Насколько мы близки к созданию полноценного киборга? Искусственные органы: на пути к киборгам Создание киборга

Япония является не только страной с развитой структурой высокотехнологичного производства, со своими крупными компаниями Toyota, Mitsubishi, Nikon, Sony и т.д., но и страной, в которой развиваются и внедряются новые технологии. Японские автомобили завоевали доверие во всем мире, как комфортный, безопасный и надежный вид транспорта. Наука в Японии развивается стремительными темпами, так как государство постоянно финансирует эту сферу. Японии буквально за полвека удалось вывести свою страну на передовые позиции по количеству новых разработок в механике, электронике, роботостроении, нанотехнологиях, генетике и т.д. Японские ученные долгое время пытались создать в области робототехники точную копию человеческой кожи. Основной задачей ученых было создать образец синтетической кожи, которая обладала бы повышенной чувствительностью и могла ощущать даже легкое дуновения ветра.Но им пока этого не удалось осуществить.

В настоящее время две научные группы из Калифорнии смогли добиться успеха в создании синтетической кожи. Им удалось в Калифорнийском университете в Беркли создать кожу на основе нанопроводки, которую они вырастили из кремниевых и германиевых нитей. Нити были нанесены на клейкую полиимидную пленку.
В результате продолжительных экспериментов ученым удалось создать эластичный материал, в основе которого лежат нанопроводки, которые работают как транзисторы. На поверхности тонких волокон был нанесен изолирующий слой с рисунком и дальше такой же слой был нанесен на слой резины, которая обладает высокой чувствительностью. Между двумя слоями имеется связь (проводящие мостики), которые выполнены в виде тончайших электродов. Такое изобретение ученые назвали «Е-skin» и оно способно ощущать даже место с приложенным давлением незначительной величины.

Разработанная новая технология позволяет в качестве основного материала использовать резину, пластик, а также возможен вариант введения в структуру материала антибиотиков и других веществ. При испытании материала использовался небольшой кусок искусственной кожи 7х7 см, на который была нанесена чувствительная матрица 19х18 пикселей, состоящая из сотни наноштырей. Ученные прикладывали к куску кожи различное давление от 0 до 15 килопаскалей. Испытания прошли успешно и можно сказать, что искусственная кожа приблизилась по чувствительности к человеческой коже.

Ученные отметили преимущества своего изобретение перед конкурентными разработками. Разработки других научных центров основаны на применении гибких органических материалов, которые нуждаются в высоких напряжениях. Разработка Калифорнийского университета в Беркли по созданию искусственной кожи – это новая технология, которая основана на использовании монокристаллических неорганических полупроводников. Она работает при напряжении в 5 Вольт. Опыты показали, что новая кожа может выдержать более 2 тыс. изгибаний без потери чувствительности и ученные обещают в ближайшем будущем эти характеристики улучшить.

Судя по этому открытию можно судить, что скоро появятся роботы визуально похожие на человека. Киборги с человеческим обликом появятся скоро и это уже не фантастика.

Согласно теории Дарвина, у наших прапрапращуров был хвост и густая шерсть. Со временем, облик менялся и из обезьяноподобного животного эволюционировал самый обычный человек. С двумя ногами, руками, головой, туловищем и внутренними органами. С органами чувств: глазами, носом, ушами, языком и кожей. А также сложными системами нервов, кровоносных сосудов, пищеварительной и эндокринной. Но эволюция человеческого рода отнюдь не закончилась на стадии Homo Sapiens Sapiens - и будучи собственно «человеком разумным», наш вид может уже не полагаться только на действия природы, но и вносить изменения в собственную «конструкцию» технологическими методами. Наука не стоит на месте — постоянно изобретаются все новые материалы, устройства и технологии, воспроизводящие функции человеческого тела…

Какое будущее ждет нас? Какими мы будем в дальнейшем? Попробуем представить этот облик. Например, пожалуй, каждый из нас хоть раз мечтал перепрыгнуть через автомобиль, с помощью рук сгибать металлические прутья, четко видеть в темноте, а еще быстро бегать и вообще творить прочие чудеса. Сейчас это только мечты, плод бурной фантазии, пока нереальные и невоплотимые желания. Но всегда радует, когда после просмотра фантастического фильма оказывается, что нечто из показанного на экране хотя бы в стадии разработки, но уже существует в реальном мире! Мы живем в очень интересное время - мир меняется на глазах и именно технологический прогресс помогает людям менять облик будущего. На нынешнем этапе достижений в области биотехники открываются все новые масштабы реальных перспектив человечества по изменению самой сущности нашего биологического вида.

Подготавливая о современных технологиях протезирования, мы преследовали две цели. Первая вполне очевидна - рассказать, как научно-технический прогресс (в первую очередь, именно в области информационных технологий) впервые за столетия существования протезной индустрии помогает людям, потерявшим конечности, обрести не просто подобие утраченного, но максимально восстановить функции органа и, в некоторых случаях, даже превысить возможности здорового человека. А второй, более глубокой, целью статьи было описание устройств и технологий, наиболее приближенных к мечтам о киборгизации. Разумеется, пока искусственные руки и ноги уступают в эффективности биологическим, никому не придет в голову заменять здоровую конечность протезом - но направление развития технологий протезирования говорит именно о том, что в скором времени соотношение возможностей изменится. Ученые и инженеры последовательно делают, возможно, иногда и маленькие, но уверенные шаги к созданию полного киборга. На основе улучшения интеграции нервной системы с протезами и имплантами, а такде мощных и компактных источников энергии, человек сможет полностью преобразиться. Одним словом, если даже с ним что-то случится, то его «починят» с применением последних технологических достижений. И тут мы подходим к теме нынешней статьи: кроме рук и ног, киборгу потребуются еще и органы чувств - как минимум, глаза и уши. Не помешает «апгрейд» и мозгу, но так как чисто искусственный интеллект - это совсем отдельная тема, то в рамках данного материала мы рассмотрим возможные улучшения для биологического мозга. К сожалению, как и с протезами рук и ног, подавляющее большинство описываемых разработок пока находятся на стадии исследований и лабораторных экземпляров, а цены на них запредельны. Однако, так всегда происходит с новыми технологиями, а сам факт их существования дает вполне реальную перспективу на коммерческое внедрение - ведь каждая новинка в этой отрасли приближает к реальности не только мечты о киборгах, но и дает надежду на возвращение к нормальной жизни для людей, утративших по той или иной причине некие функции организма…

Мозг

Из всех органов человека именно вмешательство в мозг является самым сложным. Что тут говорить, если даже все его возможности еще до конца не изучены… Тем не менее, определенные манипуляции с мозгом проводятся, в основном с целью излечения болезней.

Профессор Университета Южной Каролины после длительных исследований создал чип, способный заменить гиппокампус — часть мозга, ответственную за кратковременную память, а также ориентацию в пространстве. Поскольку гиппокампус зачастую подвергается нарушениям при нейродегеративных заболеваниях, то данный чип, ныне проходящий лабораторные испытания, может стать незаменимой вещью в жизни многих больных.

Германским ученым из Института биохимии имени Макса Планка после длительных иследований удалось совместить живые клетки головного мозга с полупроводниковым чипом. Важность открытия заключается в том, что данная технология дает возможность выращивать очень тонкие полоски тканей на чипе, в результате чего он позволит очень подробно наблюдать взаимодействие всех нервных клеток между собой путем выявления сигналов, посылаемых клетками через синапсы.

Не столь давно, калифорнийской компанией Neuropace был разработан электростимулирующий прибор для эпилептиков, названный «нейростимулятором ответных реакций» (Responsive Neurostimulator). Принцип работы заключаться в том, что устройство сдерживает поток неконтролируемых импульсов во время припадков с помощью электрических разрядов из внешнего источника. Устройство Neuropace состоит из компактного нейростимулятора, который вживляют вместе с набором проводов в череп человека, а также аккумулятора и миниатюрного специализированного компьютера, постоянно контролирующего электрическую активность в мозге. Испытания Neuropace проводились на сотне пациентов, удовлетворительный результат просматривался практически у половины.

Достаточно крупная группа ученых из нескольких стран Европы с 2005 года ведут иследования и разработки в рамках проекта Fast Analog Computing with Emergent Transient States (FACETS), целью которого является создание микропроцессора, симулирующего 200000 нейронов, объединенных между собой 50 миллионами синаптических соединений. По словам участников проекта, для полноценного воспроизведения работы мозга человека им потребуется несколько тысяч таких процессоров, объединенных в кластер - но когда это будет сделано, человечество существенно приблизится к созданию искусственного интеллекта.

Глаза

Глаза — это один из самых важных органов человека, так как именно с помощью глаз человек воспринимает большую часть входящей информации об окружающем мире. Сейчас на планете миллионы людей страдают от различных заболеваний органов зрения. Для того, чтобы исправить дефекты зрения, требуется не только вмешательство врачей, а и физиков, химиков, технологов. Современное развитие технологий дает надежду на то, что человек в дальнейшем получит исцеление и сможет видить мир во всей его красоте.

На сегодняшний день пока что нет коммерчески доступных решений, которые смогли бы хотя бы частично заменить полностью отсутствующее зрение - фактически, есть только известные уже несколько столетий стеклянные глазные яблока, обеспечивающие только внешнюю схожесть с утраченным органом. Однако в виде прототипов уже существуют устройства, наконец-то изменяющие эту ситуацию - над созданием полноценного глазного протеза бъются ученые и инженеры в разных странах.

