Каковы особенности внутреннего строения сатурна. Сатурн: история окольцованной планеты. Его видели древние люди

Сатурн

Общие сведения о Сатурне

Сатурн, шестая от Солнца и вторая по размерам после Юпитера планета- гигант Солнечной системы. Назван в честь одного из самых почитаемых римских богов – покровителя земли и посевов, который был низвергнут со своего трона Юпитером.

Наблюдения Сатурна с Земли

Людям Сатурн известен с самых древних времён. Ведь на ночном небе он – один из самых ярких объектов, видимый как желтоватая звезда, блеск которой меняется от нулевой до первой звёздной величины (в зависимости от расстояния до Земли).

К тому же только у Сатурна при наблюдении с Земли в телескоп (причём даже в самый простой) видны кольца, хотя обнаружены они у всех планет- гигантов...

История исследования Сатурна

орбитальное движение и вращение Сатурна

Вокруг Солнца Сатурн обращается по чуть наклонённой к плоскости эклиптики орбите, с эксцентриситетом 0,0541 и скоростью 9,672 км./с, делая полный оборот за 29,46 земных лет. Среднее расстояние планеты от Солнца – 9,537 а.е., при максимальном 10 а.е. и минимальном – 9 а.е..

Угол между плоскостями экватора и орбиты достигает 26°73". Период вращения вокруг оси – звёздные сутки – 10 часов 14 минут (на широтах до 30°). На полюсах период вращения на 26 минут дольше – 10 часов 40 минут. Это связано с тем, что Сатурн – не твёрдое тело, как Земля, например, а огромный газовый шар. В связи с такими особенностями своего строения, которое, кстати не является уникальным, планета не имеет твёрдой поверхности, поэтому радиус Сатурна определяется по положению наиболее высоких облаков в его атмосфере. Исходя из измерения этого положения выяснилось, что экваториальный радиус Сатурна, равный 60268 км. на 5904 км. больше полярного, т.е. полярное сжатие планетного диска составляет 1/10.

Строение и физические условия на Сатурне

Облака на Сатурне, в основном, аммиачные, белого цвета, и более мощные чем на Юпитере, поэтому и « полосатость» Сатурна меньше. Под аммиачными облаками лежат менее мощные, и не заметные из космоса облака из аммония (NH 4 +).

Облачный слой Сатурна не постоянен, а, наоборот, очень изменчив. Это связано с его вращением, которое, в основном, происходит с запада на восток (как и вращение планеты вокруг своей оси). Вращение это довольно сильное, ведь и ветры на Сатурне не слабые – со скоростями до 500 м/с. Направление ветров – восточное.

Скорость ветра, а соответственно и скорость вращения облачного слоя, уменьшается при движении от экватора к полюсам, причём на широтах больших чем 35° направления ветров чередуются, т.е. наряду с ветрами восточных направлений присутствуют ветры западных направлений.

Преобладание восточных потоков указывает на то, что ветры не ограничены слоем верхних облаков, они должны распространяться внутрь, по крайней мере, на 2000 километров. Кроме того, измерения «Вояджера- 2» показали, что ветра в южном и северном полушариях симметричны относительно экватора! Есть предположение, что симметричные потоки как- то связаны под слоем видимой атмосферы.

Кстати, при изучении снимков атмосферы Сатурна, было выяснено, что здесь, также как на Юпитере, могут образовываться мощные атмосферные вихри, размеры которых правда не такие гигантские, как у Большого Красного Пятна, которое видно даже с Земли, но всё же достигают в диаметре тысяч километров. Формируются столь мощные вихри, похожие на земные циклоны, в областях подъёма тёплого воздуха.

Было также выявлено различие между северным и южным полушариями Сатурна.

Заключается это различие в более чистой атмосфере над северным полушарием, вызванной почти полным отсутствием высоких облаков. Почему верхние слои атмосферы в северном полушарии настолько свободны от облаков, не известно, но предполагается что это может быть связано с более низкими температурами (~82 К)...

Масса Сатурна огромна – 5,68 10 26 кг, что в 95,1 раз превосходит массу Земли. Однако, средняя плотность, равная всего 0,68 г./см. 3 , почти на порядок меньше, чем плотность Земли и меньше плотности воды, что является уникальным случаем среди планет Солнечной системы.

Объясняется это составом газовой оболочки планеты, который в целом не отличается от солнечного, ибо абсолютно доминирующим химическим элементом на Сатурне является водород, правда в различных агрегатных состояниях.

Так, атмосфера Сатурна почти полностью состоит из молекулярного водорода (~95%), с небольшим количеством гелия (не более 5%), примесей метана (CH 4), аммиака (NH 3), дейтерия (тяжёлый водород) и этана (СН 3 СН 3). Обнаружены следы присутствия аммиачного и водного льда.

Ниже слоя атмосферы, при давлении ~100000 баров, простирается океан жидкого молекулярного водорода.

Ещё ниже – в 30 тыс. км. от поверхности, где давление достигает одного миллиона бар, водород переход в металлическое состояние. Именно в этом слое, при движении металла, создаётся мощное магнитное поле Сатурна, о котором будет рассказано ниже.

Ниже слоя металлического водорода находится жидкая смесь воды, метана и аммиака, при высоком давлении и температуре. Наконец в самом центре Сатурна лежит небольшое по размерам, но массивное каменное или леденисто- каменное ядро, температура которого ~20000 К.

Магнитосфера Сатурна

Вокруг Сатурна существует обширное магнитное поле с магнитной индукцией на уровне видимых облаков на экваторе 0,2 Гс, создаваемое движением вещества в слое металлического водорода. Отсутствие же у Сатурна наблюдаемого с Земли магнитно- тормозного радиоизлучения астрономы объяснили влиянием колец. Эти предположения подтвердились при пролёте мимо планеты АМС « Пионер- 11» . Приборы, установленные на межпланетной станции, зарегистрировали в околопланетном пространстве Сатурна образования, типичные для планеты, обладающей ярко выраженным магнитным полем: головную ударную волну, границу магнитосферы (магнитопаузу), радиационные пояса. Внешний радиус магнитосферы Сатурна в подсолнечной точке составляет 23 экваториальных радиуса планеты, а расстояние до ударной волны – 26 радиусов.

Радиационные пояса Сатурна настолько обширны, что охватывают не только кольца, но и орбиты некоторых внутренних спутников планеты. Как и ожидалось, во внутренней части радиационных поясов, которая "перегорожена" кольцами Сатурна, концентрация заряженных частиц очень мала. Это происходит оттого, что заряженные частицы, двигаясь от полюса к полюсу, проходят через систему колец и поглощаются там льдом и пылью. В результате внутренняя часть радиационных поясов, которая в отсутствие колец была бы в системе Сатурна наиболее интенсивным источником радиоизлучения, оказывается ослабленной.

Но всё же концентрация заряженных частиц во внутренних областях радиационных поясов позволяет образовываться в полярных областях Сатурна полярным сияниям, которые похожи на те, что мы можем видеть и на Земле. Причина их образования та же – бомбардировка заряженными частицами атмосферы.

В результате этой бомбардировки происходит свечение атмосферных газов в ультрафиолетовом диапазоне (110- 160 нанометров). Электромагнитные волны такой длины поглощаются атмосферой Земли, и могут наблюдаться только космическими телескопами.

Кольца Сатурна

Ну а теперь перейдём к одной из наиболее характерных деталей строения Сатурна – его огромному плоскому кольцу.

Кольцо вокруг Сатурна впервые наблюдал Г. Галилей в 1610 г, но из- за низкого качества телескопа он принял видимые по краям планеты части кольца за спутники планеты.

Правильное описание кольца Сатурна дал нидерландский учёный Х. Гюйгенс в 1659 году, а французский астроном Джованни Доменико Кассини в 1675 году показал, что оно состоит из двух концентрических составляющих – колец A и B, разделённых тёмным промежутком (так называемым «делением Кассини»).

Много позже (в 1850 г.) американский астроном У. Бонд открыл внутреннее слабо светящееся кольцо C, которое из- за тёмного цвета иногда называют « креповым» , а в 1969 г. было обнаружено ещё более слабое и близкое к планете кольцо D, яркость которого не превышает 1/20 яркости самого яркого среднего кольца.

Помимо вышеперечисленных у Сатурна обнаружено ещё 3 кольца – E, F и G; все они слабые и плохо различимы с Земли, поэтому и открыты были во время полётов космических кораблей « Вояджёр- 1» и « Вояджёр- 2» .

Кольца чуть белее желтоватого диска Сатурна. Расположены они в плоскости экватора планеты в следующем порядке от верхнего облачного слоя: D, C, B, A, F, G, E. Порядок обозначения колец объясняется историческими причинами, поэтому он не совпадает с алфавитным...

Если внимательно рассматривать кольца Сатурна, то окажется, что их, на самом деле, гораздо больше. Разделены наблюдаемые кольца тёмными кольцевыми промежутками – щелями (или делениями), где вещества очень мало. Та из щелей, которую можно увидеть в средний телескоп с Земли (между кольцами А и В), названа щелью Кассини. В ясные ночи можно увидеть и менее заметные щели.

Так чем же объясняется такая структура колец Сатурна? И почему они вообще есть у Сатурна? Что ж, попытаемся ответить на эти вопросы. И начнём с рассмотрения второго, т.к. без ответа на него нельзя ответить на первый вопрос.

Причина, по которой Сатурн на расстоянии около 10 5 км имеет именно кольца, а не спутник, состоит в приливной силе. Было показано, что если бы спутник и образовался на таком расстоянии, то он был бы разорван под действием приливной силы на мелкие осколки. В эпоху формирования планет-гигантов вокруг них на некотором этапе возникли уплощённые облака протопланетной материи, из которой потом образовались спутники. В зоне колец приливная сила воспрепятствовала образованию спутника. Таким образом, кольца Сатурна, вероятно, являются остатками допланетной материи, и состоят из образований, размеры которых могут быть от мелких песчинок до фрагментов порядка нескольких метров.

Есть и иная теория образования колец, по которой они – остатки разрушенных кометами и метеоритами неких больших спутников Сатурна, образовавшихся несколько миллиардов лет назад. Хотя не исключено, что и в настоящее время имеются источники пополнения колец веществом. Так, плотность вещества в кольце E возрастает по направлению к орбите спутника Сатурна Энцелада. Вполне возможно, что Энцелад и является источником вещества для этого кольца.

Природа структуры колец, по- видимому, резонансная. Так, деление Кассини – это область орбит, в которой период обращения каждой частицы вокруг Сатурна ровно вдвое меньше, чем у ближайшего крупного спутника Сатурна – Мимаса. Из- за такого совпадения Мимас своим притяжением как бы раскачивает частицы, движущиеся внутри деления, и в конце концов выбрасывает их оттуда. Однако, как мы уже рассказывали выше, кольца Сатурна скорее похожи на « граммофонную пластинку» и объяснить такую их структуру резонансами с периодами обращения спутников Сатурна уже невозможно.

