежащее в основе количественного определения белков методом нефелометрии.

Белки способны адсорбировать на своей поверхности низкомолекулярные органические соединения и неорганические ионы. Это свойство предопределяет транспортные функции отдельных белков.

Химические свойства белков разнообразны, поскольку боковые радикалы аминокислотных остатков содер­жат различные функциональные группы (-NH2, -СООН, -ОН, -SН и др.). Характерной для белков реакцией является гидролиз пептидных связей. Благодаря наличию и амино-, и карбоксильных групп белки обладают амфотерными свойст­вами.

Денатурация белка - разрушение связей, стабилизирующих четвертичную, третичную и вторичную структуры, приводящее к дезориентации конфигурации белковой молекулы и сопровождаемое потерей нативных св-в.

Различают физические (температура, давление, механическое воздействие, ультразвуковое и ионизирующее излучения) и химические (тяжелые металлы, кислоты, щелочи, органические растворители, алкалоиды) факторы, вызывающие денатурацию.

Обратным процессом является ренатурация , то есть восстановление физико-химических и биологических свойств белка. Ренатурация невозможна если затронута первичная структура.

Большинство белков денатурируют при нагревании их раствором выше 50-60 о С. Внешние проявления денатурации сводятся к потере растворимости, особенно в изоэлектрической точке, повышению вязкости белковых растворов, увеличению коли­чества свободных функциональных SH-rpyпп и изменению характера рассеивания рентгеновских лучей, развертываются глобулы нативных белковых молекул и образуются случайные и беспорядочные структуры.

Сократительная функция. актин и миозин – специфические белки мышечной ткани. Структурная функция. фибриллярные белки, в частности коллаген в соединительной ткани, кератин в волосах, ногтях, коже,эластин в сосудистой стенке и др.

Гормональная функция. Ряд гормонов представлен белками или полипептидами, например гормоны гипофиза, поджелудочной железы и др. Некоторые гормоны являются производными аминокислот.

Питательная (резервная) функция. резервные белки, являющиеся источниками питания для плода, Основной белок молока (казеин) также выполняет главным образом питательную функцию.

    Биологические функции белков. Многообразие белков по структурной организации и биологической функции. Полиморфизм. Различия белкового состава органов и тканей. Изменения состава в онтогенезе и при заболеваниях.

-По степени сложности строения белки делят на простые и слож­ные. Простые или однокомпонентные белки состоят только из белковой части и при гидролизе дают аминокислоты. К сложным или двухкомпонентным относят белки, в состав которых входит протеин и добавочная группа небелковой природы, называемая простетической. ( могут высту­пать липиды, углеводы, нуклеиновые кислоты); соответственно сложные белки называют липопротеинами, гликопротеинами, нук-леопротеинами.

- По форме белковой молекулы белки разделяют на две группы: фибриллярные (волокнистые) и глобулярные (корпускулярные). Фибриллярные белки характеризуются высоким отношением их длины к диаметру (несколько десятков единиц). Их молекулы ни­тевидны и обычно собраны в пучки, которые образуют волокна. (являются главными компонентами наруж­ного слоя кожи, образуя защитные покровы тела человека). Они также участвуют в образовании соединительной ткани, включая хрящи и сухожилия.

Подавляющее количество природных белков относится к глобу­лярным. Для глобулярных белков характерно небольшое отношение длины к диаметру молекулы (несколько единиц). Имея более слож­ную конформацию, глобулярные белки выполняют и более раз­нообразные.

-По отношению к условно выбранным растворителям выделяют альбумины и глобулины . Альбумины очень хорошо растворяются в воде и в концентрированных солевых растворах.Глобулины не растворяются в воде и в растворах солей умерен­ной концентрации..

--Функциональная классификация белков наиболее удовлетвори­тельная, поскольку в ее основу положен не случайный признак а выполняемая функция. Кроме того, можно выделить сходство структур, свойств и функциональной активности входящих в ка­кой-либо класс конкретных белков.

Каталитически активные белки называют ферментами. Они осуществляют катализ практически всех химических превраще­ний в клетке. Подробно эта группа белков будет рассмотрена в главе 4.

Гормоны регулируют обмен веществ внутри клеток и интег­рируют обмен в различных клетках организма в целом.

Рецепторы избирательно связывают различные регуляторы (гормоны, медиаторы) на поверхности клеточных мембран.

Транспортные белки осуществляют связывание и транспорт веществ между тканями и через мембраны клетки.

Структурные белки . Прежде всего к этой группе относят белки, участвующие в построении различных биологических мембран.

Белки - ингибиторы ферментов составляют многочислен­ную группу эндогенных ингибиторов. Они осуществляют регуля­цию активности ферментов.

Сократительные белки обеспечивают механический процесс сокращения с использованием химической энергии.

Токсичные белки - некоторые белки и пептиды, выделяемые организмами (змеями, пчелами, микроорганизмами), являющиеся ядовитыми для других живых организмов.

Защитные белки. антите­ла - вещества белковой природы, вырабатываемые животным организмом в ответ на введение антигена. Антитела, взаимодейст­вуя с антигенами, дезактивируют их и тем самым защищают ор­ганизм от воздействия чужеродных соединений, вирусов, бакте­рий и т. д.