Пройдя длительный процесс от теории к практике, ученым Калифорнийского университета удалось создать протез, который способен выполнять функции сетчатки глаза. На данном этапе тестирования человек способен видеть только размытую картинку, но дальнейшие перспективы достаточно позитивны. Данный протез устроен так: на оправе очков закрепляется камера, через которую изображение передается прямо на уцелевшие нейроны в сетчатке глаза. Для перевода входящего видеосигнала в импульсы, которые способны воспринять нервные клетки, пришлось разработать специальный программно-аппаратный конвертер.

Аналогичным образом работает и альтернативная разработка, созданная исследователями из MIT (Массачусетсткого Технологического Института). Группа ученых, работающих над созданием данного имплантанта, занимается этим вопросом уже более 20 лет, а практические испытания запланированы на следующие три года. Камера, располагающаяся на очках, передает изображение на микрокомпьютер, преобразующий видеосигнал в электрические импульсы. Эти импульсы через вживленные электроды непосредственно влияют на зрительные нервы, которые, в свою очередь, передают сигнал в мозг.

Существует еще два варианта искусственных глаз, основанных на том же принципе. Группа специалистов консорциума Bionic Vision Australia (объединяющего ученых из пяти исследовательских институтов и университетов Австралии) презентовали свой бионический глаз в Университете Мельбурна. Лабораторные испытания уже проводятся, а более массовое внедрение ожидается к 2013 году.

Наконец, не столь давно компания Second Sight Medical Products Inc. сделала заявление о том, что она начинает клинические испытания глазного имплантанта The Argus II. Около 10 человек согласились на участие в экспериментальной программе, а стоимость одного бионического глаза от Second Sight составляет $100000.

Стоит отметить, что качество зрения, которое предлагает используемая во всех вышеупомянутых устройствах технология напрямую зависит от количества светочуствительных электродов в имплантанте. Если на нынешнем этапе их всего 60, то в скорем будущем это число планируют довести до 1000, что радикально улучшит восприятие - не просто передавая пятна света, но гораздо полноценнее сообщая человеку о происходящем вокруг.

А вот подход британцев, разработавших технологию BrainPort, принципиально отличается от всех вышеописанных в части метода передачи информации. Идея в том, что человек должен начать видить с помощью… языка. Внешняя часть устройства, как обычно, включает в себя небольшую видеокамеру, вмонтированную в оправу очков и конвертер, преобразующий сигнал. Однако, вместо электродов, вживляемых в сетчатку и передающих данные на зрительные нервы, BrainPort оборудован небольшой трубкой с прямоугольным передатчиком, который необходимо положить на язык. Электрические импульсы передаются на него и в зависимости от их интенсивности, человек может распознавать наличие препятствий на пути. Чем-то напоминает анекдот про удаление гланд нестандартным методом, но зато и цена проходящего испытания BrainPort существенно меньше, например, Argus II и составляет 18000 фунтов.

Что касается не восстановления утраченного, а оптимизации имеющегося, то весьма любопытный подход к улучшению возможностей зрения предложен группой ученых из университета Вашингтона в Сиэттле, руководимой профессором Бабаком Парвизом. Они создали контактные линзы с интегрированным светодиодом, радиоантенной и приемником. На данном этапе в линзе находится всего один светодиод, а испытания проводились на кроликах. В «полноценном» варианте предполагается, конечно, более широкие возможности - вплоть до трансляции на сетчатку изображения в HD-формате, когда технологии достигнут соответствующего уровня. Подобные линзы позволят эффективно реализовать «дополненную реальность» без применения очков, а также такие фокусы как, например, приближение изображения. Но даже в уже существующем варианте с единственным светодиодом определенную пользу из такой линзы извлечь можно, если заставить его работать в качестве индикатора некоего критически важного процесса.

Все знают, что такое очки - устройство для улучшения зрения или модный аксессуар с защитой от солнечного света или вещь, которая скрывает синяки под глазами. А недавно были изобретены очки i-Mos, которые умеют говорить. Их применение позволит резко улучшить возможности коммуникаций для полностью парализованных людей (например, как герой основанного на реальной истории фильма «Скафандр и бабочка» Жан-Доминик Боби: оставшийся парализованным после инсульта, он смог написать книгу по буквам, давая своему помошнику знаки путем моргания, когда тот показывал ему алфавит). Для того, чтобы использовать такие очки, все что требуется от человека, это знание азбуки Морзе. Сенсор отслеживает движение зрачков: поворот направо - тире, налево - точка. На внутренний экран очков выводятся распознанные буквы, причем для быстрого завершения слова можно воспользоваться привычной по мобильным телефонам системой ввода Т9. И когда слово закончено - оно воспроизводится через интегрированный динамик. Такой вид очков, конечно, предназначен для людей с физическими недостатками, хотя ими смогут пользоваться и люди, которым просто лень открывать рот.

Уши

Вторым, основным органом чувств в существовании человека являются уши, то есть слух. По разным причинам его теряют, а вот жить без восприятия звуков очень тяжело. К счастью, в отличие от зрения, частичное и даже полное восстановление слуха реализуется проще, поэтому уже достаточно давно существуют слуховые аппараты или, по-научному, кохлеарные имплантанты. Принцип их работы прост: с помощью микрофона, расположенного за ухом, аудиосигнал передается на вторую часть аппарата, стимулирующую слуховой нерв - по сути, слуховой аппарат увеличивает громкость воспринимаемого звука.

В связи с тем, что существующие устройства в принципе со своими задачами справляются, ничего сверхестественно нового не появляется. Но, разумеется, определенные улучшения в имеющуюся конструкцию по мере развития технологий вносятся.

Так, например, профессором Мириам Фарст-Юст из Школы электротехники Тель-авивского университета был разработан новый вид прикладного программного обеспечения «Clearcall». Данная программа предназначена сугубо для кохлеарных имплантантов и слуховых аппаратов и позволяет более четко слышать в шумных местах звуки, распознавать речь, а также отфильтровывать фоновые шумы. Для того, что бы человек воспринимал нормально звуки, Clearcall работает с собственной базой данных звуков, в результате чего идет максимально точное отфильтровывание посторонних шумов и усиление «полезных» сигналов. Собственно, подобного рода программное обеспечение применяется, например, и в наушниках с системой шумоподавления, поэтому в данном случае интересно в основном именно то, что ПО предназначено специально для слуховых аппаратов.

Не остался в стороне и такой гигант индустрии, как Siemens. Подразделение компании, которое специализуется на разработке слуховых аппаратов и аксессуаров к ним, анонсировало так называемую платформу BestSound, на основе которой и производятся новые модели слуховых аппаратов Siemens. В состав BestSound входят три разработки специалистов компании: SpeechFocus, FeedbackStopper и SoundLearning 2.0. Первая использует направленный микрофон, с помощью которого усиливается звук. За счет этого порог распознавания речи улучшается до 4 дБ, а в условиях низкого шума даже до 7 дБ. FeedbackStopper - это технология блокирования акустической обратной связи, а SoundLearning 2.0 помогает владельцу аппарата записать все его настройки в определенных условиях: эти данные остаются в памяти устройства и автоматически настраивают слуховой аппарат при следующем попадании в аналогичные условия.

В качестве практически анекдотических моментов стоит упомянуть о двух совершенно разных разработках в этой области. Во первых - слуховой аппарат The Plug, существующий просто в виде дизайнерского эксперимента. При типовой функциональности, выглядит устройство как серьга-туннель в мочке уха. Пожалуй, реальная целевая аудитория для подобного продукта, если бы его запустили в серийное производство, была бы слишком узкой - разве что молодые неформалы, но вообще идея забавная. Во-вторых, в России в продаже уже доступны слуховые аппараты Widex Passion с применением нанотехнологий. Юмор, как это часто бывает в сочетании тем «Россия» и «нанотехнологии», в том, что броское слово используется для привлечения внимания к товару, достаточно далекому от «настоящих» нанотехнологий - в данном случае, всё «нано» заключается в том, что благодаря некой патентованной системе NanoCare в ресивер аппарата попадает меньше ушной серы и, как следствие, его нужно реже менять.

Возможно, многое из описанного в этой статье пока не производит какого-то ошеломляющего впечатления. Но еще недавно подобные достижения были вовсе невозможными и только технический прогресс последних десятилетий дал возможность хотя бы приблизиться к, например, функциональной замене глазного яблока. Более того, практически во всех случаях авторы изобретений заявляют о том, что перспектива дальнейших улучшений (в том числе весьма значительных) вполне очевидна - требуется просто время на продолжение разработки. Весьма немаловажно, что все эти открытия помагают людям адаптироваться к нормальной жизни, но не менее интересно и то, что в уже в недалеком будущем достижения в области искусственных органов позволят не только вернуть утраченные функции, но и сделать обычного человека сильнее, выносливее, внимательнее и, возможно, даже умнее. И если даже сейчас вам это покажется странным, то вспомните, как 15 лет назад мобильный телефон, а 30 лет назад - компьютер, казались ненужной роскошью. Впереди нас ждет очень интересное время!

Благодаря научно-фантастическим фильмам и книгам человечество, кажется, свыклось с идеей, что в будущем среди нас будут жить киборги. Однако трудно поверить, что будущее уже здесь, и настоящие киборги много десятилетий уже живут рядом с нами. Это обычные люди - но с кардиостимуляторами, протезами конечностей, биосенсорами или слуховыми имплантами. Так что же такое «кибернетические ткани», кто соревнуется в Кибатлоне и какие возникают в этой связи этические вопросы?