Поэтому, вероятно, подобная структура – результат механически неустойчивого распределения частиц по плоскости колец, вследствие чего возникают круговые волны плотности – наблюдаемая тонкая структура.

Первым высказал подобное предположение знаменитый немецкий философ Иммануил Кант, который объяснял тонкую структуру колец Сатурна столкновением частиц, вращающихся дифференциально вокруг планеты согласно законам Кеплера. Именно дифференциальное вращение, согласно Канту, является причиной расслоения диска на серию тонких колечек.

Позднее французский астроном Симон Лаплас доказал высказанную Кантом неустойчивость 2- ух видимых с Земли колец Сатурна.

Также, вычислив условия равновесия колец Сатурна, Лаплас доказал, что их существование возможно лишь при быстром вращении планеты вокруг оси, что впоследствии и было доказано наблюдениями В. Гершеля, обратившего внимание на заметное полярное сжатие Сатурна.

В 1857- 59 гг. кольца Сатурна описал в своих работах англичанин Максвелл Джеймс Клерк, показавший, что устойчивым существование кольца вокруг планеты может быть только в том случае, если оно состоит из совокупности отдельных не связанных между собой малых тел: сплошное твёрдое или жидкое кольцо было бы разорвано силой притяжения планеты.

Несколько позже – в 1885 году форму колец Сатурна описала русский математик С. В. Ковалевская, подтвердившая вывод Максвелла о том, что кольца Сатурна представляют собой не единое целое, а состоят из отдельных, небольших по размерам тел.

В конце 19 в. этот теоретический вывод Максвелла и Ковалевской был эмпирически подтверждён независимо друг от друга А. А. Белопольским (Россия), Дж. Килером (США) и А. Деландром (Франция), которые сфотографировали спектр Сатурна с помощью щелевого спектрографа и на основе эффекта Доплера- Физо обнаружили, что внешние части кольца Сатурна вращаются медленнее, чем внутренние.

Измеренные скорости оказались равными тем, которые имели бы спутники Сатурна, если бы они находились на тех же расстояниях от планеты. Отсюда ясно: кольца Сатурна по существу представляют собой колоссальное скопление мелких твёрдых частиц, самостоятельно обращающихся вокруг планеты. Размеры частиц столь малы, что их не видно не только в земные телескопы, но и с борта космических аппаратов. Лишь с помощью сканирования радиолучом на волне 3,6 см. колец A, C и деления Кассини, во время прохода мимо Сатурна « Вояджёра- 1» , удалось установить их размеры. Оказалось, что средний поперечник частиц кольца А равен 10 метрам, частиц деления Кассини – восьми, а кольца С – всего 2 метрам.

В остальных кольцах Сатурна, за исключением кольца B, частицы намного меньше по размерам, и их число незначительно. По сути кольца эти состоят из пылинок с поперечником около десятитысячных долей мм.

Надо сказать, что частицы в кольце B образуют странные радиальные образования – « спицы» , расположенные над плоскостью кольца. Не исключено, что « спицы» удерживаются силами электростатического отталкивания. Любопытно отметить, что изображения таинственных « спиц» были найдены на некоторых зарисовках Сатурна, сделанных ещё в прошлом веке. Но тогда никто не придал им значения.

Кроме спиц космические « Вояджёры» обнаружили неожиданным эффект, а именно многочисленные кратковременные всплески радиоизлучения, поступающего от колец. Это было не что иное, как сигналы от электростатических разрядов – своего рода молний. Источник электризации частиц, по- видимому, столкновения между ними. Была открыта и окутывающая кольца газообразная атмосфера из нейтрального атомарного водорода.

По интенсивности линии Лайсан- альфа (1216 А) в ультрафиолетовой части спектра « Вояджёрами» было подсчитано число атомов водорода в кубическом сантиметре атмосферы. Их оказалось примерно 600...

В результате исследования спектра колец выяснилось также, что частицы их составляющие по- видимому либо покрыты льдом (или инеем), либо состоят из льда, причём водяного. В последнем случае массу всех колец можно оценить в 10 23 г, т.е. на 6 порядков меньше массы самой планеты. Однако, анализ траектории космического корабля « Пионер- 11» показал, что масса колец ещё меньше и не достигает даже 1,7 миллионной массы Сатурна.

Температура колец очень низкая – порядка 80 К (-193° C). Частицы во всех кольцах двигаются с практически одинаковыми скоростями (около 10 км/с), иногда сталкиваясь друг с другом...

В течение 29,5 лет с Земли кольца Сатурна дважды видны в максимальном раскрытии и дважды наступают периоды, когда Солнце и Земля находятся в плоскости колец, и тогда кольца освещаются Солнцем «с ребра». В этот период кольца почти совсем не видны, что свидетельствует об их очень малой толщине: порядка 1- 4 (до 20) км. Сквозь кольца можно даже увидеть звёзды, хотя свет их при этом заметно ослабевает.

Спутники Сатурна

Наряду с системой колец у Сатурна есть ещё и целая система спутников, которых в настоящее время известно 60.

Первый спутник обнаружил ещё в 1655 году Христиан Гюйгенс, и это был огромный Титан – единственный спутник Сатурна, имеющий плотную атмосферу, а своими размерами превосходящий Меркурий.

Несколько позже – в 1671 году, Жан- Доминик Кассини открывает ещё один спутник – Япет. Спустя год он же открывает Рею, а в 1684 году – Диону и Тефию. После этих открытий, в течении более сотни лет, сведений о новых спутниках Сатурна не поступало. И казалось что так будет вечно. Но, в 1789 году сразу два спутника Сатурна были обнаружены Уильямом Гершелем. Это были Мимас и Энцелад.

Спустя ещё шестьдесят лет, а именно в 1848 г., был открыт Гиперион, в 1898- ом – Феба. Следом за ними – в 1966 году, были открыты Эпитемий и Джуна. После этого число открытых спутников Сатурна, в связи с увеличившейся разрешающей способностью наземных телескопов, стало стремительно возрастать, и к 1997 году, в котором состоялся запуск космического корабля « Cassini» , достигло 18. К этому числу « Cassini» добавил ещё четыре новых спутника, обнаруженных после его прибытия к Сатурну.

Всего к настоящему времени у Сатурна известно 52 официально подтверждённых спутника, каждый из которых имеет своё название. Наряду с ними имеются и другие, пока неподтверждённые спутники, которые имеют небольшие размеры и более одного раза не наблюдались. Одни из них лежат в пределах орбиты Дионы, другие – между орбитами Дионы и Тефии, третьи – между орбитами Дионы и Реи.

Все спутники, кроме огромного Титана, сложены в основном из водяного льда, с небольшой примесью скальных пород, на что указывает их невысокая плотность (порядка 1400- 2000 кг/м 3). У наиболее крупных из них, таких как Мимас, Диона, Рея, формируется каменистое ядро, занимающее по массе до 40% от массы всего спутника. Строение же Титана походит на строение больших спутников Юпитера: тоже твёрдое каменистое ядро и ледяная оболочка.

Спутники Сатурна, как впрочем и спутники других планет- гигантов, можно разделить на две группы – регулярные и иррегулярные. Регулярные спутники движутся по почти круговым орбитам, лежащим недалеко от планеты вблизи её экваториальной плоскости. Все регулярные спутники обращаются в одном направлении – в направлении вращения самой планеты. Это указывает на то, что сформировались эти спутники в газопылевом облаке, окружавшем планету в период её формирования. Правда из этого правила есть два исключения – Япет и Феба.

В отличие от них, иррегулярные спутники обращаются далеко от планеты по хаотическим орбитам, ясно указывающим, что эти тела были захвачены планетой из числа пролетавших мимо неё астероидов или ядер комет.

Регулярные спутники Сатурна, которых всего известно 18, имеют синхронное вращение (циклический сдвиг), и поэтому всегда повёрнуты к планете одной стороной. Исключением из этого правила является Гиперион, имеющий хаотическое собственное вращение, и Феба, вращающаяся в противоположную сторону.

Вообще же можно сказать, что каждый спутник Сатурна уникален, и каждый из них заслуживает внимания. Взять вот, например, Титан – огромный спутник, чей диаметр – 5150 километров, позволяет ему считаться вторым по величине спутником в Солнечной системе. К тому же только у Титана имеется плотная красно- оранжевая атмосфера, толщиной почти 600 км.. Причём атмосфера эта, по своему составу, напоминает атмосферу древней Земли, т.к. на 95% состоит из азота. Имеются следы присутствия в ней аргона, метана, кислорода, водорода, этана, пропана и других газов. Метан, кстати, на Титане может находиться во всех 3- х агрегатных состояниях, поэтому, неудивительно существование на спутнике метанового океана, озёр и рек. Да и обычный, водный океан на Титане тоже существует, правда, не на поверхности, а на глубине в несколько километров. На это указывает большая изменчивость деталей поверхности Титана, которые в разное время наблюдаются в разных местах.

Такое возможно только если предположить, что под поверхностью находится мощный слой жидкой воды. Таким образом, Титан – пятый космический объект в пределах Солнечной системы на котором найдена жидкая вода...

Не менее интересен чем Титан и другой спутник Сатурна – Япет. Его передняя (по ходу движения) полусфера сильно отличается по отражательной способности от задней. Одна из них столь же яркая как снег, другая – такая же тёмная как чёрный бархат. Это связано с тем, что передняя часть Япета сильно загрязнена пылью, которая падая на его поверхность при движении другого спутника – Фебы, вызывает сильное её почернение.

Феба же спутник тоже уникальный, т.к. единственный вращается вокруг планеты в противоположную сторону. К тому же её поверхность очень тёмная – самая тёмная среди всех спутников Сатурна.

А вот самая яркая поверхность у Энцелада, который по этому показателю – первый в Солнечной системе (его альбедо близко к 1, как у свежевыпавшего снега). У Энцелада также наибольшая тектоническая и вулканическая активность, причём вулканы Энцелада не простые, а ледяные. Из- за них его поверхность покрыта слоем инея, и потому такая яркая.

Очень интересен и ещё один спутник Сатурна – Гиперион, единственный из больших спутников имеющий неправильную форму, вызванную столкновением с неким массивным космическим телом. Возможно, а скорее даже вероятно, именно этим столкновением вызвано хаотическое вращение Гипериона вокруг своей оси, скорость которого меняется в течение месяца на десятки процентов.