Белковый состав зависит от физиологич. Активности, состава пищи и режима питания, биоритмов. В процессе развития состав меняется значительно (от зиготы до формирования дифференцированных органов со специализированными ф-ми). Например, эритроциты содержат гемоглобин, обеспечивающий транспорт кислорода кровью, мыш-е кл-ки содержат сократительные белки актин и миозин, в сетчатке-белок родопсин и т д. При болезнях белковый состав меняется-протеинопатии. Наследственные протеинопатии развиваются в результате повреждений в генетическом аппарат. Какой-либо белок не синтезируется вовсе или синтезируется, но его первичная структура изменена (серповидно-клеточная анемия). Любая болезнь сопровождается изменением белкового состава т.е. развивается приобретённая протеинопатия. При этом первичная структура белков не нарушается, а происходит количественное изменение белков, особенно в тех органах и тканях, в которых развивается патологический процесс. Например, при панкреатитах снижается выработка ферментов, необходимых для переваривания пищевых веществ в ЖКТ.

    Факторы повреждения структуры и функции белков, роль повреждений в патогенезе заболеваний. Протеинопатии

Белковый состав организма здорового взрослого человека относительно постоянен, хотя возможны изменения количества отдельных белков в органах и тканях. При различных заболеваниях происходит изменение белкового состава тканей. Эти изменения называются протеинопатиями. Различают наследственные и приобретённые протеинопатии. Наследственные протеинопатии развиваются в результате повреждений в генетическом аппарате данного индивидуума. Какой-либо белок не синтезируется вовсе или синтезируется, но его первичная структура изменена. Любая болезнь сопровождается изменением белкового состава организма, т.е. развивается приобретённая протеинопатия. При этом первичная структура белков не нарушается, а обычно происходит количественное изменение белков, особенно в тех органах и тканях, в которых развивается патологический процесс. Например, при панкреатитах снижается выработка ферментов, необходимых для переваривания пищевых веществ в ЖКТ.

В некоторых случаях приобретённые протеинопатии развиваются в результате изменения условий, в которых функционируют белки. Так, при изменении рН среды в щелочную сторону (алкалозы различной природы) изменяется кон-формация гемоглобина, увеличивается его сродство к О 2 и снижается доставка О 2 тканям (гипоксия тканей).

Иногда в результате болезни повышается уровень метаболитов в клетках и сыворотке крови, что приводит к модификации некоторых белков и нарушению их функции

Кроме того, из клеток повреждённого органа в кровь могут выходить белки, которые в норме определяются там лишь в следовых количествах. При различных заболеваниях часто используют биохимические исследования белкового состава крови для уточнения клинического диагноза.

4. Первичная структура белков. Зависимость свойств и функций белков от их первичной структуры. Изменения первичной структуры, протеинопатии.

I. Таблица 2 . Классификация белков по их структуре.

Класс белков Характеристика Функция
Фибриллярные Наиболее важна вторичная структура (третичная почти не выражена) Нерастворимы в воде Отличаются большой механической прочностью Длнные параллельные полипептидные цепи, скрепленные друг с другом поперечными сшивками, образуют длинные волокна или слоистые структуры Выплняют структурные функции. К этой группе относятся, например, коллаген (сухожилия, кости, соединительная ткань), миозин (мышцы), фиброин (шелк, паутина), кератин (волосы, рога, ногти, перья).
Глобулярные Наиболее важна третичная структура Полипептидные цепи сверуты в компактные глобулы Растворимы Выполняют функци ферментов, антител, и в некоторых случаях гормонов (например, инсулин), а также ряд другихважных функций
Промежуточные Фибриллярной природы, но растворимы Примером может служить фибриноген, превращающийся в нерастворимый фибрин при свертывании крови

II. Классификация белков по их составу.


Простые Сложные

Состаят только из аминокислот Состоят из глобулярных белков и небелкового

материала. Небелклвую часть называют

простетической группой.

Таблица 3 . Сложные белки.

Название Простетическая группа Пример
Фосфопротеины Фосфорная кислота Казеин молока Вителлин яичного желтка
Гликопротеины Углевод Компоненты мембран Муцин (компонент слюны)
Нуклеопротеины Нуклеиновая кислота Компоненты вирусов Хромосомы Рибосомы
Хромопротеины Пигмент Гемоглобин – гем (железосодержащий пигмент) Фитохром (пигмент ратительного происхождения) Цитохром (дыхательный пигмент)
Липопротеины Липид Компоненты мембран Липопротеины крови ­ – транспортная форма липидов
Металлопротеины Металл Нитраредуктаза – фермент, катализирующий в растенияхпревращение натрата в нитрит

III. Таблица 4 . Классификация белков по функциям.

Класс белков Примеры Локализация/функция
Структурные белки Коллаген Кератин Эластин Компонент соединительной ькани, костей, сухожилий, хряща Кожа, перья, ногти, волосы, рога Связки
Ферменты Трипсин Рибулозобифосфат-карбоксилаза Катализирует гидролиз белков Катализирует (присоединение СО 2) при фотосинтезе
Гормоны Инсулин Глюкагон АКТГ Регулируют обмен глюкозы Стимулирует рост и активность коры надпоченков
Дыхательные пигменты Гемоглобин Миоглобин Переносит О 2 в крови позвоночных Служит для запасания О 2 в мышцах
Транспортные белки Альбумин Служит для транспорта жирных кислот и липидов в крови
Защитные белки Антитела Фибриноген Тромбин Образуют комплексы с чужеродными белками Предшественник фибрина при свертывании крови Участвует в процессе свертывания крови
Сократительные белки миозин Актин Подвижные нити мышц Неподвижные нити мышц
Запасные белки Яичный альбумин Казеин Белок яйца Белок молока
Токсины Змеиный яд Ферменты

Ферменты (энзимы) – специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

Ферменты ускоряют реакции без изменений ее общего результата.