Технически модифицированные и улучшенные существа без эмоций и чувств - такие ассоциации со словом «киборг» обычно всплывают в голове благодаря современной масс-культуре. На самом деле «кибернетический организм» - а именно так звучит несокращенный вариант термина - обозначает лишь объединение биологического организма и какого-то механизма. Киборги, живущие среди нас, вовсе не всегда выглядят как залатанные в железо роботы: это люди с кардиостимуляторами, инсулиновыми помпами, биосенсорами в опухолях. Многих из них даже не обнаружить «на глаз» - разве что по сигналу рамки-металлоискателя в общественном месте.

Сейчас имплантация медицинских приборов - один из самых прибыльных видов бизнеса в США. Такие приборы используют и для восстановления функций организма, и для улучшения жизни, и для проведения инвазивных анализов.

Имплантированная техника: от традиционных приборов до новейших разработок

Трудно поверить, но тандем ученых и врачей успешно создает киборгов уже несколько десятилетий. Всё началось с сердечно-сосудистой системы. Более 50 лет назад был создан первый полностью находящийся под кожей электрокардиостимулятор - устройство, которое поддерживает и/или регулирует частоту сердечных сокращений у больного. В наши дни ежегодно вживляется более 500 000 таких приборов. Появились и новые технологии: например, существует имплантируемый кардиовертер-дефибриллятор для лечения угрожающей жизни тахикардии и фибрилляции.

Но больше всего поражает то, что уже через пару лет планируется провести тестирование искусственного сердца BiVACOR на людях (рис. 1) - опыты на овцах уже завершились успехом. Оно не перекачивает кровь, как насос, а просто «двигает» - поэтому и пульса у будущих пациентов с таким кардиопротезом не будет. Прибор может полностью заменить собственное сердце пациента и прослужить до 10 лет, по словам разработчиков . Кроме того, он маленький (чтобы подойти и ребенку, и женщине), но мощный (чтобы успешно работать в теле взрослого мужчины). В современном мире, где донорских органов постоянно катастрофически не хватает, этот девайс был бы просто незаменимым. Питание прибора внешнее - с помощью чрескожной трансмиссии. Конструкция с использованием магнитной левитации и вращающихся дисков предотвращает износ деталей - одну из проблем других разработок, имитирующих структуру настоящего сердца. «Умные» сенсоры помогают подстраивать скорость кровотока BiVACORа под физическую и эмоциональную активность пользователя.

Помимо сердца, традиционно девайсы интегрируют в организм для доставки лекарств при хронических заболеваниях - как это делает, например, инсулиновая помпа при сахарном диабете (рис. 2). Сейчас такие же приборы используют для доставки препаратов в ходе химиотерапии или лечения хронической боли.

Всё популярнее становятся имплантируемые нейростимуляторы - дейвасы, стимулирующие определенные нервы в организме человека. Разрабатывают их для применения при эпилепсии, болезни Паркинсона, хронических болях (видео 1), недержании мочи, ожирении , артрите, гипертонии и многих других нарушениях.

Видео 1. Как стимуляция спинного мозга изменяет болевые сигналы до их попадания в мозг

На совершенно новый уровень вышли имплантируемые приборы для улучшения зрения и слуха , .

Измерить всё: биосенсоры

Все упомянутые разработки призваны восстановить утраченную или отсутствующую функцию организма. Но появилось и другое направление развития технологий - миниатюрные имплантируемые биосенсоры , регистрирующие изменения физиологических параметров организма . Вживление такого прибора тоже делает из пациента киборга - хотя и в немного непривычном смысле слова, ведь у организма не появляется никаких сверхспособностей.

Биосенсор - это устройство, состоящее из чувствительного элемента - биорецептора, распознающего нужное вещество, - преобразователя сигнала , который переводит эту информацию в сигнал для передачи, и процессора сигнала . Таких биосенсоров очень много: иммунобиосенсоры, энзиматические биосенсоры, генобиосенсоры... С помощью новых технологий сверхчувствительные биорецепторы способны «засечь» глюкозу, холестерин, E. coli , вирусы гриппа и папилломы человека, компоненты клеток, определенные последовательности ДНК, ацетилхолин, дофамин, кортизол, глутаминовую, аскорбиновую и мочевую кислоты, иммуноглобулины (IgG и IgE) и многие другие молекулы .

Одним из самых перспективных направлений считают применение биосенсоров в онкологии . Отслеживая изменения специфических параметров непосредственно в опухоли, можно вынести вердикт об эффективности лечения и атаковать рак именно в тот момент, когда он наиболее чувствителен к тому или иному воздействию. Такая целенаправленная распланированная терапия может, например, уменьшить побочные эффекты облучения или подсказать, стоит ли менять основное лекарство. Кроме того, измеряя концентрации различных раковых биомаркеров, иногда можно диагностировать само новообразование и определить его злокачественность, но главное - вовремя выявить рецидив.

У некоторых возникает вопрос: а как сами пациенты реагируют на то, что в их тело вживили приборы и тем самым превратили в некоторого рода киборгов? Исследований по этой теме пока немного. Однако уже показано, что по крайней мере мужчины с раком простаты к вживлению биосенсоров относятся позитивно: идея стать киборгом пугает их гораздо меньше, чем вероятность потерять свою маскулинность из-за РПЖ .

Прогресс в технологиях

Широкое распространение имплантируемых девайсов тесно связано с техническими усовершенствованиями. Например, первые вживляемые кардиостимуляторы были размером с хоккейную шайбу, а использовать их можно было меньше трех лет. Сейчас же такие приборы стали гораздо компактнее и работают от 6 до 10 лет . Кроме того, активно разрабатываются элементы питания, которые могли бы использовать собственную энергию тела пользователя - тепловую, кинетическую, электрическую или химическую.

Другое направление инженерной мысли - это разработка специального покрытия приборов, которое бы облегчало интеграцию девайса в организм и не вызывало воспалительного ответа. Подобные разработки уже существуют .

Совместить сенсор и живую ткань можно и иначе. Исследователи из Гарвардского университета разработали так называемые кибернетические ткани , которые не отторгаются организмом, но вместе с тем считывают датчиками нужные характеристики . Их основа - это гибкая полимерная сетка с прикрепленными наноэлектродами или транзисторами . Из-за большого количества пор она имитирует естественные поддерживающие структуры ткани. Ее можно заселять клетками: нейронами, кардиомиоцитами, клетками гладкой мускулатуры. Кроме того, мягкий каркас считывает физиологические параметры окружающей его среды в объеме и в режиме реального времени.

Сейчас гарвардская команда ученых успешно имплантировала такую сетку в мозг крысы для изучения активности и стимуляции отдельных нейронов (рис. 3) . Каркас интегрировался в ткань и не вызвал иммунного ответа в течение пяти недель наблюдения. Чарльз Либер (Charles Lieber), руководитель лаборатории и главный автор публикаций , считает, что «сеточка» может помочь даже в лечении болезни Паркинсона.

Рисунок 3. «Сеточка» в сложенном виде вводится в головной мозг шприцем, затем расправляется и отслеживает активность отдельных нейронов с помощью вмонтированных датчиков.

В дальнейшем разработку можно будет использовать и в регенеративной медицине, и в трансплантологии, и в клеточной биофизике. Она пригодится и при разработке новых лекарств: за реакцией клеток на вещество можно будет наблюдать в объеме.

Ученые предложили и другой завораживающий способ выхода из катастрофической ситуации с трансплантацией дефицитных органов. Так называемый сердечный кибернетический пластырь - это соединение органики и техники: живые кардиомиоциты, полимеры и сложная наноэлектронная 3D-система . Созданная ткань с внедренной электроникой способна к растяжению, регистрации состояния микросреды и сердечных сокращений и даже проведению электростимуляции. «Пластырь» можно накладывать на поврежденный участок сердца - например, на зону некроза после инфаркта. Кроме того, он высвобождает факторы роста и лекарственные вещества типа дексаметазона , чтобы вовлечь стволовые клетки в процессы восстановления и уменьшить воспаление, например, после трансплантации (рис. 4). Устройство пока находится на самых ранних стадиях разработки, но планируется, что врач сможет отслеживать состояние пациента со своего компьютера в режиме реального времени. Для регенерации ткани в экстренных условиях «пластырь» сможет запустить выброс терапевтических молекул, которые заключены в электроактивные полимеры, причем положительно и отрицательно заряженные молекулы выпускают разные полимеры.

Рисунок 4. Пример «кибернетической ткани» - сердечный «пластырь» из живых клеток сердца с внедренной наноэлектроникой. Он передает информацию об окружающей среде и сердечных сокращениях в режиме реального времени лечащему врачу, а тот при необходимости может с помощью пластыря стимулировать сердце либо запустить выброс активных молекул.

Ранее считалось, что после травмы нейроны сильно реорганизуются и создают новые связи. Однако новое исследование показало, что степень реорганизации нервных клеток не так и высока.

Иан Беркхарт (Ian Burkhart) в 19 лет сломал себе шею, ныряя в волны на отдыхе. Сейчас он парализован ниже плеч и поэтому решил стать добровольцем в эксперименте исследовательской группы Чеда Бутона (Chad Bouton). Ученые сняли фМРТ (функциональную магнитно-резонансную томограмму) головного мозга испытуемого, пока тот фокусировал внимание на видео с движениями рук, и определили ответственную за это часть моторной коры. В нее и имплантировали чип, считывающий электрическую активность этой области мозга тогда, когда пациент представляет движения своей руки. Чип преобразует и передает сигнал через кабель к компьютеру, а далее эта информация идет в виде электрического сигнала на гибкий рукав вокруг правой руки испытуемого и стимулирует мышцы (рис. 5; видео 2).