От столкновения с каким- то большим космическим телом образовался и 130 километровый кратер Гершель на поверхности другого спутника Сатурна – Мимаса. Вал, окружающий этот кратер так высок, что явственно заметен даже на фотографиях. Надо сказать, что подобные гигантские кратеры на спутниках Сатурна не редкость. Так на поверхности Дионы обнаружен кратер с диаметром около 100 км., а на поверхности Реи – второго по размерам спутника Сатурна, есть кратеры диаметром вплоть до 300 км. Рея, кстати, интересна ещё и тем, что единственная из всех спутников, причём не только Сатурна, имеет кольца. Обнаружено это было 7 марта этого года, во время полёта космического корабля « Cassini» . Кольцо у Реи, по- видимому, всего одно, и состоит из раздробленных осколков столкнувшегося с Реей в далёком прошлом астероида или кометы. Диаметр этого кольца до нескольких тысяч километров и расположено оно почти вплотную к спутнику. Дополнительное облако пыли может расширяться до 5900 км. от центра спутника.

Да, Рея спутник конечно интересный, но вернёмся к разговору о кратерах. Как уже было сказано 100- 200 километровые кратеры на спутниках Сатурна – не редкость, но даже они – ничто по сравнению с кратером Одиссей, диаметром 400 км., который лежит на поверхности Тефии. На этом спутнике, кстати, обнаружен и гигантский каньон Итака, протянувшийся на 3 тысячи километров, что больше чем диаметр спутника (~2000 км.).

Но не только этим интересна Тефия. Она ещё и как бы «пасёт» два других спутника – Телесто и Калипсо, расположенных на 60° впереди и позади Тефии. Спутником- пастухом является и Диона, « пасущая» Елену и Полидевка. Места в пространстве, которые занимают эти « пасущиеся» спутники называют лагранжевые. Подобным образом, кстати, двигаются астероиды Троянцы вместе с Юпитером.

Некоторые же из спутников оказывают своё влияние на кольца Сатурна – это т.н. спутники- пастухи. Таковы, например, Прометей и Пандора, взаимодействующие с кольцевым материалом кольца F, и не позволяющие этому материалу выйти за пределы кольца, или Атлас, движущийся у внешнего края кольца А; он не даёт частицам кольца выходить за пределы этого края. Кольцо F кстати очень необычное. Так, бортовые камеры « Вояджёра- 1» показали, что кольцо состоит из нескольких колечек общей шириной 60 км., причем два из них перевиты друг с другом, как шнурок. Вызвана столь необычная конфигурация взаимодействием колечек с двумя спутниками, движущихся непосредственно вблизи кольца F, – один у внутреннего края, другой – у внешнего. Притяжение этих спутников не дает крайним частицам уходить далеко от его середины – спутники как бы « пасут» частицы. Они же, как показали расчёты, вызывают движение частиц по волнистой линии, что и создает наблюдаемые переплетения компонентов кольца. Но « Вояджёр- 2» , прошедший близ Сатурна девятью месяцами позже, не обнаружил в кольце F ни переплетений, ни каких- либо других искажений формы, в частности, и в непосредственной близости от пастухов. Таким образом, форма кольца оказалась изменчивой. Чем вызвано такое странное поведение колечек – не известно...

Общие сведения о Сатурне

Эта планета более других планет-гигантов похожа на Юпитер. Ее масса в 95 раз и экваториальный радиус (60370 км) в 9,5 раза превышают земные, а сжатие составляет 1:10, т. е. полярный радиус в 8,5 раза больше земного. Ускорение силы тяжести на Сатурне в 1,15 раза превышает земное, а критическая скорость равна 37 км/с. Ось вращения планеты наклонена под углом в 26°45", и если бы она по своей природе походила на Землю и находилась значительно ближе к Солнцу, то на ней сменялись бы сезоны года. Но структура Сатурна такая же, как у Юпитера, и он тоже вращается зонально с периодами в 10ч 14м (экваториальный пояс) и в 10ч 39м (умеренные пояса). О газообразной структуре планеты свидетельствует и ее небольшая средняя плотность, равная 0,69 г/см3, т. е., образно говоря, если бы Сатурн оказался в воде, то он плавал бы на ее поверхности. Из-за меньшей (в сравнении с Юпитером) массы давление в недрах Сатурна нарастает медленнее, и, по-видимому, слой жидкого водорода в смеси с гелием начинается на глубине, равной половине радиуса планеты, где температура достигает 10000°С, а давление - 3-109 гПа (3-106 атм.). Ниже, на глубине 0,7-0,8 радиуса, имеется, слой металлической фазы водорода, электрические токи в котором порождают магнитное поле планеты, а под этим слоем находится расплавленное силикатно-металлическое ядро, масса которого в 9 раз больше массы Земли, или почти 0,1 массы Сатурна.

Сатурн получает от Солнца в 92 раза меньше энергии, чем Земля, кроме того, 45% этой энергии он отражает. Поэтому температура его верхних слоев должна быть около -190°С, но она близка к -170°С. Объясняется это тем, что из горячих недр планеты поступает тепла в два раза больше, чем от Солнца. Радиоизлучение Сатурна сравнительно небольшое, что свидетельствует о наличии у него магнитного поля и радиационного пояса, более слабых, чем у Юпитера. Это подтверждено автоматической станцией «Пионер-11», которая 1 сентября 1979 г. пролетела на расстоянии 21 400 км от поверхности Сатурна и обнаружила его магнитное поле, ось которого почти совпадает с осью вращения планеты. Радиационный пояс состоит из нескольких зон, разделенных широкими полостями, не содержащих электрически заряженных частиц. У Сатурна есть еще две луны - их сфотографировал зонд «Кассини». Факт, что такие мелкие планеты (3 и 4 км в диаметре) уцелели до сих пор, означает, что мелкие кометы, которые обычно угрожают им, встречаются в Солнечной системе не так уж часто. Всего спутников у шестой планеты теперь 33 с поперечниками от 34 до 5150 км. Как и у Юпитера, эти спутники занумерованы в порядке последовательности их открытия.

На фотографиях, полученных автоматическими станциями, видно, что поверхности крупных спутников покрыты множеством кратеров самых различных размеров.

Все спутники Сатурна обращаются вокруг него в прямом направлении, и только самый далекий, девятый спутник Феба, отстоящий от планеты почти на 13 млн. км, имеет обратное движение и завершает один оборот по орбите за 550 суток.
Кольца Сатурна

У Сатурна имеется кольцо, открытое еще в 1656 г. голландским физиком X. Гюйгенсом (1629-1695), а точнее, семь тонких плоских концентрических колец, которые отделены друг от друга темными промежутками и обращаются вокруг планеты в плоскости ее экватора. Внешнее кольцо, обозначаемое буквой А, менее ярко, чем отделенное от него щелью Кассини кольцо B, внутри которого находится третье кольцо С, из-за своей малой яркости называемое креповым и видимое только в сильные телескопы; оно отделено от кольца В делением Максвелла. Внешние и внутренние радиусы этих колец соответственно равны 138000 и 120000 км (А), 116000 и 90000 км (В), 89000 и 72000 км (С).

Сохраняя свое направление в пространстве, кольца через каждые 14,7 года (половина периода обращения Сатурна вокруг Солнца) бывают повернуты к Земле ребром и не видны; только их тень узкой темной полоской падает на диск планеты. Это явление называется исчезновением колец. Последнее их исчезновение было в 1994 г.

Сатурн, шестая по расстоянию от Солнца большая планета Солнечной системы; астрономический знак ћ С. относится к числу планет-гигантов. Большая полуось орбиты С. (его среднее расстояние от Солнца) составляет 9,54 а. е., или 1,43 млрд. км. Эксцентриситет орбиты С. 0,056 (наибольший среди планет-гигантов). Угол наклона плоскости орбиты С. к плоскости эклиптики равен 2°29’. Полный оборот вокруг Солнца (сидерический период обращения) С. совершает за 29,458 лет со средней скоростью 9,64 км/сек. Синодический период обращения равен 378,09 сут. На небе С. выглядит как желтоватая звезда, блеск которой меняется от нулевой до первой звёздной величины (в среднем противостоянии). Большая изменчивость блеска связана с существованием вокруг С. колец; угол между плоскостью колец и направлением на Землю меняется в пределах от 0 до 28°, и земной наблюдатель видит кольца под разным углом, что и определяет изменение блеска С. Видимый диск С. имеет форму эллипса с осями 20,7” и 14,7” (в среднем противостоянии). В верхнем соединении с Солнцем видимые размеры С. на 25% меньше, а блеск на 0,48 звёздной величины слабее. Визуальное альбедо С. равно 0,69.

Эллиптичность диска С. отражает его сфероидальную форму, которая является следствием быстрого вращения С.: период его вращения вокруг своей оси равен 10 ч 14 мин на экваторе, 10 ч 38 мин на умеренных широтах и 10 ч 40 мин на широте около 60°. Ось вращения С. наклонена к плоскости его орбиты на 63°36’. В линейной мере экваториальный радиус С. составляет 60 100 км, полярный - 54 600 км (точность около 1%), а сжатие равно 1:10,2. Объём С. превышает объём Земли в 770 раз, а масса С. в 95,28 раз больше земной (5,68·10226 кг), так что средняя плотность С. составляет 0,7 г/см3 - вдвое меньше плотности Солнца. По отношению к Солнцу масса С. составляет 1:3499. Ускорение силы тяжести на поверхности С. на экваторе равно 9,54 м/сек2. Параболическая скорость (скорость убегания) на поверхности С. достигает 37 км/сек.

На диске С. видно мало деталей, даже при рассматривании его в наилучших условиях. Видны лишь параллельные экватору светлые и тёмные полосы, на которые изредка накладываются тёмные или светлые пятна, с помощью которых и определяется вращение С.

Температура поверхности С. по измерениям теплового потока, исходящего из планеты в инфракрасной области спектра, определяется от - 190 до - 150 °С (что выше равновесной температуры - 193 °С), соответствующей получаемому от Солнца потоку тепла. Это свидетельствует о том, что в тепловом излучении С. есть доля собственного глубинного тепла, что подтверждается и измерениями радиоизлучения.

Различие угловых скоростей вращения С. на разных широтах свидетельствует о том, что наблюдаемая с Земли его поверхность есть лишь верхний облачный слой атмосферы. О внутреннем строении С. можно составить некоторое представление на основании теоретических исследований. Наблюдаемые возмущения в движении спутников С., будучи сопоставлены со сжатием его фигуры и средней плотностью, позволяют определить приблизительный ход давления и плотности в недрах С. (см. Планеты). Очень малая средняя плотность С. говорит за то, что он, как и другие планеты-гиганты, состоит преимущественно из лёгких газов - водорода и гелия, которые преобладают и на Солнце. Предположительно в состав С. входят водород (80%), гелий (18%), более тяжёлых элементов, сконцентрированных в ядре планеты, всего лишь 2%. Водород до глубин около половины радиуса находится в молекулярной фазе, а глубже под влиянием колоссальных давлений переходит в фазу металлическую. В центре С. температура близка к 20 000 К.