Ферменты высокоспецифичны: каждый фермент катализирует определенный тип химических реакций в клетках. Этим обеспечивается тонкая регуляция всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и др.)

Пример: фермент уреаза катализирует расщепление лишь мочевины, не оказывая каталитического давления на структурно родственные соединения.

Активность ферментов ограничена довольно узкими температурными рамками (35-45°С), за пределами которых активность падает и исчезает. Ферменты активны при физиологических значениях Ph, т.е. в слабощелочной среде.

По пространственной организации ферменты состоят из нескольких доменов и обычно обладают четвертичной структурой.

Ферменты могут иметь в своем составе и небелковые компоненты. Белковая часть называется апофермент , а небелковая – кофактор (если это простое неорганическое вещество, например Zn 2+ , Mg 2+) или кофермент (коэнзим ) (если речь идет об органических соединениях).

Предшественниками многих коферментов являются витамины.

Пример: пантатеновая кислота – предшественник коэнзима А, играющего важную роль в метаболизме.

В молекулах ферментов имеется так называемый активный центр . Он состоит из двух участков – сорбционного и каталитического . Первый отвечает за связывание ферментов с молекулами субстрата, а второй – за протекание собственно акта катализа.

В название ферментов присутствует название субстрата, на который воздействует данный фермент, и окончание « - аза».

ü целлюлоза – катализирует гидролиз целлюлозы до моносахаридов.

ü протеаза – гидролизирует белки до аминокислот.

По этому принципу все ферменты разделены на 6 классов.

Оксидоредуктазы катализируют окислительно-восстановительные реакции, осуществляя перенос атомов Н и О и электронов от одного вещества к другому, окисляя при этом первый и восстанавливая второй. Эта группа ферментов участвует во всех процессах биологического окисления.

Пример: в дыхании

АН + В ↔А +ВН (окислительный)

А + О ↔ АО (восстановительный)

Трансферазы катализируют перенос группы атомов (метильной, ацильной, фосфатной и аминогруппы) от одного вещества к другому.

Пример: под давлением фосфотрансфераз происходит перенос остатков фосфорной кислоты от АТФ на глюкозу и фруктозу: АТФ + глюкоза ↔ глюкоза – 6 – фосфат + АДФ.

Гидролазы ускоряют реакции расщепляют сложных органических соединений на более простые путем присоединения молекул воды в месте разрыва химических связей. Подобное расщепление называется гидролизом .

Сюда относятся амилаза (гидролизирует крахмал), липаза (расщепляет жиры) и др.:

АВ + Н 2 О↔АОН + ВН

Лиазы катализируют негидролитические присоединения к субстрату и отщепление от него группы атомов. При этом может быть разрыв связи С – С, С – N, C – O, C – S.

Пример: отщепление карбоксильной группы декарбоксилазой

CH 3 – C – C ↔ CO 2 + CH 3 – C

Изомеразы осуществляют внутримолекулярные перестройки, т.е. катализируют превращение одного изомера в другой:

глюкоза – 6 – фофсат ↔ глюкоза – 1 – фосфат

Липазы (синтетазы) катализируют реакции соединения двух молекул с образованием новых связей С – О, С – S, P – N, C – C, используюя энергию АТФ.

К липазам относится группа ферментов, катализирующих присоединение остатков аминокислот т-РНК. Эти синтетазы играют важную роль в процессе синтеза белка.

Пример: фермент валин – т-РНК – синтетаза под его действием образуется комплекс валин-т-РНК:

АТФ + валин + тРНК↔ АДФ+Н 3 РО 4 +валин-тРНК

Урок изучения нового материала в 10-м классе. Данный материал учащиеся уже изучали в 9 классе, поэтому некоторые понятия им уже известны. Соответственно с ребятами ведется диалог о строении и функциях белков. С помощью учителя учащиеся узнают о классификации ферментов.

Для того, чтобы активизировать деятельность учащихся на уроке, приводятся интересные факты о белках, которые помогают ребятам и нацеливают их на дальнейшее усвоение нового материала. Так же для этих целей предлагается провести лабораторную работу. На данном уроке основная масса изучаемого материала записывается в виде таблиц, схемы, которые учитель строит в ходе урока вместе и учениками. Качество изучаемого материала проверяется в виде фронтального опроса. Урок рассчитан как на детей-аудиалов, так и визуалов.

Цель урока: дать представление о строении и функции белков.

Задачи: продолжить расширение и углубление знаний важнейших органических веществах клетки на основе изучения строения и функции белков, сформировать знания функциях белков и их важнейшей роли в органическом мире, продолжить формирование умения выявлять связи между строением и функциями веществ.

Основные понятия: белки, протеины, протеиды, пептид, пептидная связь, простые и сложные белки, первичная, вторичная, третичная и четвертичная структуры белков денатурация.

Средства обучения: таблицы по общей биологии, иллюстрирующие строение молекул белков; лабораторное оборудование для проведения лабораторной работы “Расщепление пероксида водорода с помощью ферментов, содержащихся в плетках листа элодеи”.

Ход урока

I. Изучение нового материала.

1. Рассказ учителя (или фрагмент лекции) об особенностях строения молекул белков как биополимеров, состоящих из большого количества разных аминокислот, между которыми происходит полимеризация на основе пептидной связи. Зарисовка и запись на доске и в тетрадях учащихся.

2. Самостоятельное изучение учащимися текста учебника (С.42) о классификации белков.