Рисунок 5. Сигнал от имплантированного в моторную кору чипа идет по кабелю к компьютеру, а затем, преобразуясь, попадает на «гибкий рукав» и стимулирует мышцы.

Видео 2. Иан Беркхарт - первый парализованный человек, вновь получивший возможность двигать рукой благодаря развивающимся технологиям

После тренировок Иан может раздельно двигать пальцами и выполнять шесть разных движений запястья и кисти. Казалось бы, пока немного, но это уже позволяет поднять стакан воды и поиграть в видеоигру, изображающую исполнение музыки на электрогитаре. На вопрос, каково это - жить с имплантированным устройством, первый парализованный человек, которому вернули возможность двигаться, отвечает, что уже привык и не замечает его - более того, это как будто продолжение его тела.

Киберобщество

Люди с протезами, пожалуй, лучше всего вписываются в стандартное восприятие человека-машины. Однако таким киборгам жить в реальности гораздо труднее, чем аналогичным книжным и киношным персонажам. Статистика по мировой инвалидности поражает. По данным ВОЗ , около 15% населения Земли имеет физические недостатки разной степени, а от 110 до 190 миллионов человек испытывают значительные трудности с функционированием организма. Подавляющему большинству людей с ограниченными физическими возможностями приходится пользоваться обычными громоздкими колясками либо неудобными и дорогими протезами. Однако сейчас появилась возможность быстро, качественно и дешево создать нужный протез с помощью 3D-печати. Как считают ученые, именно таким способом можно помочь в первую очередь детям из развивающихся стран и всем тем, у кого ограничен доступ к медицинским услугам .

Некоторые действующие киборги даром времени не теряют и принимают участие в различных открытых встречах. Например, прошлогодний фестиваль Geek Picnic , прошедший в Москве и Санкт-Петербурге, был посвящен именно людям-машинам. Там можно было увидеть гигантскую роборуку, пообщаться с людьми, чье тело было усовершенствовано технологиями, и побывать в виртуальной реальности.

В октябре 2016 года в Цюрихе пройдет первая в мире олимпиада для людей с ограниченными физическими возможностями - (Cybathlon ). На этом соревновании можно пользоваться теми устройствами, которые исключили из программы Паралимпийских игр. Некоторые уже окрестили это событие «олимпиадой для киборгов», поскольку немалый вклад в победу внесут технические приборы (рис. 6). Участники будут соревноваться в шести дисциплинах, используя электроприводные коляски, протезы и экзоскелеты, приборы для электрической стимуляции мышц и даже интерфейс «мозг-компьютер».

Рисунок 6. Кибатлон - первая олимпиада, в которой люди с ограниченными возможностями соревнуются друг с другом с помощью технических новинок. При победе одну медаль вручают спортсмену, вторую - разработчику механизма.

Спортсменов, управляющих машинами, окрестят «пилотами». В каждой дисциплине вручают две медали: одну - человеку, управляющему устройством, вторую - компании или лаборатории, разработавшей «чемпионский» механизм. По словам организаторов, главная цель соревнования - не только показать новые вспомогательные технологии для повседневной жизни, но и убрать границы между людьми с ограниченными физическими возможностями и широкой общественностью. Кроме того, как рассказал в интервью BBC профессор Роберт Райнер (Robert Riener) из Университета Швейцарии, олимпиада сможет свести вместе разработчиков и непосредственных пользователей новых устройств, что просто необходимо для совершенствования технологий: «Некоторые из современных разработок выглядят очень круто, но, чтобы стать практичными и удобными в применении, им предстоит проделать долгий путь» . Остается надеяться, что человеческая составляющая не потеряется во время соревнований, и Кибатлон не обернется рекламной гонкой оборудования разных компаний.

Posthumans: киборги и биоэтика

Новые имплантируемые технологии в целом воспринимаются обществом позитивно. Это и не удивительно: ведь они поддерживают, восстанавливают и улучшают здоровье, облегчают доступ к медицинским услугам, при этом они безопасны и в будущем могут значительно снизить затраты на здравоохранение в мировом масштабе. Однако стоит заговорить о таких пациентах как о киборгах, как тут же всплывают коннотации из научной фантастики (рис. 7). Основные опасения связаны со страхом за человечность человека : а что, если машины изменят человека, и он утратит свою человеческую сущность? Где граница между искусственным и естественным для человека и стоит ли использовать такое разделение для оценки какого-либо явления? Можно ли разделить пациента-киборга с вживленным прибором на две отдельные составляющие - человека и машину - или это уже цельный новый организм?

Кроме того, иногда даже в обычных больничных условиях невозможно разделить пациентов и аппараты для их поддержания . Медперсоналу нужно заботиться о технике так, как если бы она была не просто продолжением организма больного, но и им самим.

Активно обсуждается и различие между терапией и улучшением организма: therapy vs. enhancement , . Например, как бы вы отнеслись к соревнованию между барабанщиком, виртуозно владеющим двумя своими руками, и барабанщиком с одной своей рукой и рукой-протезом? А если бы вы узнали, что в протез встроены две барабанные палочки, одна из которых управляется датчиком, считывающим с мышц электромиограмму, а вторая не контролируется человеком и «импровизирует», подстраиваясь под первую палочку? Между прочим, такой протез вовсе не выдумка, а реальность : барабанщик Джейсон Барнс (Jason Barnes) потерял правую руку ниже локтя несколько лет назад и сейчас пользуется именно таким устройством (видео 3). «Спорю, что многие металлисты-барабанщики позавидовали бы тому, что я могу делать. Скорость - это хорошо. Всегда чем быстрее, тем лучше» , - говорит барабанщик-киборг.

Видео 3. Киборгу-барабанщику Джейсону Барнсу после потери части руки не было нужды прощаться с музыкальной карьерой: со специальным протезом он даст фору большинству своих коллег

Интересно, что споры ведутся не только о технике, но и о новых препаратах, улучшающих работу мозга. Появился даже специальный термин - нейроэтика - для обсуждения различных аспектов существования «улучшенных» с помощью нейроимплантов людей . А если оперировать понятием прогрессивных технологий более широко, то к киборгам можно отнести и людей с биотехнологическими «улучшениями»: например, реципиентов органов, созданных из индуцированных плюрипотентых клеток .

Своеобразным ответом на такие дискуссии стала лондонская выставка Superhuman в Wellcome Collection . На ней были представлены экспонаты, отражающие представления человека о совершенствовании своего тела: изображения летящего Икара , первые очки, «Виагра », фото первого «ребенка из пробирки», кохлеарные импланты... Может, именно тяга к улучшениям и новым разработкам - самая что ни на есть естественная для человека вещь?

По многим причинам прийти к единому мнению, что же делает человека человеком и кардинально отличает его, с одной стороны, от других живых существ, а с другой - от роботов, так и не удается.

Наконец, возникает еще один вопрос, о котором пока мало задумываются, - проблема безопасности и контролируемости. Как сделать подобные приборы устойчивыми к хакерским атакам ? Ведь незащищенность таких разработок может быть крайне опасной не только для самогό пользователя, но и для окружающих. Возможно, именно этот вопрос будет больше всего волновать следующее поколение пользователей (рис. 8).

Рисунок 8. Богатая фантазия японских сценаристов уже воплотила тему хакерства в жизнь: вдруг в будущем киборгам придется расследовать убийства, совершенные взломанными роботами?..

Пожалуй, управляемые извне люди-киборги - самое страшное . По крайней мере, на сегодня. Однако с нервными системами попроще это активно практикуют. Например, для поисковых и спасательных целей успешно используют насекомых-биоботов - к примеру, мадагаскарских тараканов (рис. 9) . Кроме того, такие модернизированные просто устроенные существа - еще и прекрасные опытные объекты для нейробиологии.

Рисунок 9. Биобот - существо с простой нервной системой, которую можно контролировать вживленной техникой. Повторить такое для мозга человека вряд ли удастся из-за сложной структуры органа.

Заключение

Киборги уже живут среди нас - нравится это отдельным представителям общественности или нет. Технические границы раздвигаются, и наверняка новые разработки улучшат качество жизни многим людям с ограниченными возможностями и помогут в медицинской практике.