Химический состав атмосферы, находящейся над облачным слоем С., определяется по линиям поглощения в спектре планеты. Главную её часть составляет молекулярный водород (40 км-атм), безусловно присутствует метан CH4 (0,35 км-атм), предполагается существование аммиака (NH3), хотя возможно, что в форме аэрозолей он присутствует в облаках. Имеются основания предполагать, что и в атмосфере С. есть гелий, спектроскопически не проявляющий себя в доступной нам области спектра. Магнитное поле у С. не обнаружено.

Примечательной особенностью планеты являются кольца Сатурна - концентрические образования различной яркости, как бы вложенные друг в друга, и образующие единую плоскую систему небольшой толщины, располагающуюся в экваториальной плоскости С. Кольцо вокруг С. впервые наблюдал Г. Галилей в 1610, но из-за низкого качества телескопа он принял видимые по краям планеты части кольца за спутники С. Правильное описание кольца С. дал Х. Гюйгенс (1659), а Дж. Кассини вскоре показал, что оно состоит из двух концентрических составляющих - колец А и В, разделённых тёмным промежутком (так называемым «делением Кассини»). Много позже (в 1850) американский астроном У. Бонд открыл внутреннее слабо светящееся кольцо (С), а в 1969 было обнаружено ещё более слабое и близкое к планете кольцо D. Яркость кольца D не превышает 1/20 яркости самого яркого кольца - кольца В. Кольца расположены на следующих расстояниях от планеты: А - от 138 до 120 тыс. км, В - от 116 до 90 тыс. км, С - от 89 до 75 тыс. км и D - от 71 тыс. км почти до поверхности С.

Природа колец С. стала ясной после того, как английский физик Дж. Максвелл (в 1859) и русский математик С. В. Ковалевская (в 1885) разными методами доказали, что устойчивым существование кольца вокруг планеты может быть только в том случае, если оно состоит из совокупности отдельных малых тел: сплошное твёрдое или жидкое кольцо было бы разорвано силой притяжения планеты.

Этот теоретический вывод в конце 19 в. был эмпирически подтвержден независимо друг от друга А. А. Белопольским (Россия), Дж. Килером (США) и А. Деландром (Франция), которые сфотографировали спектр С. с помощью щелевого спектрографа и на основе эффекта Доплера - Физо обнаружили, что внешние части кольца С. вращаются медленнее, чем внутренние. Измеренные скорости оказались равными тем, которые имели бы спутники С., если бы они находились на тех же расстояниях от планеты.

В течение 29,5 лет с Земли кольца С. дважды видны в максимальном раскрытии и дважды наступают периоды, когда Солнце и Земля находятся в плоскости колец, и тогда кольца либо освещаются Солнцем «с ребра», либо оно для земного наблюдателя видно «с ребра». В этот период кольца почти совсем не видны, что свидетельствует об их очень малой толщине. Разные исследователи, основываясь на визуальных и фотометрических наблюдениях и их теоретической обработке, приходят к заключению, что средняя толщина колец составляет от 10 см до 10 км. Конечно, кольцо такой толщины увидеть с Земли «с ребра» невозможно. Размеры твёрдых тел в кольцах оцениваются от 10-1 до 103 см с преобладанием глыб диаметром около 1 м, что подтверждается и наблюдаемым отражением радиоволн от колец С.

Химический состав вещества колец, по-видимому, одинаков у всех четырёх составляющих, различна в них только степень заполнения пространства глыбами. Спектр колец С. существенно отличен от спектра самого С. и освещающего их Солнца; спектр указывает на повышенную отражательную способность колец в ближней инфракрасной области (2,1 и 1,5 мкм), что соответствует отражению от льда H2O. Можно считать, что тела, образующие кольца С., либо покрыты льдом или инеем, либо состоят из льда. В последнем случае массу всех колец можно оценить в 1024 г, т. е. на 5 порядков меньше массы самой планеты. Температура колец С., по-видимому, близка к равновесной, т. е. к 80 К.

С. имеет десять спутников. Один из них - Титан - имеет размеры, сравнимые с размерами планет; его диаметр равен 5000 км, масса 2,4×10-4 массы С., он обладает атмосферой, имеющей в своём составе метан. Самый близкий к планете спутник - Янус, открытый в 1966: он обращается вокруг планеты за 18 ч, на среднем расстоянии 160 тыс. км; его диаметр около 220 км. Самый далёкий спутник - Феба; обращается вокруг С. в обратном направлении на расстоянии около 13 млн. км (см. Спутники планет).

  1. Сатурн – шестая от Солнца и вторая по размерам планета в Солнечной системе после Юпитера .
  2. Сатурн удален от Солнца на 1,4 млрд км (9,5 а.е.)
  3. Газовый гигант Сатурн , состоит из водорода с примесями гелия и следами воды, метана, аммиака, тяжелых элементов.
  4. Сутки (полный оборот вокруг своей оси) на Сатурне длятся 10,7 часов. Год (полный оборот вокруг Солнца) составляет 29 земных лет .
  5. Вокруг Сатурна обращается 62 спутника . Титан - самый крупный из них, его размеры немного уступают спутнику Юпитера Ганимеду. Титан превышает по своим размерам Меркурий и обладает единственной среди спутников Солнечной системы плотной атмосферой.
  6. Скорость ветра на Сатурне может достигать местами 1800 км/ч, что значительно больше, чем на Юпитере.
  7. Сатурн – обладатель самых заметных и захватывающих колец среди планет газовых гигантов . Семь тонких колец имеют разделительные полосы. Диаметр колец 250 000 км, а толщина не превышает 1 км. По составу кольца Сатурна на 93 % состоят изо льда с незначительными примесями, которые могут включать в себя сополимеры, образующихся под действием солнечного излучения и силикаты и на 7 % из углерода.
  8. Пять миссий было отправлено к Сатурну. С 2004 года Сатурн, его спутники и кольца изучает автоматическая межпланетная станция Кассини. «Кассини» нёс на борту европейский зонд «Гюйгенс», который 14 января 2005 года впервые опустился на Титан.
  9. На Сатурне нет жизни, какой мы ее знаем. Однако некоторые из спутников Сатурна есть условия, которые могут поддерживать жизнь .
  10. Как планета Солнечной системы Сатурн известен с 1600-х. Сатурн - одна из пяти планет Солнечной системы, легко видимых невооружённым глазом с Земли. Чтобы наблюдать кольца Сатурна, необходим телескоп диаметром не менее 15 мм.

Планета Сатурн

Сатурн был самой отдаленной из пяти планет, известных древним народам.
В 1610 итальянский астроном Галилео Галилей был первым, который рассмотрел Сатурн через телескоп. К его удивлению он видел несколько объектов по обе стороны от планеты. Он делал рисунки Сатурна, как отдельных сфер, полагая, что Сатурн имел тройное тело.
В 1659 голландский астроном Христиан Гюйгенс, используя более сильный телескоп, чем Галилео, предположил, что Сатурн окружен тонким, плоским кольцом. В 1675 астроном итальянского происхождения Жан-Доминик Кассини обнаружил разрыв между тем, что теперь называют кольцами A и B.
Как и , Сатурн состоит главным образом из водорода и гелия. Его объем в 755 раз больше, чем объем .
Ветры в верхней атмосфере дуют со скоростью 500 м/сек в экваториальном регионе. (Cамые сильные ветры ураганной силы на Земле достигают высшего уровня или скорости 110 м/сек.)
Эти сверхбыстрые ветры, нагретые высокой температурой, внутри планеты, вызывают желтые и золотые полосы, видимые в атмосфере.

В начале 1980-ых, космический корабль Voyager 1 и Voyager 2 космических корабля показали, что кольца Сатурна состоят главным образом изо льда и пыли.
Кольцевая система Сатурна простирается на сотни тысяч километров от планеты, а вертикальная ширина кольца составляет, как правило, приблизительно 10 м.
Во время равноденствия Сатурна осенью 2009, когда солнечный свет осветил кольцевой край, космический корабль Cassini заснял вертикальные формирования в некоторых кольцах; частицы формировали скопления, размером около 3 км.

Самый большой спутник Сатурна: Титан, он немного больше, чем планета Меркурий.
Титан - второй по величине спутник в солнечной системе; его превосходит спутник Юпитера Ганимед.
Титан покрыт богатой азотом атмосферой, которая могла бы быть подобной тому, которая ранее была на Земле.
Дальнейшее исследование этого спутника обещает рассказать многое о планетарном формировании и, возможно, о первых годах существования Земли.
У Сатурна также есть много ледяных спутников меньшего размера. Каждый спутник Сатурна уникален.

Хотя магнитное поле Сатурна не так сильно, как у Юпитера, но, тем не менее, оно более чем в 500 раз сильнее земного.
Спутники Сатурна находятся вблизи, или лучше сказать в пространстве его собственной магнитосферы.

Космический корабль Кассини, на орбите Сатурна с 2004, продолжает исследовать планету и ее спутники, кольца и магнитосферу. На июль 2009 - Кассини передал более 200 000 изображений.
Спутники Сатурна
Сатурн, шестая планета от Солнца, является пристанищем для огромного массива интригующих и уникальных миров.

Христиан Гюйгенс открыл первый известный спутник Сатурна. Он это сделал в 1655 году – это был Титан.
Джованни Доменико Кассини сделал следующие четыре открытия спутников: Япет (1671), Рею (1672), Диона (1684), и Тетис.

На данный момент в общей сложности открыто 53 природных спутников на орбите Сатурна. Каждый из спутников Сатурна имеет уникальную историю. Два спутника создают пробелы в основных кольцах. Некоторые из них, такие, как Прометей и Пандора, находятся внутри кольца Сатурна.
Янус и Эпиметей иногда проходят так близко друг к другу, что они при взаимодействии меняют траекторию орбиты.

Вот примеры некоторые из спутников Сатурна:

Титан настолько большой, что он влияет на орбиты других спутников. Он 5150 км в поперечнике, это второй по величине спутник в Солнечной системе.
Титан имеет атмосферу, она состоит в основном из азота.
Атмосфера Титана состоит на 95% из азота со следами метана. Атмосфера Земли простирается примерно на 60 км от поверхности, Атмосфера Титана простирается почти на 600 км (в десять раз больше, чем атмосфера Земли) в пространстве.

Спутник Япет имеет одну сторону яркую как снег, и одну сторону как черный бархат.

Фиби вращается вокруг планеты в направлении, противоположном вращению всех больших спутников Сатурна.

Мимас имеет огромный кратер, с одной стороны, как результат воздействия, которое почти раскололо спутник на 2 части.