3. Беседа об уровнях организации белковой молекулы и химической основы каждого из четырех уровней (структур) этой молекулы, о денатурации как утрате белковой молекулы своей природной структуры.

Структура белковой молекулы.

Структура белка Характеристика Тип связи Схема (учащиеся рисуют самостоятельно)
Первичная Линейная структура – последовательность аминокислот в полипептидной цепи, которая определяет все другие структуры молекулы, а также свойства и функции белка. Пептидная.
Вторичная Закручивание полипептидной цепи в спираль или складывание в “гармошку”. Водородные связи.
Третичная Глобулярный белок: упаковка вторичной структуры в глобулу;
фибриллярный белок: несколько вторичных структур, уложенных параллельными слоями, или скручивание нескольких вторичных структур наподобие каната в суперспираль.
Ионные, водородные, дисульфидные, гидрофобные.
Четвертичная Встречается редко. Комплекс из нескольких третичных структур органической природы и неорганическое вещество, например, гемоглобин. Ионные, водородные, гидрофобные.

4. Рассказ учителя о многообразии функций белков с краткой записью в тетрадях сущности функций: структурной, ферментативной, транспортной, защитной, регуляторной, энергетической, сигнальной.

5. Лабораторная работа “Расщепление пероксида водорода с помощью ферментов, содержащихся в клетках листа элодеи”.

Ход работы:

а. Приготовьте микропрепарат листа элодеи и рассмотрите его под микроскопом.
б. Капните на микропрепарат немного пероксида водорода и еще раз рассмотрите, в каком состоянии находятся клетки листа элодеи.
в. Объясните, с чем связано выделение пузырьков из теток листа, что это за газ, на какие вещества может расщепиться пероксид водорода, какие ферменты участвуют в этом процессе?
г. Капните каплю пероксида на предметное стекло и, рассмотрев его под микроскопом, опишите наблюдаемую, картину. Сравните состояние пероксида водорода в листе элодеи и на стекле, сделайте выводы.

По завершении лабораторной работы следует провести беседу о биохимических реакциях, протекающих при участии белковых катализаторов-ферментов как основе жизнедеятельности клеток и организмов.

Химические свойства белков обусловлены их различным аминокислотным составом. Существуют белки хорошо растворимые в воде и совершенно нерастворимые, химически активные и устойчивые к действию различных агентов, способные укорачиваться и растягиваться и т. д.

Под влиянием различных факторов – высокой температуры, действия химических веществ, облучения, механического воздействия – может произойти разрушение структур белковой молекулы. Нарушение природной структуры белка называется денатурацией. Если воздействие перечисленных факторов было недолгим и несильным, то белок может вернуть свою природную структуру – обратимая денатурация (ренатурация), если же воздействие было долгим или сильным, то происходит нарушение не только третичной и вторичной структур, но и первичной – необратимая денатурация (рис. 3).

Функции белков.

Функция Характеристика
1. Строительная (структурная). Входят в состав клеточных мембран и органоидов клетки (липопротеиды и гликопротеиды), участвуют в образовании стенок кровеносных сосудов, хрящей, сухожилий (коллаген) и волос (кератин).
2. Двигательная Обеспечивается сократительными белками (актин и миозин), которые обуславливают движение ресничек и жгутиков, сокращение мышц, перемещение хромосом при делении клетки, движение органов растений.
3. Транспортная. Связывают и переносят с током крови многие химические соединения, например, гемоглобин и миоглобин транспортируют кислород, белки сыворотки крови переносят гормоны, липиды и жирные кислоты, различные биологически активные вещества.
4. Защитная. Выработка антител (иммуноглобулинов) в ответ на проникновение в нее чужеродных веществ (антигенов), которые обеспечивают иммунологическую защиту; участие в процессах свертывания крови (фибриноген и протромбин).
5, Сигнальная (рецепторная). Прием сигналов из внешней среды и передача команд в клетку за счет изменения третичной структуры встроенных в мембрану белков в ответ на действие факторов внешней среды. Например, гликопротеины (встроены в гликокал икс), опсин (составная часть светочувствительных пигментов родопсина и йодопсина), фитохром (светочувствительный белок растений).
6. Регуляторная. Белки-гормоны оказывают влияние на обмен веществ, т. е. обеспечивают гомеостаз, регулируют рост, размножение, развитие и другие жизненно важные процессы. Например, инсулин регулирует уровень глюкозы в крови, тироксин – физическое и психическое развитие и т.д.
7. Каталитическая (ферментативная). Белки-ферменты ускоряют биохимические процессы в клетке.
К. Запасающая Резервные белки животных: альбумин (яйца) запасает воду, ферритин – железо в клетках печени, селезенки; миоглобин – кислород в мышечных волокнах, казеин (молоко) и белки семян – источник питания для зародыша.
9. Пищевая (основной источник аминокислот). Белки пищи – основной источник аминокислот (особенно незаменимых) для животных и человека; казеин (белок молока) – основной источник аминокислот для детенышей млекопитающих.
10. Энергетическая. Являются источником энергии – при окислении 1 г белка выделяется 17,6 кДж энергии, но организм использует белки в качестве источника энергии очень редко, например, при длительном голодании.