«Я думаю, что будущее борьбы с хроническими заболеваниями - это имплантируемые устройства , - рассказывает Сэди Криз (Sadie Creese) из Школы Мартина Оксфордского университета. - Они будут измерять жизненно важные характеристики и отсылать их поставщику медицинских услуг, кто бы это ни был и где бы он не находился» . Таким образом, по мнению Сэди, можно себе представить консультантов и врачей по всему миру: в идеале любой местный врач мог бы получать оповещения о здоровье пациента с помощью одного-единственного приложения. Действительно, не исключено, что вся система ведения пациентов изменится уже в самое ближайшее время. Стόит окинуть взглядом быстро развивающуюся область вживляемых девайсов - и такой алгоритм уже не кажется несбыточным. А о мобильных приложениях и их применении в здравоохранении как раз и пойдет речь в

  • Sandeep Kumar, Wandit Ahlawat, Rajesh Kumar, Neeraj Dilbaghi. (2015). Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare . Biosensors and Bioelectronics . 70 , 498-503;
  • Shaker Mousa. (2010). Biosensors: the new wave in cancer diagnosis . NSA . 1;
  • Gill Haddow, Emma King, Ian Kunkler, Duncan McLaren. (2015). Cyborgs in the Everyday: Masculinity and Biosensing Prostate Cancer . Science as Culture . 24 , 484-506;
  • Stefan Giselbrecht, Bastian E. Rapp, Christof M. Niemeyer. (2013). Chemie der Cyborgs - zur Verknüpfung technischer Systeme mit Lebewesen . Angew. Chem. . 125 , 14190-14206;
  • Bozhi Tian, Jia Liu, Tal Dvir, Lihua Jin, Jonathan H. Tsui, et. al.. (2012). Macroporous nanowire nanoelectronic scaffolds for synthetic tissues . Nat Mater . 11 , 986-994;
  • Gibney E. (2015). Injectable brain implant spies on individual neurons . Nature News ;
  • Jia Liu, Tian-Ming Fu, Zengguang Cheng, Guosong Hong, Tao Zhou, et. al.. (2015). Syringe-injectable electronics . Nature Nanotech . 10 , 629-636;
  • Ron Feiner, Leeya Engel, Sharon Fleischer, Maayan Malki, Idan Gal, et. al.. (2016). Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function . Nat Mater . 15 , 679-685;
  • Киборги сегодня: нейрокомпьютерные технологии становятся неотъемлемой частью нашей жизни ;
  • Geddes L. (2016). First paralysed person to be ’reanimated’ offers neuroscience insights . Nat. News ;
  • Jorge Zuniga, Dimitrios Katsavelis, Jean Peck, John Stollberg, Marc Petrykowski, et. al.. (2015). Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences . BMC Research Notes . 8 , 10;
  • Catherine Pope, Susan Halford, Joanne Turnbull, Jane Prichard. (2014). Cyborg practices: Call-handlers and computerised decision support systems in urgent and emergency care . Health Informatics J . 20 , 118-126;
  • Ana Paula Teixeira de Almeida Vieir Monteiro. (2016). Cyborgs, biotechnologies, and informatics in health care - new paradigms in nursing sciences . Nursing Philosophy . 17 , 19-27;
  • I. de Melo-Martin. (2010). Defending human enhancement technologies: unveiling normativity . Journal of Medical Ethics . 36 , 483-487;
  • NORMAN DANIELS. (2000). Normal Functioning and the Treatment-Enhancement Distinction . Cambridge Q. Healthcare Ethics . 9 ;
  • Martha J. Farah. (2002). Emerging ethical issues in neuroscience . Nat Neurosci . 5 , 1123-1129;
  • Ewen Callaway. (2012). Technology: Beyond the body . Nature . 488 , 154-155;
  • Eric Whitmire, Tahmid Latif, Alper Bozkurt. (2013). Kinect-based system for automated control of terrestrial insect biobots . 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) ;
  • Jonathan C. Erickson, María Herrera, Mauricio Bustamante, Aristide Shingiro, Thomas Bowen. (2015). Effective Stimulus Parameters for Directed Locomotion in Madagascar Hissing Cockroach Biobot . PLoS ONE . 10 , e0134348;
  • Remote controlled cockroach biobots . (2012). SciTech Daily ;
  • Ещё один путь продления жизни — перенесение личности человека на другой носитель.

    На мой взгляд — основная проблема при перенесения личности — это проблема ИДЕНТИЧНОСТИ ЛИЧНОСТИ. Дело в том, что мы до сих пор не знаем что такое личность и однозначно ли определяет её только набор нейронных связей, памяти и стереотипов поведения. Лично мне больше импонирует понятие душа.

    Решением здесь может являться постепенная, по мере необходимости, замена элементов тела на дублирующие и расширяющие функции устройства с параллельной фиксации динамических параметров работы мозга и переносом их в нейрокомпьютер, для последующей замены при отмирании клеток мозга, способом постепенного перемещения. То есть Создание киборгов. В большинстве фильмов показано что это для является трагедией для личности человека. Однако я так совсем не думаю. Увеличить свои возможности — это того стоит, никто ведь не выступает против зубных протезов.

    Так Японцы в этом году планируют вживить аппарат для наблюдения инфракрасного и ультрафиолетового излучения. А в Англии вживлена микросхема для управления компьютером.

    В настоящее время уже синтезированы вещества, позволяющие ткани нерва обрастать контакт микросхемы.

    Немецким ученым удалось соединить ряд живых нервных клеток с элементами кремниевого чипа. Таким образом, они создали первую в мире сложную схему, сочетающую живые и неживые компоненты.

    Двое исследователей Института биохимии Макса Планка посредством микроперегородок из полимида сумели зафиксировать около 20 нейронов улитки на кремниевом чипе. Между собой нейроны парами соединили через синапсы. Пары были соединены с полевыми транзисторами чипа, образуя схемы кремний-нейрон-нейрон-кремний. Входной электрический импульс стимулирует первый нейрон, далее через синапс сигнал проходит во второй, постсинаптическое возбуждение которого модулирует ток транзистора, образуя выходной сигнал компонента из двух транзисторов и двух нейронов.

    Улитка Lymnaea stagnalis издавна была главным подопытным существом нейрофизиологов из-за больших размеров своих нервных клеток, доступных для манипуляций обычными инструментами.

    Данный эксперимент имеет большое значение для определения принципиальной возможности функционирования подобных систем. Нейроэлектроника долго подбиралась к этому достижению. В будущем гибридные схемы из комбинаций живых и неживых элементов позволят осуществить прорыв в медицине, заменяя поврежденные естественные биомеханизмы человека на искусственные имплантанты, управляемые нервной системой. Многим людям можно будет вернуть утраченные или изначально отсутствующие функции: зрение, слух, подвижность. Эти функции даже можно будет заметно усилить по сравнению с обычными. Возможно, кому-то не помешают дополнительные умственные способности или, скажем, память (вспомним фильм «Джони-мнемоник»).

    С другой стороны, гибридные элементы сделают реальностью киборгов — роботов, приближающихся по своим способностям к человеку. Пока сделан небольшой, но принципиальный шаг навстречу технологиям будущего.

    Сейчас немецкие ученые уже работают над созданием схемы из 15 тысяч транзисторно-нейронных элементов. Для создания больших схем необходимо научиться более точно сопрягать синапсы нейрона с транзисторами», — отметил биофизик Петер Фромгерц, который разработал данную технологию совместно со своим коллегой Гюнтером Зеком.

    А Российским ученым удалось создать первую в мире интеллектуальную машину, способную выполнять функции человеческого мозга. В основе искусственного интеллекта, названного брейнпьютером, лежит модель клетки головного мозга человека. Идея создания искусственного «мозга» принадлежит российскому ученому — академику международной академии информатизации Виталию Вальцелю.

    Ещё в 1956 году советскими учеными в Центральном научно-исследовательском институте протезирования и протезостроения Министерства социального обеспечения РСФСР был создан макетный образец «биоэлектрической руки» — протеза, управляемого с помощью биотоков мышц культи. Это «чудо ХХ века», впервые демонстрировалось в советском павильоне на Всемирной выставке в Брюсселе.

    Обладатель исскуственной руки пользуется ей очень просто, без каких-либо неестественных усилий: мозг отдает мышцам приказание сократиться, после чего легкое сокращение одной мышц культи заставляет кисть сжаться, сокращение другой — раскрывает ее. Протез надежно работает при любом положении руки, с его помощью человек может самостоятельно обслуживать себя: одеться, обуться, за обеденным столом управляться с ножом и вилкой по всем правилам хорошего тона, а также писать, чертить и т.п. Более того уверенно работать напильником и ножовкой, пинцетом и ножницами и даже управлять транспортным средством..

    ЭЛЕКТРОННЫЕ ГЛАЗА

    Многие ученые, работающие над проблемой искусственного зрения, пытаются активизировать потенциальные возможности мозга слепых. Разработанная американскими учеными электронная система искусственного зрения построена следующим образом: в глазницах слепого устанавливаются стеклянные глаза — высокочувствительные экраны, воспринимающие световые волны (вместо сетчатки). Стеклянные глаза, содержащие матрицы светочувствительных элементов, соединяются с сохранившимися мышцами зрительных органов слепого. Благодаря усилию глазных мускулов положение этих экранов (камер) можно менять, направляя их на тот или иной объект. В дужках темных фальшивых очков, заменяющих оптический нерв, размещены микроузлы, преобразующие изображение, «считываемое» с экрана, которое передается в электронный блок, связанный с электродами, кончики которых введены в участки гловного мозга, ведающие зрением. Соединение электронных схем с вживленными электродами производится либо по проводам с подкожным разъемом, либо через передатчик, устанавливаемый снаружи и имеющий индуктивную связь со вживленной частью системы под черепной коробкой.

    Каждый раз, когда экран в глазнице слепого регистрирует какой-либо несложный объект, миниатюрная ЭВМ в дужке очков преобразует изображение в импульсы. В свою очередь электроды «переводят» их в иллюзорное ощущение света, соответствующее определенному пространственному образу. Предстоит еще много сделать, чтобы подобные системы искусственного зрения стали высокоэффективными приборами, приносящими реальную пользу не отдельным пациентам, а тысячам и тысячам слепых.

    Интересно, что глаз воспринимает единый визуальный ряд очень фрагментарно, создавая целый набор различных зрительных репрезентаций, которые затем параллельно — в форме отдельных нервных импульсов — транслируются в нервные центры мозга.