Параметры планеты Сатурн:

Расстояние от Солнца:


Среднее: 1 426 666 422 км
Для сравнения: 9,537 Расстояний Земли от Солнца

Перигелий (минимальное) : 1 349 823 615 км
Для сравнения: 9,176 Расстояний Земли от Солнца

Апогелий (максимальное) : 1 503 509 229 км
Для сравнения: 9,885 Расстояний Земли от Солнца

Период обращения (длина года):

29,447498 земных лет
10 755,70 земных суток

Длина окружности орбиты:

Метрика: 8957504604 км
Для сравнения: 9,530 окружности Земли

Средняя скорость движения по орбите:

34701 км/ч
Для сравнения: 0,324 скорости движения по орбите Земли

Средний радиус планеты:

58232 км
Для сравнения: 9,1402 радиуса Земли

Экваториальная окружность:

365 882,4 км
Для сравнения: 9,1402 окружностей Земли

Объем


827 129 915 150 897 км 3
Для сравнения: 763,594 объема Земли

Масса:

568 319 000 000 000 000 000 000 000 кг
Для сравнения: 95,161 масс Земли

Плотность:

0,687 г / см 3
Для сравнения: 0,125 плотности Земли

Площадь:

42 612 133 285 км 2
Для сравнения: 83,543 площади Земли

Поверхностная гравитация:

10,4 м/с 2
Английский: 34,3 м/с 2
Для сравнения: если вы весите 100 кг на Земле, будет весить около 107 кг на Сатурне (на экваторе).

Вторая космическая скорость:

35,5 км/сек

Период вращения (длина дня):

0,444 земных суток
10,656 часов
Для сравнения: 0,445 длинны суток Земли

Средняя температура:


-178 ° C

Состав атмосферы Сатурна:

Водород, гелий
Научное Примечание: H 2 , He
Для сравнения: атмосфера Земли состоит в основном из N 2 и O 2 .

Фотография полученная с космического аппарата Кассини

Планета Сатурн — шестая по счету от Солнца. Об этой планете известно всем. Почти каждый, может легко узнать ее, потому что его кольца это его визитная карточка.

Общие сведения про планету Сатурн

Знаете ли вы, из чего сделаны ее знаменитые кольца? Кольца состоят из ледяных камней, имеющих размер от микронов до нескольких метров. Сатурн как и все планеты-гиганты, состоит в основном из газов. Его вращение варьирует от 10 часов и 39 минут до 10 часов 46 минут. Эти измерения основаны на радионаблюдениях планеты.

Изображение планеты Сатурн

При использовании новейших двигательных систем и ракетоносителей, космическому аппарату потребуется как минимум 6 лет и 9 месяцев, чтобы прибыть к планете.

На данный момент, на орбите с 2004 года находится единственный космический аппарат Кассини, он и является основным поставщиком научных данных и открытий вот уже много лет. Для детей планета Сатурн, как в принципе и для взрослых, поистине самая красивая из планет.

Общие характеристики

Самая большая планета Солнечной системы Юпитер. Но титул второй по размеру планеты принадлежит Сатурну.

Просто для сравнения, диаметр Юпитера около 143 тысяч километров, а Сатурна только 120 тысяч километров. Размер Юпитера в 1,18 раза больше чем у Сатурна, а по массе в 3,34 раза массивнее его.

По факту, Сатурн очень большой, но легкий. И если планету Сатурн погрузить в воду, она будет плавать на поверхности. Гравитация планеты составляет всего 91% от Земной.

Сатурн и Земля различаются по размеру в 9,4 раза и по массе в 95 раз. В объеме газового гиганта могли бы поместиться 763 таких планет как наша.

Орбита

Время полного оборота планеты вокруг Солнца составляет 29,7 лет. Как и у всех планет Солнечной системы, его орбита не является идеальным кругом, а имеет эллиптическую траекторию. Расстояние до Солнца в среднем равно 1,43 млрд км, или 9,58 а.е.

Ближайшая точка орбиты Сатурна, называется перигелий и расположена она в 9 астрономических единицах от Солнца (1 а.е. это среднее расстояние от Земли до Солнца).

Наиболее удаленная точка орбиты называется афелий и расположена она в 10,1 астрономических единиц от Солнца.

Кассини пересекает плоскость колец Сатурна.

Одна из интересных особенностей орбиты Сатурна заключается в следующем. Как и у Земли, ось вращения Сатурна наклонена относительно плоскости Солнца. На половине пути своей орбиты, южный полюс Сатурна обращен к Солнцу, а затем северный. В течение Сатурнианского года (почти 30 Земных лет), наступают периоды, когда планету видно с Земли с ребра и плоскость колец гиганта совпадает с нашим углом зрения, и они пропадают из виду. Все дело в том, что кольца чрезвычайно тонкие, поэтому с огромного расстояния их практически невозможно увидеть с ребра. В следующий раз кольца исчезнут для Земного наблюдателя в 2024-2025 годах. Так как год Сатурна длится почти 30 лет, с тех пор как Галилей впервые наблюдал его в телескоп в 1610 году, он обернулся вокруг Солнца примерно 13 раз.

Климатические особенности

Одним из интересных фактов, является то, что ось планеты наклонена к плоскости эклиптики (как и у Земли). И так же, как и у нас, на Сатурне существуют сезоны. На половине своей орбиты, Северное полушарие получает больше солнечной радиации, а затем все меняется и Южное полушарие купается в солнечном свете. Это создает огромные штормовые системы, которые значительно меняются в зависимости от расположения планеты на орбите.

Шторм в атмосфере Сатурна. Композитный снимок, цвета искусственные, были использованы фильтры MT3, MT2, CB2 и инфракрасные данные

Сезоны оказывают влияние на погоду планеты. В течение последних 30 лет ученые обнаружили, что скорость ветра вокруг экваториальных областей планеты сократилась примерно на 40%. Зонды НАСА Вояджер в 1980-1981 годах обнаружили, что скорость ветра достигает 1700 км/ч, а в настоящее время только около 1000 км/ч (измерения 2003 года).

Время полного оборота Сатурна вокруг своей оси составляет 10,656 часов. Ученым потребовалось много времени и исследований, чтобы найти столь точную цифру. Так как у планеты нет поверхности, то нет возможности наблюдать прохождения одних и тех же областей планеты, таким образом, оценивая ее скорость вращения. Ученые использовали радиоизлучения планеты для оценки скорости вращения и нахождения точной продолжительности дня.

Галерея изображений





























Снимки планеты сделанные телескопом Хаббл и космическим аппаратом Кассини.

Физические свойства

Снимок телескопа Хаббл

Экваториальный диаметр — 120 536 км, в 9,44 раза больше, чем у Земли;

Полярный диаметр — 108 728 км, в 8,55 раза больше, чем у Земли;

Площадь планеты равна 4,27 x 10*10 км2, что в 83,7 раз больше, чем у Земли;

Объем — 8,2713 x 10*14 км3, в 763,6 раз больше, чем у Земли;

Масса — 5,6846 x 10*26 кг, в 95,2 раз больше, чем у Земли;

Плотность — 0,687 г/см3, в 8 раз меньше, чем у Земли, Сатурн даже легче воды;

Данная информация неполная, более подробно про общие свойства планеты Сатурн, мы напишем ниже.

Сатурн имеет 62 спутника, фактически около 40% спутников в нашей Солнечной системе вращаются вокруг него. Многие из этих спутников очень малы и не видны с Земли. Последние были обнаружены космическим аппаратом Кассини, и ученые ожидают, что со временем аппарат найдет еще больше ледяных сателлитов.

Несмотря на то, что Сатурн слишком враждебен для любой формы жизни, которые мы знаем, что его спутник Энцелад один из наиболее подходящих кандидатов на поиски жизни. Энцелад примечателен тем, что имеет на своей поверхности ледяные гейзеры. Существует какой-то механизм (вероятно приливное воздействие Сатурна) который создает достаточно тепла для существования жидкой воды. Некоторые ученые считают, что есть шанс существования жизни на Энцеладе.

Формирование планеты

Как и остальные планеты, Сатурн сформировался из солнечной туманности около 4,6 миллиарда лет назад. Это солнечная туманность представляла собой обширное облако холодного газа и пыли, которое, возможно, столкнулось с другим облаком, или ударной волной сверхновой. Это событие и инициировало начало сжатия протосолнечной туманности с дальнейшим образованием Солнечной системы.

Облако сжималось все сильнее, пока не образовалась протозвезда в центре, которую окружал плоский диск материала. Внутренняя часть этого диска содержала больше тяжелых элементов, и сформировала планеты земной группы, в то время как внешняя область была достаточно холодная и, фактически, осталась нетронутой.

Материал солнечной туманности образовывал все больше и больше планетезималей. Эти планетезимали сталкивались вместе, сливаясь в планеты. В какой-то момент, в ранней истории Сатурна, его спутник размером примерно 300 км в поперечнике, был разорван на части его гравитацией и создал кольца, которые и сегодня вращаются вокруг планеты. Фактически основные параметры планеты, прямо зависели от места его образования и количества газа, которое он смог захватить.

Так как Сатурн меньше, чем Юпитер, он охлаждается быстрее. Астрономы считают, что как только его внешняя атмосфера остыла да 15 градусов по Кельвину, гелий сконденсировался в капли, которые стали опускаться к ядру. Трения этих капель разогрели планету, и теперь он испускает примерно в 2,3 раза больше энергии, чем получает от Солнца.

Формирование колец

Вид планеты из космоса

Главная отличительная черта Сатурна это кольца. Каким образом кольца сформировались? Есть несколько версий. Традиционная теория гласит, что кольца почти такого же возраста, как и сама планета и существуют в течение, по крайней мере, 4 миллиарда лет. В ранней истории гиганта, 300 км спутник слишком близко подошел к нему и был разорван на куски. Также существует вероятность, что два спутника столкнулись вместе, или в спутник попала достаточно большая комета или астероид, и он просто развалился прямо на орбите.

Альтернативная гипотеза образования колец

Другая гипотеза состоит в том, что не было никакого разрушения спутника. Вместо этого кольца, также как и сама планета образовались из солнечной туманности.

Но вот в чем проблема: лед в кольцах слишком чистый. Если кольца образовались вместе с Сатурном, миллиарды лет назад, то стоит ожидать, что они были бы полностью покрыты грязью от воздействий микрометеоритов. Но на сегодня мы видим, что они так чисты, как будто бы образовались менее 100 миллионов лет назад.

Вполне возможно, что кольца постоянно обновляют свой материал путем слипания и столкновения друг с другом, что затрудняет определение их возраста. Это одна из загадок, которые еще предстоит решить.

Атмосфера

Как и у остальных планет-гигантов, атмосфера Сатурна состоит из 75% водорода и 25% гелия, со следовыми количествами других веществ, таких как вода и метан.

