Под каким номером стоит атомный номер водорода. VII. Применение водорода и его соединений

Вода из огня! Это кажется невероятным, но это факт. И этот факт впервые установил (1781-1782) английский ученый Генри Кэвендиш . Он сжег в закрытом сосуде бесцветный, без вкуса и запаха газ, который в те времена называли "горючим воздухом", и обнаружил, что продуктом горения была вода. Вначале Кэвендиш не поверил полученному результату, но, проделав ряд точных опытов по сжиганию "горючего воздуха", он убедился, что продуктом горения была только вода, "которая не имела ни вкуса, ни запаха и при испарении досуха не оставляла ни малейшего заметного осадка".

Следует отметить, что еще до Кэвендиша выдающийся английский естествоиспытатель Д. Пристли наблюдал появление влаги при горении и взрыве смеси "горючего воздуха", но... не обратил на это должного внимания.

Несмотря на то, что "горючий воздух" был известен еще средневековому немецкому врачу и естествоиспытателю Парацельсу (XVI в.), а знаменитый английский химик, физик и философ Роберт Бойль в 1660 г. сумел не только получить "горючий воздух" из серной кислоты и железа, но и собрать его в сосуд, чего не умели делать до него, простая (элементарная) природа этого газа была установлена только в 1783 г.

В этом году французский ученый Антуан Лоран Лавуазье, желая проверить опыты Кэвендиша , провел точные исследования по изучению продукта горения "горючего воздуха". Они подтвердили опыты Кэвендиша - продуктом горения "горючего воздуха" была только вода. Это доказал Лавуазье не только путем сжигания "горючего воздуха", но и разлагая продукты его горения. Правда, поводом к анализу воды послужило отыскание дешевого способа получения водорода, предпринятое Лавуазье по заданию французской Академии наук в связи с начавшимся развитием воздухоплавания.

За способность производить воду "горючий воздух" стали впоследствии называть водородом. Научное название водорода - "хидрогениум " происходит от греческих слов "хидор " - вода и "генао " - рождаю, произвожу. Таким образом, в названии водорода отражено его основное свойство - способность при горении образовывать воду.

Атомы водорода имеют наименьший вес среди всех атомов других химических элементов, и поэтому водород занимает первое место в периодической системе Д. И. Менделеева.

Водород - один из наиболее распространенных элементов природы, он всюду обнаружен во Вселенной - на Солнце, звездах, в туманностях, в мировом пространстве. На Земле основная масса водорода находится в связанном состоянии в виде различных соединений, главным образом на поверхности земли в виде воды. Общее количество водорода в земной коре достигает 1% от веса земной коры.

В межзвездном пространстве атомы водорода встречаются в несколько сот раз чаще, чем атомы всех остальных элементов, вместе взятых. Водород преобладает над другими элементами в атмосферах звезд и является главной составной частью солнечной атмосферы.

Значение водорода во Вселенной исключительно велико, он играет особую роль, являясь "космическим топливом", дающим энергию звездам, а в их числе и Солнцу.

В недрах Солнца, где температура достигает 20 миллионов градусов и вещество находится под давлением восьми миллиардов атмосфер, атомы водорода теряют электроны и ядра таких атомов (протоны) приобретают скорости, при которых протекают ядерные реакции. Ядерные реакции, происходящие при очень высокой температуре, называются термоядерными. Термоядерная реакция, при которой из 4-х ядер водорода образуется ядро нового химического элемента - гелия , и является источником солнечной энергии.

Образование гелия из водорода, как показал немецкий ученый Бете, происходит на Солнце значительно сложнее, но конечный итог реакции дает тот же результат: вместо 4-х ядер водорода появляется ядро гелия . Энергия, освобождающаяся при этой реакции, обеспечивает излучение того огромного количества тепла и света, которое дает Солнце в течение уже многих миллиардов лет. Чтобы представить себе количество энергии, излучаемой Солнцем, достаточно сказать, что для выработки такой энергии понадобилось бы 180000000 миллиардов электростанций, обладающих мощностью Волжской ГЭС.