    Выяснилось, что визуальный образ формируется мозгом на основе двенадцати отдельных грубых «набросков», в которых отражены определенные элементы внешнего мира. Формирование этих образов обусловлено структурно, — строгая специализация ганглиев находит непосредственное отражение в строении сетчатки. Она состоит из нескольких слоев. Зрительную информацию воспринимают светочувствительные фоторецепторы (палочки и колбочки). Они передают импульсы слою горизонтальных и биполярных клеток, которые связаны с ганглиями многочисленными нервными отростками. На этом этапе и фильтруется информация.

    Все ганглии делятся на 12 групп, и каждая из них снимает свое «кино», фиксирует свою часть картинки — это может быть движение, или большие структурно однообразные объекты, или границы объектов, и т. п. Затем мозг складывает эти куски окружающей реальности воедино и, вероятно, дополняет их образами, хранящимися в памяти. На основе полученных данных была построена компьютерная модель, симулирующая активность ганглиев и наглядно демонстрирующая, какие именно изображения передаются в мозг.

    СЛУХОВЫЕ УСТРОЙСТВА

    Не менее успешно ведутся работы и по созданию электронных устройств для людей, частично или полностью потерявших слух. Один из наиболее удобных аппаратов, усилительный тракт которого построен на одной интегральной микросхеме. Его вес не более 7 граммов. Применяемые электретные микрофоны со встроенными истоковыми повторителями имеющими высокую чувствительность.

    Значительно сложнее вернуть человеку слух при полной его потере. Обычно глухим вживляют в улитку внутреннего уха одноканальные электроды (вместо нервов), что позволяет им слышать, например, звуки телефонного или дверного звонка. С появлением микропоцессоров возникла возможность обработки воспринимаемых звуков для выделения составляющих тональных сигналов, подаваемых на отдельные каналы многоканального аппарата искусственного слуха, синтезирующие первоначальные сигналы в слуховом участке коры головного мозга.

    ИСКУССТВЕННОЕ СЕРДЦЕ

    Конструкция первого механического сердца была разработана еще в конце 1930-х гг. русским хирургом Владимиром Демиховым. Устройство это представляло собой насос, приводящийся в действие электромотором. Эксперименты показали перспективность идеи как таковой: собакам, у которых функции удаленного сердца выполнял его рукотворный аналог, удавалось прожить до двух с половиной часов. Спустя 30 лет после этих опытов была проведена первая подобная операция на человеке. Цель ее была сравнительно скромной — дать пациенту возможность протянуть несколько дней в ожидании донорского сердца. В начале 1980-х гг. было создано устройство, рассчитанное на длительный период работы. Искусственное сердце, которое получило название Jarvik-7, предназначалось также и для больных, которые никогда не дождутся своего донора. Ситуация обычная, поскольку органов, пригодных для трансплантации, никогда не было в избытке. Первый из пациентов, подключенных к Jarvik-7, прожил 112 дней, еще один — 620 дней.

    Впрочем, жизнь их была малоприятной. Работа механического сердца вызывала конвульсии, затрудненное дыхание, нарушения работы внутренних органов, помутнение сознания. Больные были буквально прикованы к внешнему блоку питания и управления размером со стиральную машину. Наконец, чтобы этот блок соединить проводами с имплантированным в грудь насосом, приходилось проделывать дыры в теле пациентов. Риск занести инфекцию, как нетрудно догадаться, в таких условиях огромен. Словом, несовершенство первых искусственных аналогов сердца было настолько очевидно, что в одной из статей в «Нью-Йорк Таймс» эти исследования обозвали «Дракулой медицинских технологий».

    Однако в последнее время появляется все больше оснований изменить скептическое отношение к попыткам сконструировать эффективно работающие устройства, способные с успехом заменить сердце. Созданы надежные миниатюрные двигатели, микропроцессоры дают уникальную возможность регулировать поток крови в зависимости от физической нагрузки, а легкие и емкие литиевые батареи могут обеспечить необходимую энергию. Все эти технологические достижения воплощены в конструкции портативного искусственного сердца, созданного специалистами американской компании Abiomed Inc. Устройство, получившее название AbioCor, представляет собой механический насос с внутренними клапанами и четырьмя трубками, которые соединяются с сосудами. Вся конструкция в точности симулирует работу настоящего человеческого сердца. Питается этот титаново-пластмассовый агрегат от батареи весом менее двух килограммов — ее предполагается повесить пациенту на пояс. Причем никакие провода из груди торчать не будут, поскольку энергия передается прямо через кожу. В этом отношении у AbioCor просто нет аналогов. Внешний блок питания транслирует радиосигнал, который преобразуется в электрические импульсы детектором, имплантированным в брюшную полость. Батарея требует подзарядки каждые четыре часа, и на время ее замены подключается внутренний блок питания, рассчитанный на 30 минут автономной работы. Кроме всего прочего, система оснащена миниатюрным передатчиком, позволяющим дистанционно отслеживать параметры работы всего устройства.

    Специалисты из Abiomed потратили на свою разработку 30 лет, но и сегодня они говорят, что удалось сконструировать лишь экспериментальную модель. Цель дальнейших исследований — создать искусственное сердце, способное работать до пяти лет.

    Первый в мире Киборг

    Британский профессор превратился в самого настоящего киборга. Ему была сделана операция по вживлению чипа в нервную систему, которая обошлась ему в кругленькую сумму — 714 575 долларов. Хирурги вживили микрочип в нерв на левой руке профессора Кевина Ворвика, и он, таким образом, стал полу-роботом. Теперь деятельность его нервной системы контролируется компьютером, который считывает информацию с движений руки мистера Ворвика. Ученые из университета Ридинг собираются также немного поэкспериментировать со своим коллегой. Они планируют посылать его нервной системе искусственные импульсы, чтобы проверить, могут ли быть синтезированы эмоции, например, раздражение и злоба. Сам доброволец надеется, что у него проснется шестое чувство, и он сможет ориентироваться в пространстве даже с закрытыми глазами. «Это очень важный исторический момент. Он изменит весь мир,» — считает профессор Ворвик. Эксперименты над рукой профессора-робота продлятся несколько месяцев, и за это время исследователи надеются получить исчерпывающую информацию о том, как работает обновленная рука мистера Ворвика. Эмоции профессора будут тщательнейшим образом отслеживаться через чип.

    Кевин Ворвик не новичок в этом деле. Четыре года назад в его левую руку был вживлен микрочип, который включал и выключал свет, а также открывал автоматические двери. На этот раз ему пересадили более совершенный микрочип, ширина которого составляет всего три миллиметра. Сто тончайших электродов были подсоединены к нерву срединной артерии, а снаружи они подведены к компьютеру. В ближайшее время исследователи собираются вживить аналогичный микрочип жене профессора Ирене и соединить чету Ворвиков проводочками, чтобы проследить, смогут ли в таком случае супруги шевелить пальчиками друг друга. Ученые надеются, что этот эксперимент поможет разработать новую методику реабилитации людей с ограниченными физическими возможностями.

    С транспьютерами все более-менее понятно. Создается некая архитектура, в которую можно втыкать кучу отдельных траспьютерных блоков, на каждом из которых есть процессор и еще кое-что. Дальше с помощью этих блоков можно организовывать параллельные вычисления, так или иначе распределяя вычислительные ресурсы между одной или несколькими задачами.

    С нейрокомпьютерами несколько сложнее. В отличие от транспьютеров, нейрокомпьютер - сейчас это в основном не аппаратное, а скорее программное понятие. Оно в корне меняет весь процесс программирования, и делает его похожим на процесс нашего мышления (хотя, признаться, вокруг того, как мы мыслим тоже идут споры). Толчком к развитию нейрокомпьютинга послужили биологические исследования. Типичный нейрокомпьютер состоит из большого числа параллельно работающих простых вычислительных элементов (нейронов). Элементы связаны между собой, образуя нейронную сеть. Они выполняют единообразные вычислительные действия и не требуют внешнего управления. А большое число параллельно работающих вычислительных элементов обеспечивают высокое быстродействие.

    Собственно это и есть тот шаг, которого так боялись создатели «Терминатора». Нейрокомпьютеры в корне отличаются от традиционных ЭВМ. Программист нейрокомпьютера не пишет программ, он обучает компьютер подобно тому, как родители обучают своего ребенка. Процесс чем-то напоминает к примеру известное математикам линейное программирование, когда не задается алгоритм, а идет корректировка весов связей, «правил поведения» нейрокомпьютера. После такого обучения нейронная сеть может применять полученные навыки ко входным условиям (или, как говорят, «сигналам»), подобно тому как и мы применяем свои знания для жизни в окружающем мире.

    Есть и еще одно "но" - способность к самообучению . Но этот рубикон перейден уже очень давно, и ни для одного программиста самообучающаяся программа - не предмет удивления. На этом принципе сейчас построена каждая база данных.

    Некоторые ученые высказывают к примеру предположения, что если магистральная линия развития компьютерной техники перейдет с традиционной фон-Неймановской на нейроархитектуру, то ДОСТИЖЕНИЯ КОМПЬЮТЕРОМ УРОВНЯ СЛОЖНОСТИ ЧЕЛОВЕЧЕСКОГО МОЗГА СЛЕДУЕТ ОЖИДАТЬ ГОРАЗДО РАНЕЕ 2020 ГОДА. И тогда то, что ученые называют «искусственным интеллектом», будет создано. Но вне зависимости от того, является или нет эта линия развития компьютеров магистральной, такие компьютеры существуют и развиваются.

    Далее в дело вступают нанотехнологии, переводящие процесс создания нейрокомпьютеров в область наноразмеров, и значительно уменьшающие размеры элементов нейрокомпьютеров, что влечет за собой существенный рост их производительности и ИНТЕЛЛЕКТА. Эти технологии с успехом начинают применяться уже сейчас.