Ферменты (энзимы) – это специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

Химические реакции в живой клетке протекают при умеренной температуре, нормальном давлении и нейтральной среде. В таких условиях реакции синтеза или распада веществ протекали бы очень медленно, если бы не подвергались воздействию ферментов. Ферменты ускоряют реакцию без изменения ее общего результата за счет снижения энергии активации. Это означает, что в их присутствии требуется значительно меньше энергии для придания реакционной способности молекулам, которые вступают в реакцию. Ферменты отличаются от химических катализаторов высокой степенью специфичности, т. е. фермент катализирует только одну реакцию или действует только на один тип связи. Скорость ферментативных реакций зависит от многих факторов – природы и концентрации фермента и субстрата, температуры, давления, кислотности среды, наличия ингибиторов и т.д.

Классификация ферментов.

Группа Катализируемые реакции, примеры
Оксидоредуктазы. Окислительно-восстановительные реакции: перенос атомов водорода (Н) и кислорода (О) или электронов от одного вещества к другому, при этом окисляется первый и восстанавливается второй. Участвуют во всех процессах биологического окисления, например, вдыхании: АН + В А ВН (окисленный) или А + О АО (восстановленный).
Трансферазы. Перенос группы атомов (метильной, ацильной, фосфатной или аминогруппы) от одного вещества к другому. Например, перенос остатков фосфорной кислоты от АТФ на глюкозу или фруктозу под действием фототрансфераз:
АТФ + глюкоза глюкозо-6-фосфат + АДФ.
Гидролазы. Реакции расщепления сложных органических соединений на более простые путем присоединения молекул воды в месте разрыва химической связи (гидролиз). Например, амилаза (гидролизирует крахмал), липаза (расщепляет жиры), трипсин (расщепляет белки) и др.:
АВ + Н 2 0 АОН + ВН.
Лиазы Негидролитическое присоединение к субстрату или отщепление от него группы атомов. При этом могут разрываться связи С-С, C-N, С-О, C-S. Например, декарбоксилаза отщепляет карбоксильную группу:
Изомеразы Внутримолекулярные перестройки, превращение одного изомера в другой (изомеризация):
глюкозо-6-фосфат глюкозо-1-фосфат.
Лигазы (синтетазы) Реакции соединения двух молекул с образованием новых связей С–О, С–S, С–N, С–С, с использованием энергии АТФ. Например, фермент валин-тРНК-синтетаза, под действием которого образуется комплекс валин– тРНК:
АТФ + валин + тРНК АДФ + Н 3 Р0 4 + валин-тРНК.

Механизм действия фермента представлен на рис. 4. В молекуле каждого фермента имеется активный центр – это один или более участков, в которых происходит катализ за счет тесного контакта между молекулами фермента и специфического вещества (субстрата). Активным центром выступает или функциональная группа (например, ОН-группа), или отдельная аминокислота. Активный центр может формироваться связанными с ферментом ионами металлов, витаминами и другими соединениями небелковой природы – коферментами или кофакторами. Форма и химическое строение активного центра таковы, что с ним могут связываться только определенные субстраты в силу их идеального соответствия (комплементарности) друг другу.

Молекула фермента изменяет глобулярную форму молекулы субстрата. Молекула субстрата, присоединяясь к ферменту, тоже в определенных пределах изменяет свою конфигурацию для увеличения реакционности функциональных групп центра.

На заключительном этапе химической реакции фермент-субстратный комплекс распадается с образованием конечных продуктов и свободного фермента. Освободившийся при этом активный центр может принимать новые молекулы субстрата.

II. Обобщающая беседа об основополагающей роли белков как самых необходимых химических соединений для жизней деятельности всего живого на Земле.

III. Закрепление знаний в процессе беседы с помощью следующих вопросов:

  1. Какие органические вещества клетки можно назвать самыми важными?
  2. Каким образом создается бесконечное разнообразие белков?
  3. Что собой представляют мономеры биополимера белка?
  4. Как формируется пептидная связь?
  5. Что собой представляет первичная структура белка?
  6. Каким образом происходит переход первичной структуры молекул белка во вторичную, а затем– в третичную и четвертичную?
  7. Какие функции могут выполнять белковые молекулы?
  8. Чем обусловлено многообразие функций белковых молекул?
  9. Приведите примеры белков, выполняющих самые разные функции. При ответе можно использовать следующую схему:

Биологические функции белков.

Это интересно.

Многие молекулы очень велики и по длине, и по молекулярной массе. Так, молекулярная масса инсулина – 5700, белка-фермента рибонуклеазы – 127 ООО, яичного альбумина – 36 ООО, гемоглобина – 65 ООО. В состав различных белков входят самые разные аминокислоты. Набор всех двадцати видов аминокислот содержит: казеин молока, миозин мышц и альбумин яйца. В белке-ферменте рибонуклеазе – 19, в инсулине – 18 аминокислот. Коллективу ученых под руководством академика Ю.А. Овчинникова удалось расшифровать сложную структуру белка родопсина, ответственного за процесс зрительного восприятия.

Кровь осьминогов, моллюсков и пауков имеет голубой цвет, потому что переносчиком кислорода у них служит не красный гемоглобин, содержащий атомы железа, а гемоцианин с атомами меди.

Почти половина необходимых нам белков, углеводов, 70–80% витаминов, значительное количество минеральных солей, аминокислот и других питательных элементов содержится в хлебе.

Американские ученые выделили из растения (семейство Пентадипландовых), произрастающего в Западной Африке, белок, который слаще сахара в 2 тыс. раз. Этот шестой известный науке сладкий белок, названный бразеином, содержится в плодах, которые с большой охотой поедают местные обезьяны. Биохимики расшифровали строение молекул сладкого белка, в каждой из них содержится 54 аминокислотных остатка.