Особенности атмосферы

Внешний вид планеты, в видимом свете, выглядит более спокойным, чем у Юпитера. Планета имеет полосы облаков в атмосфере, но они бледно-оранжевые и слабо заметны. Оранжевый цвет обусловлен соединениями серы в его атмосфере. В дополнение к сере, в верхних слоях атмосферы, есть небольшие количества азота и кислорода. Эти атомы вступают в реакции друг с другом и под воздействием Солнечного света образуют сложные молекулы, которые напоминают «смог». На различных длинах волн света, а также на улучшенных изображениях Кассини, атмосфера выглядит гораздо более впечатляющей и бурной.

Ветры в атмосфере

Атмосфера планеты формирует одни из самых быстрых ветров в Солнечной системе (быстрее только на Нептуне). Космический корабль НАСА Вояджер, который совершил пролет Сатурна, измерил скорость ветров, она оказалась в районе 1800 км/час на экваторе планеты. Большие белые бури формируются в пределах полос, которые вращаются вокруг планеты, но в отличие от Юпитера, эти бури существуют всего несколько месяцев и поглощаются атмосферой.

Облака видимой части атмосферы состоят из аммиака, и располагаются на 100 км ниже верхней части тропосферы (тропопаузы), где температура опускается до -250 ° С. Ниже этой границы облака состоят из гидросульфида аммония и находятся, приблизительно, на 170 км ниже. В этом слое температура составляет всего -70 градусов С. Самые глубокие облака состоит из воды и расположены примерно в 130 км ниже тропопаузы. Температура здесь составляет 0 градусов.

Чем ниже, тем больше давление и температура возрастает и газообразный водород медленно переходит в жидкость.

Шестиугольник

Одно из самых странных погодных явлений когда-либо обнаруженное это так называемый северный шестиугольный шторм.

Шестиугольные облака у планеты Сатурн были впервые найдены Вояджерами 1 и 2, после того, как они посетили планету более трех десятилетий назад. Совсем недавно, шестиугольник Сатурна удалось сфотографировать в мельчайших подробностях с помощью космического корабля НАСА Кассини, в настоящее время находящегося на орбите вокруг Сатурна. Шестиугольник (или гексагональный вихрь) имеет размер порядка 25 000 км в диаметре. В нем можно уместить 4 таких планеты как Земля.

Шестиугольник вращается с точно такой же скоростью, как и сама планета. Однако Северный полюс планеты отличается от Южного полюса, в центре которого имеется огромный ураган с гигантской воронкой. Каждая сторона шестиугольника имеет размер около 13 800 км, а вся конструкция совершает один оборот вокруг оси за 10 часов и 39 минут, так же, как и сама планета.

Причина образования шестиугольника

Так почему же вихрь на Северном полюсе имеет форму шестиугольника? Астрономы затрудняются стопроцентно ответить на этот вопрос, однако один из экспертов и членов команды, отвечающий за визуальный и инфракрасный спектрометр Кассини сказал: «Это очень странная буря, имеющая точные геометрические формы с шестью почти одинаковыми сторонами. Мы никогда не видели ничего подобного на других планетах».

Галерея снимков атмосферы планеты

Сатурн — планета бурь

Юпитер известен своими яростными бурями, которые хорошо видны через верхние слои атмосферы, особенно Большое красное пятно. Но на Сатурне тоже имеются бури, правда, они не такие большие и интенсивные, но по сравнению с Земными, они просто огромны.

Одним из крупнейших штормов было Большое белое пятно, также известное как Большой белый овал, которое наблюдали с помощью космического телескопа Хаббла в 1990 году. Такие бури, вероятно, появляются раз в год на Сатурне (один раз в 30 земных лет).

Атмосфера и поверхность

Планета очень напоминает мяч, сделанный почти полностью из водорода и гелия. Плотность и температура его изменяются по мере продвижения вглубь планеты.

Состав атмосферы

Внешняя атмосфера планеты состоит из 93% молекулярного водорода, остальное гелий и следовые количества аммиака, ацетилена, этана, фосфина и метана. Именно эти следовые элементы и создают видимые полосы и облака, которые мы видим на снимках.

Ядро

Общая схема схема строения Сатурна

Согласно теории аккреции ядро планеты каменное с большой массой, достаточной для того, чтобы захватить большое количество газов в ранней солнечной туманности. Его ядро, как и у других газовых гигантов, должно было бы сформироваться, и стать массивным гораздо быстрее, чем у других планет, чтобы успеть обрасти первичными газами.

Газовый гигант, скорее всего, сформировался из скалистых или ледяных компонентов, а низкая плотность, указывает на примеси жидкого металла и камня в ядре. Он является единственной планетой, у которой плотность ниже, чем у воды. Во всяком случае, внутреннее строение планеты Сатурн больше напоминает шар из густого сиропа с примесями каменных фрагментов.

Металлический водород

Металлический водород в ядре генерирует магнитное поле. Магнитное поле, созданное таким образом, немного слабее, что у Земли и распространяется только до орбиты его крупнейшего спутника Титана. Титан способствует появлению ионизированных частиц в магнитосфере планеты, которые создают в атмосфере полярные сияния. Вояджер 2 обнаружил высокое давление солнечного ветра на магнитосферу планеты. По данным измерений, сделанных во время той же миссии, магнитное поле распространяется только на 1,1 млн. км.

Размер планеты

Планета имеет экваториальный диаметр 120 536 км, что в 9,44 раз больше, чем у Земли. Радиус равен 60268 км, что делает его второй по величине планетой в нашей Солнечной системе, уступая только Юпитеру. Он, как и все другие планеты, представляет собой сплюснутый сфероид. Это означает, что его экваториальный диаметр больше, чем диаметр, измеренный через полюса. В случае Сатурна это расстояние довольно значительно, из-за высокой скорости вращения планеты. Полярный диаметр — 108728 км, что меньше экваториального на 9,796%, поэтому форма Сатурна — овальная.

Вокруг Сатурна

Продолжительность дня

Скорость вращения атмосферы и собственно самой планеты можно измерить тремя разными методами. Первый это замер скорости вращения планеты по облачному слою в экваториальной части планеты. Он имеет период вращения 10 часов и 14 минут. Если измерения проводить в других областях Сатурна, то скорость вращения будет составлять 10 часов 38 минут и 25,4 секунд. На сегодняшний день наиболее точный метод измерения продолжительности дня основан на замере радиоизлучения. Этот метод дает скорость вращения планеты равную 10 часам 39 минутам и 22,4 секундам. Несмотря на эти цифры, скорость вращения недр планеты в настоящее время, невозможно точно измерить.

Опять же, экваториальный диаметр планеты равен — 120536 км, а полярный — 108 728 км. Это важно знать, почему что эта разница в этих цифрах влияет на скорость вращения планеты. Такая же ситуация и на других планетах гигантах, особенно разница во вращении разных частей планеты выражена у Юпитера.

Продолжительность дня по радиоизлучению планеты

С помощью радиоизлучения, которое приходит из внутренних областей Сатурна, ученые смогли определить его период вращения. Заряженные частицы, захваченные его магнитным полем, излучают радиоволны, когда они взаимодействуют с магнитным полем Сатурна, примерно на частоте 100 килогерц.

Зонд Voyager измерял радиоизлучение планеты в течение девяти месяцев, когда пролетал мимо, в 1980-х годах и вращение было определено как 10 часов 39 минут 24 секунд, с погрешностью 7 секунд. Космический аппарат Улисс также провел измерения 15 лет спустя, и выдал результат 10 часов 45 минут 45 секунд, с 36 секундной погрешностью.

Выходит целых 6 минут разницы! Либо вращение планеты замедлилось за эти годы, или что-то мы упустили. Межпланетным зондом Кассини были измерены эти же радиоизлучения плазменным спектрометром, и ученые, что в дополнение к 6 минутной разнице в 30-ти летних измерениях выявили, что вращение также меняется на один процент в неделю.

Ученые считают, что это может быть связано с двумя вещами: солнечный ветер, приходящий от Солнца мешает измерениям, и частицы гейзеров Энцелада влияют на магнитное поле. Оба эти фактора приводят к тому, радиоизлучение меняется, и они могут быть причиной различных результатов одновременно.

Новые данные

В 2007 году было установлено, что некоторые точечные источники радиоизлучения планеты не соответствуют скорости вращения Сатурна. Некоторые ученые считают, что разница обусловлена воздействием спутника Энцелада. Водяные пары этих гейзеров попадают на орбиту планеты и ионизируются, влияя тем самым на магнитное поле планеты. Это замедляет вращение магнитного поля, но незначительно, по сравнению с вращением самой планеты. По текущим оценкам, вращение Сатурна, на основе различных измерений от космических аппаратов Cassini, Voyager и Pioneer составляет 10 часов 32 минут и 35 секунд по состоянию на сентябрь 2007 года.

Основные характеристики планеты, переданные Кассини, наводят на мысль, что солнечный ветер является наиболее вероятной причиной разницы в данных. Различия в измерениях вращения магнитного поля происходят каждые 25 дней, что соответствует периоду вращения Солнца. Скорость солнечного ветра тоже постоянно меняется, что должно учитываться. Энцелад может вносить долгосрочные изменения.

Гравитация

Сатурн — планета гигант и не имеет твердой поверхности, и то, что невозможно увидеть, так это его поверхность (мы видим лишь верхней облачный слой) и почувствовать силу тяжести. Но давайте представим, что существует некая условная граница, которая будет соответствовать его воображаемой поверхности. Какова была бы сила тяготения на планете, если вы бы смогли стоять на поверхности?

Хотя Сатурн имеет большую массу, чем Земля, (второе место в Солнечной системе по массе, после Юпитера), он к тому же самый “легкий” из всех планет Солнечной системы. Фактическая сила тяжести в любой точке его воображаемой поверхности будет составлять 91% от аналогичного показателя на Земле. Другими словами, если ваши весы показывают ваш вес равный 100 кг на Земле (о, ужас!), на «поверхности» Сатурна вы бы весили 92 кг (немного лучше, но все же).

Для сравнения, на «поверхности» Юпитера сила тяжести в 2,5 больше Земной. На Марсе, всего лишь 1/3, а на Луне 1/6.

Что делает силу гравитации такой слабой? Планета-гигант в основном состоит из водорода и гелия, которые он аккумулировал в самом начале образования Солнечной системы. Эти элементы были сформированы в начале Вселенной в результате Большого Взрыва. Все из-за того, что у планеты чрезвычайно низкая плотность.

Температура планеты

Снимок Вояджера 2

Самый верхний слой атмосферы, который находится на границе с космосом, имеет температуру -150 С. Но, по мере погружения в атмосферу, давление повышается и соответственно повышается температура. В ядре планеты, температура может достигать 11 700 С. Но откуда такая высокая температура? Она формируется из-за огромного количества водорода и гелия, который по мере погружения в недра планеты сжимается и разогревает ядро.

Благодаря гравитационному сжатию, планета, фактически, порождает тепло, выделяя в 2,5 раза больше энергии, чем получает от Солнца.