    Сообщества, роботы-сообщества и симбиоты

    Схематично обрисовав в прошлом выпуске основные разновидности искусственных существ, я намеренно не стал рассматривать такую существеннейшую часть их организации, как способность их группировки в сообщества. А между тем, это очень существенный вопрос. Никого не пугает одна саранча. Но если идет стая саранчи, то это уже не безобидное насекомое, а природный катаклизм.

    Многие известные нам существа живут в сообществах, больших или малых. Муравей живет в муравейнике, волки - в стае, коровы - в стадах, лошади - в табунах и так далее. Человек живет в обществе.

    Что же до искусственных существ, далеко идти не надо. Именно сейчас Вы и находитесь в одном из таких сообществ - в Интернете, сообществе роботов. В основном здесь встречаются программные роботы (например веб-серверы, поисковые роботы, IRC-боты, игровые роботы и т.п. электронный народ), но есть конечно и обычные роботы, для которых интернет - неплохое средство связи.

    Роботы, конечно, постоянно взаимодействуют между собой (например IRC-бот общается с сервером IRC, а поисковый робот - с web-серверами) и используют Интернет как средство перемещения. Например если вы устанавливали Internet Explorer 4й версии и выше не с CD-ROMа, а напрямую из сети, вам наверняка запомнился робот-установщик, который принимал эту программу по частям на ваш компьютер, при обрывах производил докачку, а после завершения передачи компонент запускал программу инсталляции. Используют Интернет как транспортное средство и вирусы. Впрочем последние в основной своей массе даже не догадываются об этом, а просто прицепляются к файлам и путешествуют таким образом вместе с ними по всем носителям и местам хранения.

    Разумно было бы предположить что сообщества роботов могут иметь несколько степеней организации , от простой толпы до единого составного организма.

    В сообществе, близком к состоянию толпы, роботы используют интернет в основном как средство связи и транспортное средство (т.е. для передачи информации). Они вполне могли бы обойтись и без такого сообщества, но с ним попросту удобнее и быстрее обмениваться информацией. Безусловно, в основном все сети (в том числе и Интернет), прошли такую степень организации - на начальном этапе своего развития.

    Затем наступает время, когда роботы начинают использовать сообщество более активно, начинают все тесней взаимодействовать друг с другом, и вот появляется все больше интеллектуальных роботов, которые созданы для жизни в этом сообщества, и смысл существования которых без сообщества теряется (в Интернете например - поисковые роботы, базы данных, многие экспертные системы, в Фидонет - FAQ-серверы, тоссеры, в локальных сетях - СУБД). Интернет сейчас похоже прошел и эту стадию развития. Потом, видимо, наступает момент, когда сообщество начинают воспринимать как единое целое (как сейчас многие воспринимают WorldWideWeb как одну огромную базу данных). Кажется именно в начале этой ступени своего развития находится Интернет.

    Ну и, наконец, сообщество перестает рассматриваться всеми как группа организмов, становится единым целым, и не может существовать в виде отдельных роботов. Примером могут служить транспьютеры.

    И тут наступает черед перейти к двум другим понятиям - к понятию симбиоза роботов и к понятию робота-сообщества.

    Симбиоз - это сожительство двух организмов разных видов, обычно приносящее им взаимную пользу. Понятие это разумеется пришло из биологии. Типичным примером симбиоза является например симбиоз муравья и тли. Муравьи пасут тлей и заботятся о них в меру своих возможностей, и доят их. Такое существование идет на пользу им обоим. Разумные существа вступают в симбиоз чрезвычайно легко. Собственно это одно из основных свойств разумных существ. Опыт человечества в этом плане показателен. Еще на заре своего развития человек приручил множество животных, которым дал уход и кров, и от которых получил молоко, мясо, яйца, пух, перья, шкуры, способность быстро передвигаться, и много-много чего еще.

    Сейчас, на заре нового тысячелетия, человек создал нечто новое - искусственных существ. И тут же оказался в симбиозе с ними. Сейчас наше взаимодействие идет на пользу и нам и им. Нам это дает все то, что мы получаем от роботов: автоматизацию производства, доступ к базам данных, удобные и дешевые средства коммуникации, новые средства дизайна, новые технологии в прессе и тому подобные вещи - фактически все, что мы получаем от компьютеров. Им это дает развитие, совершенствование, обслуживание. Такое взаимодействие обеспечивает и им и нам выживание в современном мире.

    Станислав Лем, а также некоторые другие фантасты, в своих произведениях неоднократно рассматривали и такие интересные организмы, как роботы-сообщества. Такой робот получится, если сообщество роботов интегрируется в единый организм настолько, что его можно будет считать единым существом. Такова (как я уже пару раз замечал выше) транспьютерная технология. Ввиду этой своей особенности такие роботы-сообщества имеют несомненные преимущества перед обычными: они обладают большей способностью к выживанию, все мыслительные операции проделывают обычно быстрее, их архитектура больше приспособлена к параллельной обработке данных, а если снабдить составные части такого робота способностью к самостоятельному перемещению, то такое составное существо могло бы менять свою конфигурацию в зависимости от потребностей.

    Можно предположить, что внутренняя организация робота-сообщества могла бы быть весьма похожа на организацию государства. Так, для его существования понадобилось бы безусловно что-то, что взяло бы на себя координирующую роль (правительство?), часть органов - для организации средств защиты от внешней среды (армия?), и т.п.

    --

    А существа ли они?

    Помните спор в повести братьев Стругацких "Понедельник начинается в субботу"? Эдик Амперян и Витька Корнеев спорят о том, возможна ли небелковая жизнь. Эдик отрицает небелковую жизнь, на что Витька Корнеев не смущаясь создает щелчком пальцев "существо, похожее на ежа и на паука одновременно". Эдик опровергает его аргумент, называя это существо нежитью, то есть продуктом жизнедеятельности магов, который существует только постольку поскольку существуют маги. Тогда Корнеев щелчком пальцев создает уменьшенную копию самого себя, эта копия также щелкает пальцами и создает еще меньшую копию, та тоже щелкает пальцами, и т.д.

    Неудачный пример, - сказал Эдик с сожалением. - Во-первых, они ничем принципиально не отличаются от станка с программным управлением, во-вторых, они являются не продуктом развития, а продуктом твоего белкового мастерства. Вряд ли стоит спорить, способна ли дать эволюция саморазмножающиеся станки с программным управлением.

    Много ты знаешь об эволюции, - сказал грубый Корнеев. - Тоже мне Дарвин! Какая разница, химический процесс или сознательная деятельность. У тебя тоже не все предки белковые. Прапрапраматерь твоя была, готов признать, достаточно сложной, но вовсе не белковой молекулой. И может быть, наша так называемая сознательная деятельность, есть тоже некоторая разновидность эволюции. Откуда мы знаем, что цель природы - создать товарища Амперяна? Может быть, цель природы - это создание нежити руками товарища Амперяна. Может быть...

    Понятно, понятно. Сначала протовирус, потом белок, потом товарищ Амперян, а потом вся планета заселяется нежитью.

    Именно, - сказал Витька. - А мы все за ненадобностью вымерли.

    А почему бы и нет? - сказал Витька.

    У меня есть один знакомый, - сказал Эдик. - Он утверждает, будто человек - это только промежуточное звено, необходимое природе для создания венца творения: рюмки коньяка с ломтиком лимона.

    А почему бы в конце концов и нет?

    А потому, что мне не хочется, - сказал Эдик. - У природы свои цели, а у меня свои.

    Как это ни странно, но таковы в общих чертах все современные споры на тему, являются ли человеческие творения организмами и живыми существами. Почему бы и не называть это жизнью? Ведь основой любого организма являются те же атомы, из которых состоит неживая материя. Клетки, из которых состоят живые существа, бывают самых разных видов и размеров. Известно также, что в них заложена генная программа, которая подчиняет себе процесс жизни, развития и деления клетки. Именно клеточная активность служит для многих необходимым мерилом того, возможно ли признавать организм живым. А между тем нас можно рассматривать как биороботов. В нас, в нашей генной программе, заложено наше развитие, наши биологические черты, цвет волос, рост, овал лица, склонность к полноте или худобе. Там запрограммирована даже наша биологическая смерть.

    Но определение живой материи как состоящей из функционирующих клеток - это постулат. Почему бы и не допустить возможность построения живого организма из других "кирпичиков"? Те, кто не допускает существования иной жизни, кроме основанной на клеточной структуре, следуют тому постулату, что живая материя может состоять исключительно из клеток (на белковой основе). Но постулат на то и постулат, что он не требует доказательства. Евклид постулировал, что параллельные прямые не пересекаются. Лобачевский убрал этот постулат, и получил новую геометрию, которая также непротиворечива и тоже нашла применение. Эта новая наука расширила наши познания об окружающем мире.

    Точно так же признание возможности неорганической жизни существенно расширят наши познания. Тем, кто не допускает такой возможности, можно смело сказать: с вашей точки зрения это - не жизнь. Но это недоказуемо. Более того, обратившись к истории язычества, мы найдем, что когда-то, давным-давно, люди считали одушевленной все проявления природы, в том числе и те из них, которые сейчас считаются неживой природой. Для наших предков живыми были и камни, и речка, и ветер. Наши предки жили в гармонии с природой, мы же считаем половину ее неживой, мертвой и возможно именно поэтому пришли сейчас к тем многим потерям, что мы сейчас имеем.