IV. Домашнее задание: Изучить § 11, ответить на вопросы на с. 46. Приготовить сообщения или рефераты на темы: “Белки – биополимеры жизни”, “Функции белков – основа жизнедеятельности каждого организма на Земле”, “Денатурация и ренатурация, ее практическое значение”, “Многообразие ферментов, их роль в жизнедеятельности клеток и организмов” и др.

Используемые ресурсы:

  1. Каменский А.А. Общая биология 10–11: учеб.для общеобразоват. учреждений.– М.:Дрофа, 2006.
  2. Козлова Т.А. Тематическое и поурочное планирование по биологии к учебнику А.А.Каменского и др. “Общая биология 10–11”. – М.: Издательство “Экзамен”, 2006.
  3. Биология. Общая биология. 10–11 классы: рабочая тетрадь к учебнику Каменского А.А. и др. “Общая биология 10–11”– М.: Дрофа, 2011.
  4. Кириленко А.А. Молекулярная биология. Сборник заданий для подготовки к ЕГЭ: уровни А,В,С: учебно-методическое пособие. – Ростов н/Д: Легион, 2011.

Глава 9. Биологические функции белков

Функции белков чрезвычайно многообразны. Каждый данный белок как вещество с определенным химическим строением выполняет одну узкоспециализированную функцию и лишь в нескольких отдельных случаях - несколько взаимосвязанных. Например, гормон мозгового слоя надпочечников адреналин, поступая в кровь, повышает потребление кислорода и артериальное давление, содержание сахара в крови, стимулирует обмен веществ, а также является медиатором нервной системы у холоднокровных животных.

1) Каталитическая (ферментативная) функция:
Многочисленные биохимические реакции в живых организмах протекают в мягких условиях при температурах, близких к 40 градусам С, и значениях рН близких к нейтральным. В этих условиях скорости протекания большинства реакций ничтожно малы, поэтому для их приемлемого осуществления необходимы специальные биологические катализаторы - ферменты . Даже такая простая реакция, как дегидратация угольной кислоты:

катализируется ферментом карбоангидразой . Вообще все реакции, за исключением реакции фотолиза воды , в живых организмах катализируются ферментами. Как правило, ферменты - это либо белки, либо комплексы белков с каким-либо кофактором - ионом металла или специальной органической молекулой. Ферменты обладают высокой, иногда уникальной, избирательностью действия. Например, ферменты, катализирующие присоединение -аминокислот к соответствующим т-РНК в процессе биосинтеза белка, катализируют присоединение только L-аминокислот и не катализируют присоединение D-аминокислот.

2) Транспортная функция белков:
Внутрь клетки должны поступать многочисленные вещества, обеспечивающие ее строительным материалом и энергией. В то же время все биологические мембраны построены по единому принципу - двойной слой липидов , в который погружены различные белки, причем гидрофильные участки макромолекул сосредоточены на поверхности мембран, а гидрофобные "хвосты" - в толще мембраны. Такая структура непроницаема для таких важных компонентов, как сахара, аминокислоты, ионы щелочных металлов. Их проникновение внутрь клетки осуществляется с помощью специальных транспортных белков, вмонтированных в мембрану клеток. Например, у бактерий имеется специальный белок, обеспечивающий перенос через наружную мембрану молочного сахара - лактозы. Лактоза по международной номенклатуре обозначается -галаткозид, поэтому транспортный белок называют -галактозидпермеазой .

Важным примером транспорта веществ через биологические мембраны против градиента концентрации является Na-K-ый насос. В ходе его работы происходит перенос трех положительных ионов из клетки на каждые два положительных иона в клетку. Эта работа сопровождается накоплением электрической разности потенциалов на мембране клетки. При этом расщепляется АТФ, давая энергию. Молекулярная основа натрийкалиевого насоса была открыта недавно, это оказался фермент, расщепляющий АТФ, - натрий-калийзависимая АТФ-аза . Насос действует по принципу открывающихся и закрывающихся каналов. Связывание молекул "канального" белка с ионом натрия приводит к нарушению системы водородных связей, в результате чего меняется его конформация. Обычная -спираль, в которой на каждый виток приходится по 3,6 аминокислотного остатка, переходит в более "рыхлую" -спираль (4,4 аминокислотного остатка). В результате образуется внутренняя полость, достаточная для прохождения иона натрия, но слишком узкая для иона калия. После прохождения -спираль переходит в туго свернутую 310 -спираль (на один виток 3 аминокислотных остатка, а водородная связь - у каждого 10-го атома). При этом натриевый канал закрывается, а стенки соседнего калиевого канала расширяются, ионы калия проходят по ним в клетку. Натрий-калиевый насос работает по принципу перистальтического насоса (напоминает продвижение пищевого комка по кишечнику), принцип действия которого основан на переменном сжатии и расширении эластичных труб.

У многоклеточных организмов существует система транспорта веществ от одних органов к другим. В первую очередь это гемоглобин. Кроме того, в плазме крови постоянно находится транспортный белок - сывороточный альбумин . Этот белок обладает уникальной способностью образовывать прочный комплексы с жирными кислотами, образующимися при переваривании жиров, с некоторыми гидрофобными аминокислотами (например, с триптофаном), со стероидными гормонами, а также со многими лекарственными препаратами, такими, как аспирин, сульфаниламиды, некоторые пенициллины. В качестве еще одного распространенного примера белка-переносчика можно привести трансферрин (обеспечивает перенос ионов железа) и церуплазмин (переносчик ионов меди).