В нижней части облачного слоя, который состоит из водяного льда, средняя температура составляет -23 градуса по Цельсию. Над этим слоем льда находится гидросульфид аммония, со средней температурой -93 С. Выше него лежат облака из аммиачного льда, которые окрашивают атмосферу в оранжевый и желтый цвет.

Как выглядит Сатурн и какого он цвета

Даже глядя через маленький телескоп, цвет планеты виден как бледно-желтый с оттенками оранжевого. В более мощные телескопы, например, такие как Хаббл или глядя на снимки, сделанные аппаратом НАСА Кассини, можно увидеть тонкие слои облаков и бури, состоящие из смеси белого и оранжевого цветов. Но что придает Сатурну такой цвет?

Как и Юпитер, планета состоит почти полностью из водорода, с небольшим количеством гелия, а также незначительными количествами других соединений, таких как, аммиак, водяной пар и различные простейшие углеводороды.

За цвет планеты ответственен только верхний слой облаков, который в основном состоит из кристаллов аммиака, а нижний уровень облаков либо из гидросульфида аммония или воды.

Сатурн имеет полосатый узор атмосферы, примерно как у Юпитера, но эти полосы гораздо слабее и шире в районе экватора. Он также не имеет долгоживущих бурь, — ничего похожего на Большое Красное Пятно — которые часто возникают, когда на Юпитере приближается время летнего солнцестояния в Северном полушарии.

Некоторые фотографии, переданные Кассини, выглядят синими, подобно Урану. Но это, вероятно, потому, что мы видим рассеяние света с точки зрения Кассини.

Состав

Сатурн на ночном небе

Кольца вокруг планеты захватывали воображение людей в течение сотен лет. Естественным также было желание знать, из чего состоит планета. С помощью различных методов, ученые узнали, что химический состав Сатурна таков: 96% водорода, 3% гелия и 1% различных элементов, которые включают метан, аммиак, этан, водород и дейтерий. Некоторые из этих газов можно найти в его атмосфере, в жидком и расплавленном состояниях.

Состояние газов изменяется с ростом давления и температуры. На верхней границе облаков, вы столкнетесь с кристаллами аммиака, в нижней части облаков с гидросульфидом аммония и/или водой. Под облаками, атмосферное давление увеличивается, что вызывает увеличение температуры и водород переходит в жидкое состояние. По мере продвижения вглубь планеты давление и температура продолжает увеличиваться. В результате чего в ядре, водород становится металлическим, переходя в это особое агрегатное состояние. Планета, как полагают, имеют рыхлое ядро, которое помимо водорода состоит из скальных пород и некоторых металлов.

Современные космические исследования привели ко многим открытиям в системе Сатурна. Исследования начались с пролета космического аппарата Pioneer 11 в 1979 году. Эта миссия обнаружила кольцо F. В следующем году пролетел Вояджер-1, посылая на Землю детали поверхности некоторых из спутников. Он также доказал, что атмосфера на Титане не прозрачна для видимого света. В 1981 году Вояджер-2 посетил Сатурн, и обнаружил изменения в атмосфере, а также подтвердил наличие щели Максвелла и Килера, которые впервые увидел Вояджер-1.

После Вояджера-2, в систему прибыл космический аппарат Кассини-Гюйгенс, который вышел на орбиту вокруг планеты в 2004 году, более подробно о его миссии можно почитать в этой статье.

Радиация

Когда аппарат НАСА Кассини впервые прибыл к планете, он обнаружил грозы и радиационные пояса вокруг планеты. Он даже нашел новый радиационный пояс, расположенный внутри кольца планеты. Новый радиационный пояс отстоит на 139 000 км от центра Сатурна и простирается до 362 000 км.

Северное сияние на Сатурне

Видео, показывающее северное , созданное из снимков телескопа Хаббл и космического аппарата Кассини.

Благодаря наличию магнитного поля, заряженные частицы Солнца захватываются магнитосферой и формируют радиационные пояса. Эти заряженные частицы движутся вдоль линий магнитного силового поля и сталкиваются с атмосферой планеты. Механизм возникновения полярного сияния аналогичен Земному, но из-за разного состава атмосферы полярные сияния на гиганте фиолетового цвета, в отличие от зеленых на Земле.

Полярное сияние Сатурна в телескоп Хаббл

Галерея снимков полярного сияния





Ближайшие соседи

Какая ближайшая планета к Сатурну? Это зависит от того, в какой точке орбиты он находится на данный момент, а также положение других планет.

Для большей части орбиты, ближайшей планетой является . Когда Сатурн и Юпитер находятся на минимальном расстоянии друг от друга, их разделяет всего 655 000 000 км.

Когда они расположены на противоположных сторонах друг от друга, то планеты Сатурн и иногда подходят друг к другу очень близко и в этот момент их разделяет 1,43 млрд. км друг от друга.

Общие сведения

Следующие факты про планету основаны на планетарных бюллетенях НАСА.

Вес — 568,46 х 10*24 кг

Объем: 82 713 х 10*10 км3

Средний радиус: 58232 км

Средний диаметр: 116 464 км

Плотность: 0,687 г/см3

Первая космическая скорость: 35,5 км/с

Ускорение свободного падения: 10,44 м/с2

Естественных спутников: 62

Удалённость от Солнца (большая полуось орбиты): 1,43353 млрд км

Орбитальный период: 10 759.22 дней

Перигелий: 1,35255 млрд км

Афелий: 1, 5145 млрд км

Скорость движения по орбите: 9.69 км/с

Наклонение орбиты: 2,485 градусов

Эксцентриситет орбиты: 0,0565

Звездный период вращения: 10,656 часов

Период вращения вокруг оси: 10,656 часов

Осевой наклон: 26,73 °

Кто открыл: она известна с доисторических времен

Минимальное расстояние от Земли: 1,1955 млрд км

Максимальное расстояние от Земли: 1,6585 млрд км

Максимальный видимый диаметр с Земли: 20,1 угловых секунд

Минимальный видимый диаметр с Земли: 14,5 угловых секунд

Видимый блеск (максимальный): 0.43 звездные величины

История

Космический снимок выполнен телескопом Хаббл

Планета невооруженным глазом видна хорошо, так что трудно сказать, когда планета была впервые обнаружена. Почему планета называется Сатурном? Она названа в честь римского бога урожая – этот бог соответствует греческому богу Кроносу. Вот поэтому происхождение названия — римское.

Галилей

Сатурн и его кольца были загадкой, до тех пор, пока Галилей впервые не смастерил свой примитивный, но рабочий телескоп и посмотрел на планету в 1610 году. Конечно, Галилей не понимал, что он видит, и думал, что кольца были большими спутниками по обе стороны от планеты. Так было до того, как Христиан Гюйгенс не использовал лучший телескоп, чтобы увидеть, что на самом деле это не спутники, а кольца. Гюйгенс был также первым, кто открыл крупнейший спутник Титан. Несмотря на то, что видимость планеты позволяет ее наблюдать практически отовсюду, ее спутники, как и кольца видны только через телескоп.

Жан Доминик Кассини

Он обнаружил щель в кольцах, позже названную Кассини, и был первым, кто открыл 4 спутника планеты: Япет, Рею, Тетис и Диону.

Уильям Гершель

В 1789 году астроном Уильям Гершель открыл еще две луны — Мимас и Энцелад. А в 1848 году британские ученые обнаружили спутник названый Гиперион.

До полета космических аппаратов к планете мы знали о ней не так уж и много, несмотря на то, что увидеть планету можно даже невооруженным глазом. В 70-х и 80-х годах НАСА запустило космический аппарат Пионер 11, который стал первым космическим кораблем, который посетил Сатурн, пройдя в 20 000 км от облачного слоя планеты. За ним последовали запуски Вояджера-1 в 1980 году, и Вояджера-2 в августе 1981 года.

В июле 2004 года, аппарат НАСА Кассини прибыл в систему Сатурна, и составил по результатам наблюдений самое подробное описание планеты Сатурн и его системы. Кассини выполнил почти 100 облетов вокруг спутника Титана, несколько облетов множества других лун, и отправили нам тысячи изображений планеты и ее спутников. Кассини открыл 4 новых луны, новое кольцо, и обнаружил моря из жидких углеводородов на Титане.

Расширенная анимация полета Кассини в системе Сатурна

Кольца

Они состоят из ледяных частиц вращающихся вокруг планеты. Существуют несколько основных колец, которые хорошо видимы с Земли и астрономы используют специальные обозначения для каждого из колец Сатурна. Но сколько колец у планеты Сатурн на самом деле?

Кольца: вид с Кассини

Постараемся ответить на этот вопрос. Сами кольца делятся на следующие части. Две наиболее плотные части кольца обозначаются как А и В, они разделены щелью Кассини, за ними следует кольцо C. После 3-х основных колец, идут меньшие, пылевые кольца: D, G, Е, а также кольцо F, которое является самым внешним. Так сколько основных колец? Правильно – 8!

Эти три основных кольца и 5 пылевых колец и составляют основную массу. Но есть еще несколько колец, например Януса, Метона, Паллена, а также дуги кольца Анфа.

Есть и более мелкие кольца, и пробелы в различных кольцах, которые трудно сосчитать (например, щель Энке, разрыв Гюйгенс, разрыв Дауэса и многие другие). Дальнейшее наблюдение колец позволит уточнить их параметры и количество.

Исчезновения колец

Из-за наклона орбиты планеты, кольца каждые 14-15 лет, становятся видимы с ребра, а из-за того, что они очень тонкие, то фактически исчезают из поля зрения Земных наблюдателей. В 1612 году Галилей заметил, что открытые им спутники куда-то исчезли. Ситуация была настолько странной, что Галилей даже оставил наблюдения планеты (скорее всего, в результате крушения надежд!). Он обнаружил кольца (и принял их за спутники) за два года до этого и был мгновенно очарован ими.

Параметры колец

Планету иногда называют “жемчужиной Солнечной системы”, поскольку его кольцевая система выглядит как корона. Эти кольца состоят из пыли, камня и льда. Вот почему не распадаются кольца, т.к. оно не цельное, а состоит из миллиардов частиц. Часть материала в кольцевой системе, имеет размер песчинок, а некоторые объекты больше, чем высотные здания, достигая километра в поперечнике. Из чего состоят кольца? В основном из частиц льда, хотя есть и пылевые кольца. Поразительным является то, что каждое кольцо вращается с различной скоростью по отношению к планете. Средняя плотность колец планеты настолько низка, что сквозь них просвечиваются звезды.

Сатурн не единственная планета с кольцевой системой. Все газовые гиганты имеют кольца. Кольца Сатурна выделяются, потому что они являются самыми крупными и самыми яркими. Кольца имеют толщину примерно один километр, и они охватывают пространство до 482 000 км от центра планеты.