    Техноцивилизация

    Итак, я пытаюсь убедить Вас в том, что вполне возможна ситуация, при которой компьютеры однажды осознают свое «я», и возможно сделают из этого какие-то выводы. Каков же будет новый порядок Земли после осознания машинами этого своего «я»? Будет ли это трагедией для них или для нас, или мы сумеем найти общий язык? Приведет ли это к появлению роботов из фильма «Терминатор», или эти роботы будут такими как Джонни-7 из «Короткого замыкания»?

    300 лет назад на планете начала формироваться техногенная цивилизация. Плоды ее развития (и хорошие, и плохие) мы наблюдаем сейчас и говорить о них здесь не будем. Собственно гораздо забавнее и интереснее кажется сам факт того, что после миллионов лет плавного и очень медленного развития техника за какие-то несчастные 300 лет поднялась на те высоты, на которых сейчас находится.

    Давайте же попытаемся хотя бы найти несколько причин, которые послужили «катализаторами» техноцивилизации. На протяжении этих 300 лет такими катализаторами были:
    осознание необходимости разбиения процесса изготовления изделия на составные части;
    осознание необходимости развития науки;
    развитие и появление новых средств связи и массовой информации;
    появление непрерывного, конвейерного способа производства и другие, и тому подобные...

    В конце концов, во второй половине XX века на арене появились компьютеры. Поначалу неповоротливые, огромные и маломощные, затем они уменьшились в размерах и увеличили свой интеллект.

    Как раз к этому времени техногенная цивилизация столкнулась еще с одной проблемой: она перестала успевать сама за собой . Новые технологии стали появляться столь часто, что люди перестали успевать осмыслить и воплощать их в практику - только они успевали это сделать, как буквально через два-три года технология устаревала, и пора было переходить на новую, если конечно производитель хотел устоять в жестких условиях конкуренции.

    Особенно четко выявились эти недостатки в странах "социалистического лагеря", как писала тогда пресса. Многие москвичи еще прекрасно помнят очереди за импортными товарами в московских магазинах - кухонными комбайнами, люстрами, мебелью... Ведь собственное производство работало по-старинке.

    В таких условиях производитель был вынужден отказываться от немобильных и трудно реорганизуюемых производств прошлого. Волей-неволей, производства становились мобильными (с точки зрения реорганизации) и более универсальными. На них появились сперва станки с ЧПУ, потом роботы, потом целые конвейеры на основе роботов. Управление процессом производства также перешло к "искусственным мозгам" - роботам и компьютерам.

    Производительность, качество, объем выпуска продукции увеличились, и предприятия смогли выжить в условиях быстро развивающихся технологий.

    Но в 90х годах условия развития техноцивилизации опять изменились. На сей раз эти изменения достигли технологий исследований. Ученые (после первых опытов 80х) вовсю стали использовать компьютеры дома, а в мир пришла Всемирная Паутина, World Wide Web. Фантасты в очередной раз оказались правы - была создана всемирная база данных. В ней в любой момент можно найти все что угодно - от рецептов по приготовлению пирожных, до описания принципов работы тех же суперсовременных процессоров и сложнейших компьютерных технологий.

    Человек доверил свои знания и инструменты исследования компьютерам и роботам . И поэтому с начала 90х годов настала новая эпоха в развитии техноцивилизации Земли - киберцивилизация , симбиоз цивилизаций робота и человека. Собственно текущий этап цивилизации хорошо описывает фраза: «искусственные существа уже появились, искусственный интеллект - пока нет».

    Как и любая цивилизация, киберцивилизация обладает своей культурой. Первый заметный всплеск ее был пожалуй связан с появлением в США фрикеров - взломщиков телефонных сетей. А это в свою очередь началось пожалуй с обычного детского развлечения - телефонных шалостей. Многие будущие фрикеры начинали именно с этого. Признайтесь, наверное и вам хоть раз в жизни довелось набрать наугад телефонный номер и поговорить с тем, кто поднимал трубку на другом конце провода?

    В начале 70х в США в процессе модернизации телефонных сетей стали появляться первые электронные АТС. И тут же эти АТС стали использовать фрикеры. Их основным орудием в начале 70х были так называемые «синие ящики». «Ящик» испускал высокотональный свист на частоте 2600 герц, который переводил аппаратуру AT&T в режим операций дальней связи. Далее, используя последовательности различных сигналов из «ящика» звонивший мог связаться с любым из уголков земного шара.

    Существенным атрибутом киберкультуры 70х стала конференц-связь. Позвонив на специально отведенный телефонной компанией номер, арендованный организатором конференции, можно было говорить одновременно с несколькими другими звонившими.

    Многие фрикеры взламывали телефонные сети совсем не для того, чтобы просто переговорить со своими знакомыми по межгороду. Их привлекала сама процедура взлома, антураж, с ней связанный, ореол тайны, а также ощущение могущества, ощущаемое человеком, который может свободно и когда захочет общаться с людьми со всего света. Процедура взлома стала для них культовой, а их общество стало первой неформальной волной киберкультуры, так же, как первой волной «формальной» киберкультуры стала конференц-связь. Культура всегда делилась на формальную и неформальную; не обошло это стороной и киберкультуру.

    Так, ходили легенды про некоего Джона Дрейпера, якобы первым обнаружившего, что тоновый сигнал игрушечного свистка из набора подарков для детей «Капитан Кранч» заставляет аппаратуру AT&T переходить в режим дальней связи. Другому фрикеру, слепому по имени Джо, с восьмилетнего возраста свистком служили его собственные губы.

    Естественно, телефонные компании боролись с фрикерами. Они изобретали всякие хитроумные устройства для отслеживания звонков фрикеров, а к концу 70х процедура отслеживания их звонков стала общепринятой, и были разработаны специальные программы для отслеживания их звонков, что позволило AT&T выловить несколько сотен «синих ящиков».

    Россиян первая волна киберкультуры в таком виде, в котором ее увидели американцы, почти не затронула, хотя по Питеру и Москве в 80х и ходили слухи о каких-то телефонных номерах, по которым была возможна конференц-связь. Естественно россиянам также было не чуждо ничто людское, и они также умели бесплатно звонить по телефонам-автоматам, но такого уровня, который бы позволил назвать это «культурой», не было.

    Зато в России в то время большое развитие получило движение радиолюбителей. Это можно считать началом нашей киберкультуры. Радиолюбительством увлекались все, кому ни лень. Началось все еще с попыток собрать радио в домашних условиях из доступных радиодеталей, а в 70х радиолюбители мастерили уже сотни разных электронных диковинок. Среди них были как специалисты-электронщики, так и новички. В устах профессионалов, термин «радиолюбительство» звучал скорее как упрек. Так говорили о какой-либо поделке, собранной «на коленках», которая могла перестать работать в любой момент. В настоящий момент радиолюбительство в России постепенно исчезает, хотя люди, которые принимали в этом участие, естественно остались.

    Следующая волна андеграундной киберкультуры пришла в Америку (да и в Россию) в 80х, вместе с появлением компьютеризированных АТС, компьютерных сетей и персональных компьютеров. На сцене повились хакеры - взломщики компьютерных сетей. Традиционно сложившийся непонятно как шаблон рисует хакеров как людей, которые сидят за компьютерами и хитрыми махинациями взламывают системы электронной защиты. Между тем, взлом «в лоб» - это лишь один из многих приемов в их арсенале. Так что такой шаблон на руку в первую очередь именно самим хакерам. Гораздо чаще предметом их взлома служит например человеческий фактор. Ведь если за сложной системой защиты стоит неопытный администратор, который не меняет пароли, или набирает их на клавиатуре так, что опытный взгляд без труда прочтет буквы «вслепую», то гораздо проще получить доступ за систему защиты именно через него.

    Вместе с персональными компьютерами в киберкультуру пришли многие люди. Люди и раньше играли в компьютерные игры, но именно появление персональных компьютеров, которые появились в домах обывателей, вызвало их бурное развитие. Многие стали использовать компьютер дома, часто как игрушку, реже для чего-либо серьезного. Так, знаменитый американский писатель Айзек Азимов восторженно описал свое знакомство с компьютером в начале 80х, заметив, что использование компьютера дома позволило написать ему гораздо больше книг, чем если бы он делал это с помощью пишущей машинки.

    Также в этот период распространение получили компьютерные сети. В Америке они существовали уже давно, но именно в 80-х, после слияния нескольких сетей в Интернет и появления в 1984 году Фидонет, они стали доступны многим. Появился новый класс «сетевиков». Фидонет в настоящее время медленно погибает, ну а Интернет переживает свой расцвет.
    Сетевики
    - это особая каста в киберкультуре, у них есть свой особый сленг и их обычно плохо понимают даже программисты из-за этого сленга и обилия специфических терминов.

    В последнее время в отношении киберкультуры все чаще к месту и не к месту применяется термин «киберпанк». Панки всегда были символом эдакого пофигистического отношения к жизни «запросто». Киберпанки столь же пофигистически и запросто живут в обстановке киберкультуры. Некоторые кстати сживаются с компьютером настолько, что делают его для себя идолом или местом обитания бога.

    Так что все пока идет к тому, что человечество ладит с киберцивилизацией, вжилось в нее и чувствует себя в ней как дома. А значит, все шансы на нашей стороне. Но не стоит забывать о том, что впереди у нас ответственный этап, который предсказывают фантасты и ученые - момент, когда искусственный интеллект достигнет уровня человеческого и превзойдет его. И мы должны быть готовы к этому.