3) Рецепторная функция:
Большое значение, в особенности для функционирования многоклеточных организмов, имеют белки-рецепторы , вмонтированные в плазматическую мембрану клеток и служащие для восприятия и преобразования различных сигналов, поступающих в клетку, как от окружающей среды, так и от других клеток. В качестве наиболее исследованных можно привести рецепторы ацетилхолина, находящиеся на мембране клеток в ряде межнейронных контактов, в том числе в коре головного мозга, и у нервно-мышечных соединений. Эти белки специфично взаимодействуют с ацетилхолином и отвечает на это передачей сигнала внутрь клетки. После получения и преобразования сигнала нейромедиатор должен быть удален, чтобы клетка подготовилась к восприятию следующего сигнала. Для этого служит специальный фермент - ацетилхолинэстераза, катализирующая гидролиз ацетилхолина до ацетата и холина.

Многие гормоны не проникают внутрь клеток-мишеней, а связываются со специфическими рецепторами на поверхности этих клеток. Такое связывание является сигналом, запускающим в клетке физиологические процессы. Примером является действие гормона инсулина в аденилатциклазной системе . Рецептор к инсулину представляет собой гликопротеид, пронизывающий плазмалемму. При связывании гормона с рецепторной частью этого сложного белка в нем происходит активация каталитической внутренней части, представляющей фермент аденилатциклазу . Этот фермент синтезирует из АТФ циклическую аденозинмонофосфорную кислоту (цАМФ), которая в свою очередь катализирует ключевую стадию окисления полисахаридов - превращение гликогена в мономерное производное глюкозы глюкозо-1-фосфат, который далее подвергается окислительной деструкции, сопровождающейся фосфорилированием большого количества АДФ.

4) Защитная функция:
Иммунная система обладает способностью отвечать на появление чужеродных частиц выработкой огромного числа лимфоцитов, способных специфически повреждать именно эти частицы, которыми могут быть чужеродные клетки, например патогенные бактерии, раковые клетки, надмолекулярные частицы, такие как вирусы, макромолекулы, включая чужеродные белки. Одна из групп лимфоцитов - В-лимфоциты , вырабатывает особые белки, выделяемые в кровеносную систему, которые узнают чужеродные частицы, образуя при этом высокоспецифичный комплекс на этой стадии уничтожения. Эти белки называются иммуноглобулины . Чужеродные вещества, вызывающие иммунный ответ называют антигенами , а соответствующие к ним иммуноглобулины - антителами . Если в роли антигена выступает большая молекула, например, молекула белка, то антитело опознает не всю молекулу, а ее определенный участок, называемый антигенной детерминантой . Тот факт, что иммуноглобулины взаимодействуют со сравнительно небольшой частью полимерного антигена, позволяет вырабатывать антитела, специфично узнающие некоторые небольшие молекулы, не встречающиеся в живой природе. Классический пример - динитрофенильный остаток. При введении экспериментальным животным конъюгата динитрофенола с каким-либо белком начинается выработка антител, специфично узнающих различные производные динитрофенола. Но при введении чистого динитрофенола, иммунного ответа нет. Такие вещества, способные служить антигенными детерминантами, но сами не способные вызвать иммунный ответ, называются гаптенами .

Антитела построены из четырех полипептидных цепей, связанных между собой дисульфидными мостиками. Упрощенная схема строения иммуноглобулина класса G представлена на следующем рисунке.

Две полипептидные цепи имеют размер порядка 200 аминокислотных остатков и называются легкими цепями (L-цепи). Две другие вдвое больше по размеру и называются тяжелыми цепями (H-цепи). На N-конце обеих цепей имеется вариабельная область размером немногим более 100 аминокислотных остатков, которая различна у иммуноглобулинов, настроенных на разные антигены - именно она определяет специфичность данной популяции лимфоцитов.


Схема строения молекулы иммуноглобулина: Н-цепь - тяжелая цепь, L-цепь - легкая цепь, VH и VL - вариабельные участки тяжелой и легкой цепей.

Вариабелная область формирует центр, непосредственно связывающийся с определенным антигеном или гаптеном остальная часть, составляющая у легкой цепи половину молекулы, а у тяжелой - 3/4, не зависит от вида иммуноглобулина. Эта область называется константной .

Согласно современным представлениям, каждый тип иммуноглобулина вырабатывается группой В-лимфоцитов, произошедших от одного общего предшественника. Такую группу лимфоцитов называют клоном . Первые успехи в изучении строения иммуноглобулинов были связаны с изучением иммуноглобулинов, полученных от больных миеломой (патология, связанная со сверхпродукцией определенного вида иммуноглобулинов). У больных, от одного злокачественно разросшегося клона В-лимфоцитов, вырабатывается огромное количество индивидуального иммуноглобулина, который сравнительно легко отделить от остальных. Далее производили слияние клеток миеломы как носителей способности к неограниченному размножению с нормальными В-лимфоцитами как носителями программы выработки антител определенной, задаваемой экспериментатором специфичности. Получающиеся клетки, гибридомы сохраняют способность к неограниченному размножению и вырабатывают при этом только определенные антитела. Так как гибридомы происходят из одной слитой клетки, то они представляют собой единый клон; получающиеся из них антитела поэтому называют моноклональными антителами (МАТ).