Название колец Сатурна идет в алфавитном порядке согласно порядку их обнаружения. Это делает кольца немного запутанными, перечисляя их не в порядке расположения от планеты. Ниже приведен перечень основных колец и промежутков между ними, а также расстояние от центра планеты и их ширина.

Структура колец

Обозначение

Удаление от центра планеты, км

Ширина, км

Кольцо D 67 000-74 500 7500
Кольцо C 74 500-92 000 17500
Щель Коломбо 77 800 100
Щель Максвелла 87 500 270
Щель Бонда 88 690-88 720 30
Щель Дейвса 90 200-90 220 20
Кольцо B 92 000-117 500 25 500
Деление Кассини 117 500-122 200 4700
Щель Гюйгенса 117 680 285-440
Щель Гершеля 118 183-118 285 102
Щель Рассела 118 597-118 630 33
Щель Джефриса 118 931-118 969 38
Щель Койпера 119 403-119 406 3
Щель Лапласа 119 848-120 086 238
Щель Бесселя 120 236-120 246 10
Щель Барнарда 120 305-120 318 13
Кольцо A 122 200-136 800 14600
Щель Энке 133 570 325
Щель Килера 136 530 35
Деление Роша 136 800-139 380 2580
R/2004 S1 137 630 300
R/2004 S2 138 900 300
Кольцо F 140 210 30-500
Кольцо G 165 800-173 800 8000
Кольцо E 180 000-480 000 300 000

Звуки колец

На этом замечательном видео вы слышите звуки планеты Сатурн, которые представляют собой радиоизлучение планеты, переведенное в звук. Радиоизлучение километрового диапазона, генерируются вместе с полярными сияниями на планете.

Плазменный спектрометр Кассини выполнил измерения с высоким разрешением, что позволило ученым преобразовать радиоволны в аудио путем сдвига частоты.

Возникновение колец

Как появились кольца? Самый простой ответ, почему у планеты есть кольца и из чего они сделаны, состоит в том, что планета накопила много пыли и льда на различном расстоянии от себя. Эти элементы, скорее всего, были захваченного под действием силы притяжения. Хотя некоторые считают, что они образовались в результате разрушения небольшого спутника, который слишком близко подошел к планете и попал в предел Роша, вследствие чего был разорван самой планетой на куски.

Некоторые ученые предполагают, что весь материал в кольцах представляет собой продукты столкновения спутников с астероидами или кометами. После столкновения остатки астероидов смогли избежать гравитационного притяжения планеты и образовали кольца.

Независимо от того, какая из этих версий верна, кольца являются весьма впечатляющими. Фактически Сатурн — властелин колец. После исследования колец необходимо изучить кольцевые системы других планет: Нептуна, Урана и Юпитера. Каждая из этих систем слабее, но все равно интересна по-своему.

Галерея снимков колец

Жизнь на Сатурне

Трудно представить себе менее гостеприимную планету для жизни, чем Сатурн. Планета практически полностью состоит из водорода и гелия, со следовыми количествами водяного льда в нижнем ярусе облаков. Температура в верхней части облаков может опускаться до -150 С.

По мере того, как вы спускаетесь в атмосферу, давление и температура увеличится. Если температура достаточно теплая, чтобы вода не замерзала, то давление атмосферы на этом уровне такое же, как в несколько километрах под океаном Земли.

Жизнь на спутниках планеты

Чтобы найти жизнь, ученые предлагают взглянуть на спутники планеты. Они состоят из значительного количества водяного льда, и их гравитационное взаимодействие с Сатурном, вероятно, держит их внутренности теплыми. Спутник Энцелад, как известно, имеет на поверхности гейзеры воды, которые извергается практически беспрерывно. Вполне возможно, что он имеет огромные запасы теплой воды под ледяной корой (почти как у Европы).

Другой спутник Титан имеет озера и моря жидких углеводородов и считается местом, которое в перспективе может создать жизнь. Астрономы полагают, что Титан очень похож по составу на Землю, в ее ранней истории. После того, как Солнце превратится в красного карлика (через 4-5 млрд. лет), температура на спутнике станет благоприятной для зарождения и поддержания жизни, а большое количество углеводородов, в том числе и сложных, будет первичным “бульоном”.

Положение на небе

Сатурн и шесть его спутников, любительский снимок

Сатурн на небосводе виден как довольно яркая звезда. Текущие координаты планеты лучше всего уточнять в специализированных программах-планетариях, например Stellarium, а события связанные с его покрытием или прохождение над тем ли иным регионом, а также все про планету Сатурн можно подсмотреть в статье 100 астрономических событий года. Противостояние планеты всегда предоставляет шанс посмотреть на нее в максимальных подробностях.

Ближайшие противостояния

Зная эфемериды планеты и ее звездную величину найти Сатурн на звездном небе не составит труда. Однако, если у вас мало опыта, то ее поиск может затянуться, поэтому мы советуем использовать любительские телескопы с монтировкой Go-To. Используйте телескоп с монтировкой Go-To, и вам не понадобится знать координаты планеты и где ее сейчас можно увидеть.

Полет к планете

Сколько времени займет космические путешествие к Сатурну? В зависимости от того, какой маршрут вы выберете, полет может занять разное количество времени.

Например: Пионеру-11 потребовалось шесть с половиной лет, чтобы долететь до планеты. Вояджер-1 добрался за три года и два месяца, Вояджеру-2 потребовалось четыре года, а космическому аппарату Кассини — шесть лет и девять месяцев! Космический аппарат Новые Горизонты, использовал Сатурн в качестве гравитационного трамплина на пути к Плутону, и прибыл к нему спустя два года и четыре месяца после запуска. Почему такая огромная разница во времени полета?

Первый фактор определяющий время полета

Давайте рассмотрим, запускается ли космический аппарат непосредственно к Сатурну или он попутно использует другие небесные тела в качестве рогатки?

Второй фактор определяющий время полета

Это тип двигателя космического корабля, и третий фактор, заключается в том, собираемся мы пролететь планету или выйти на ее орбиту.

С учетом этих факторов, давайте посмотрим на миссии упомянутые выше. Пионер 11 и Кассини использовали гравитационное влияние других планет, прежде чем направились к Сатурну. Эти облеты других тел прибавили лишние годы к, и без того длительной поездке. Вояджер 1 и 2 использовали всего лишь Юпитер на пути к Сатурну и прибыли к нему гораздо быстрее. У корабля Новые Горизонты было несколько явных преимуществ над всеми другими зондами. Два основных преимущества заключаются в том, что он имеет самый быстрый и самый передовой двигатель и был запущен по короткой траектории к Сатурну на своем пути к Плутону.

Этапы исследования

Панорамная фотография Сатурна, полученная 19 июля 2013 года аппаратом Кассини. В разряженном кольце слева — белая точка это Энцелад. Земля видна ниже и правее центра снимка.

В 1979 году первый космический аппарат достиг планеты-гиганта.

Пионер-11

Созданный в 1973 году, Пионер-11 совершил облет Юпитера, и использовал силу тяжести планеты, чтобы изменить свою траекторию и направиться к Сатурну. Он прибыл к нему 1 сентября 1979 года, пройдя в 22 000 км над облачным слоем планеты. Он впервые в истории провел исследования Сатурна с близкого расстояния и передал крупным планом фотографии планеты, обнаружив, ранее неизвестное кольцо.

Вояджер-1

Зонд НАСА Вояджер 1 был следующим кораблем, который посетил планету 12 ноября 1980 года. Он пролетел в 124 000 км от облачного слоя планеты, и отправил на Землю поток поистине бесценных фотографий. Вояджер-1 решили направить на облет спутника Титана, а его собрата-близнеца Вояджера -2 отправить к другим планетам-гигантам. В итоге оказалось, что аппарат хоть и передал много научной информации, но поверхность Титана не увидел, так как она непрозрачна для видимого света. Поэтому фактически кораблем пожертвовали в угоду крупнейшему спутнику, на который ученые возлагали большие надежды, а в итоге увидели оранжевый шар, без каких либо подробностей.

Вояджер-2

Вскоре после пролета Вояджера-1, Вояджер-2 прилетел в систему Сатурна и выполнил почти идентичную программу. Он достиг планеты 26 августа 1981 года. Помимо того, что он облетел планету на расстоянии 100 800 км, он близко подлетел к Энцеладу, Тетису, Гипериону, Япету, Фебае и ряду других лун. Вояджер-2, получив гравитационное ускорение от планеты, направился к Урану (успешный пролет в 1986 году) и Нептуну (успешный пролет в 1989 году), после чего он продолжил странствие к границам Солнечной системы.

Кассини-Гюйгенс


Виды Сатурна с аппарата Кассини

По-настоящему изучить планету с постоянной орбиты смог зонд НАСА Кассини-Гюйгенс, который прибыл к планете в 2004 году. В рамках своей миссии, космический корабль доставил зонд Гюйгенс на поверхность Титана.

ТОП 10 изображений Кассини









Кассини в настоящее время завершил свою главную миссию и продолжает изучать систему Сатурна и его спутников вот уже много лет. Среди его открытий стоит отметить обнаружение гейзеров на Энцеладе, морей и озер из углеводородов на Титане, новые кольца и спутники, а также данные и фотографии с поверхности Титана. Ученые планируют закончить миссию Кассини в 2017 году, из-за сокращения бюджета НАСА, выделяемого на планетарные исследования.

Будущие миссии

Ждать следующей миссии Titan Saturn System Mission (TSSM) следует не раньше 2020, а скорее гораздо позже. Используя гравитационные маневры у Земли и Венеры, этот аппарат сможет достигнуть Сатурна ориентировочно в 2029 году.

Предусмотрен четырехлетний план полета, в котором 2 года отведены на исследование самой планеты, 2 месяца на исследование поверхности Титана, в котором будет задействован посадочный модуль и 20 месяцев изучение спутника с орбиты. В этом, поистине грандиозном проекте, возможно, примет участие и Россия. Будущее участие федерального агентства Роскосмоса уже обсуждается. Пока до реализации этой миссии далеко, у нас еще есть возможность наслаждаться фантастическими снимками Кассини, которые он передает регулярно и к которым есть доступ у всех желающих уже спустя несколько дней после их передачи на Землю. Удачного вам исследования Сатурна!

Ответы на наиболее распространенные вопросы

  1. В честь кого назвали планету Сатурн? В честь римского бога плодородия.
  2. Когда была открыт Сатурн? Он известен с древнейших времен, и невозможно установить, кто первым определил, что это планета.
  3. На каком расстоянии от Солнца расположен Сатурн? Среднее расстояние от Солнца равно 1,43 млрд км, или 9,58 а.е.
  4. Как найти его на небе? Лучше всего используйте поисковые карты и специализированное программное обеспечение, например, программу Stellarium.
  5. Какие координаты плаенты? Так как это планета, то координаты ее меняются, узнать эфемериды Сатурна можно на специализированных астрономических ресурсах.