5) Структурная функция:
Наряду с белками, выполняющими тонкие высокоспециализированные функции, существуют белки, имеющие в основном структурное значение. Они обеспечивают механическую прочность и другие механические свойства отдельных тканей живых организмов. В первую очередь это коллаген - основной белковый компонент внеклеточного матрикса соединительной ткани. У млекопитающих коллаген составляет до 25% общей массы белков. Коллаген синтезируется в фибробластах - основных клетках соединительной ткани. Первоначально он образуется в виде проколлагена - предшественника, который проходит в фибробластах определенную химическую обработку, состоящую в окислении остатков пролина до гидроксипролина и некоторых остатков лизина до -гидроксилизина. Коллаген формируется в виде трех скрученных в спираль полипептидных цепей, которые уже вне фибробластов объединяются в коллагеновые фибриллы диаметром несколько сотен нанометров, а последние - уже в видимые под микроскопом коллагеновые нити.

В эластичных тканях - коже, стенках кровеносных сосудов, легких - помимо коллагена внеклеточный матрикс содержит белок эластин , способный довольно в широких пределах растягиваться и возвращаться в исходное состояние.

Еще один пример структурного белка - фиброин шелка, выделяемый гусеницами шелкопряда в период формирования куколки и являющийся основным компонентом шелковых нитей.

6) Двигательные белки
Мышечное сокращение является процессом, в ходе которого происходит превращение химической энергии, запасенной в виде макроэргических пирофосфатных связей в молекулах АТФ, в механическую работу. Непосредственными участниками процесса сокращения являются два белка - актин и миозин.

Миозин представляет собой белок необычного строения, состоящий из длинной нитевидной части (хвост) и двух глобулярных головок. Общая длина одной молекулы составляет порядка 1600 нм, из которых на долю головок приходится около 200 нм. Миозин обычно выделяется в виде гексамера, образованного двумя одинаковыми полипептидными цепями с молекулярной массой 200 000 каждая ("тяжелые цепи") и четырьмя "легкими цепями" с молекулярной массой около 20 000. Тяжелые цепи закручены спиралью одна вокруг другой, образуя хвост, и несут на одном конце глобулярные головки, ассоциированные с легкими цепями. На головках миозина находится два важных функциональных центра - каталитический центр, способный в определенных условиях осуществлять гидролитическое расщепление - -пирофосфатной связи АТФ, и центр, обеспечивающий способность специфично связываться с другим мышечным белком - актином.

Актин является глобулярным белком с молекулярной массой 42 000. В таком виде его называют G-актином. Однако он обладает способностью полимеризоваться, образуя длинную структуру, называемую F-актином. В такой форме актин способен взаимодействовать с головкой миозина, причем важной чертой этого процесса является зависимость от присутствия АТФ. При достаточно высокой концентрации АТФ комплекс, образованный актином и миозином, разрушается. После того как под действием миозиновой АТФазы (фермент) произойдет гидролиз АТФ, комплекс снова восстанавливается. Этот процесс легко наблюдать в растворе, содержащем оба белка. В отсутствии АТФ в результате образования высокомолекулярного комплекса раствор становится вязким. При добавлении АТФ вязкость резко понижается в результате разрушения комплекса, а затем начинает постепенно восстанавливаться по мере гидролиза АТФ. Эти взаимодействия играют важную роль в процессе мышечного сокращения.

7) Антибиотики:
Большую и чрезвычайно важную в практическом отношении группу природных органических соединений составляют антибиотики - вещества микробного происхождения, выделяемые специальными видами микроорганизмов и подавляющие рост других, конкурирующих микроорганизмов. Открытие и применение антибиотиков произвело в 40-ые гг. революцию в лечении инфекционных заболеваний, вызываемых бактериями. Следует отметить, что на вирусы в большинстве случаев антибиотики не действуют и применение их в качестве противовирусных препаратов неэффективно.

Первыми в практику были введены антибиотики группы пенициллина . Примерами их могут служить бензилпенициллин и ампициллин :

Сходны с ним по строению антибиотики группы цефалоспоринов , примером которых может служить цефамицин С . Общим у этих антибиотиков является наличие -лактамного кольца . Механизм действия их состоит в торможении одной из стадий формирования муреина - пептидогликана, формирующего клеточную стенку бактерий.


Антибиотики чрезвычайно многообразны по своей химической природе и по механизму действия. Некоторые из широко используемых антибиотиков взаимодействуют с рибосомами бактерий, тормозя синтез белка в бактериальных рибосомах, в то же время практически не взаимодействуют с эукариотическими рибосомами. Поэтому они губительны для бактериальных клеток и мало токсичны для человека и животных. К их числу относятся хорошо известные стрептомицин, хлорамфеникол (левомицетин) :


Еще одним известным антибиотиком является тетрациклин:

Один из самых эффективных противотуберкулезных препаратов антибиотик рифампицин - блокирует работу прокариотических РНК-полимераз ферментов, катализирующих биосинтез РНК, - связываясь ферментом, но в то же время не обладает способностью связываться с РНК-полимеразами эукариот:

Интенсивно исследуются антибиотики, взаимодействующие с ДНК и этим нарушающие процессы, связанные с реализацией заложенной в ней наследственной информацией. Антибиотики с таким механизмом действия обычно высокотоксичны и используются только в химиотерапии злокачественных опухолей. В качестве примера можно привести актиномицин D :


8) Токсины:
Ряд живых организмов в качестве защиты от потенциальных врагов вырабатывают сильно ядовитые вещества - токсины. Многие из них являются белками, однако, встречаются среди них и сложные низкомолекулярные органические молекулы. В качестве примера такого вещества можно привести ядовитое начало бледной поганки - -аманитин:


Это соединение специфично блокирует синтез эукариотических и-РНК. Для человека смертельной дозой является несколько мг этого токсина.