Водород в свободном состоянии встречается на земле в вулканических газах; небольшое количество водорода выделяется растениями. В атмосфере, даже в верхних ее слоях, водород содержится в незначительных количествах, не превышающих 0,00005% по объему.

В чистом виде водород представляет собой газ в 14,45 раз легче воздуха, не имеющий цвета, запаха и вкуса. Не ядовит. Водород диффундирует и эффундирует быстрее всех других газов и лучше всех их проводит тепло (теплопроводность водорода в 7 раз больше чем у воздуха).

В природе водород встречается в виде трех изотопов: обычный водород, тяжелый и сверхтяжелый водород. Тяжелый водород содержится в обычном водороде в небольших количествах. На 5 тыс. атомов обычного водорода приходится 1 атом тяжелого. От греческого слова "деутерос ", что значит второй, тяжелый водород, как второй изотоп водорода, называется дейтерием. По аналогии с протоном ядро этого атома получило название дейтон ; часто его называют дейтерон .

Обозначают дейтерий или латинской буквой D, или сохраняют химическое обозначение водорода и, указывая цифрой 2 его массовое число, пишут Н 2 .

Дейтерий отличается от обычного водорода строением ядра. Ядро дейтерия состоит из протона и нейтрона, поэтому масса атома дейтерия в 2 раза больше массы атома обычного водорода. Такое резкое расхождение в массах изотопов одного и того же химического элемента является единственным случаем среди известных изотопов различных элементов. Обычный водород, атомы которого являются простейшими (состоят из одного протона и одного электрона), от слова "протос " - простой - называется иногда протием.

Вода, в которой протий заменен дейтерием, называется тяжелой. Она отличается от обычной своими свойствами. Так, тяжелая вода замерзает не при 0° С , как обычная, а при +3,8° С, кипит не при 100° С, а при 101,4° С, имеет большую плотность (1,1056), чем обычная; в тяжелой воде невозможна жизнь. В обычной воде всегда содержится примесь тяжелой . Количество ее невелико и составляет 0,02% от общей массы. Однако собранная со всего земного шара, она могла бы наполнить водоем, равный по величине объему Черного моря.

Тяжелая вода используется при получении атомной энергии в ядерных реакторах в качестве вещества, замедляющего нейтроны.

Получение тяжелой воды в чистом виде - длительный и дорогой процесс, основанный на электролизе (разложении электрическим током) воды, при котором в первую очередь разлагаются молекулы "обыкновенной" воды, тогда как тяжелая накапливается в остатке. В Западной Европе производство тяжелой воды в промышленном масштабе было впервые осуществлено немцами в годы второй мировой войны на территории оккупированной Норвегии, располагавшей дешевой энергией гидроэлектростанций. Тяжелая вода предназначалась для создания нового вида оружия (атомной бомбы), на которое командование фашистских армий возлагало последние надежды. 28 февраля 1943 г. норвежские патриоты совместно с английскими парашютистами взорвали цех тяжелой воды. Начавшиеся вслед за этим налеты на завод английской авиации вынудили фашистское командование перевезти оборудование и накопленный запас воды в Германию. Норвежские бойцы из армии сопротивления 20 февраля 1945 г. взорвали пароход уничтожив вместе с оборудованием и 16 куб. м тяжелой воды.

Известен и третий "сверхтяжелый" изотоп. Тритий - называют этот изотоп от латинского слова "тритиум " - третий. Он может быть получен искусственным путем в результате ядерных реакций, например, при "стрельбе" нейтронами в атомы легкого металла лития . В ядрах атомов трития имеется два нейтрона и один протон. В природе распространенность трития ничтожно мала. Один атом трития приходится на миллиард миллиардов атомов обычного водорода. Тритий является радиоактивным изотопом водорода. Он излучает бета-частицы и превращается в изотоп гелия с атомным весом 3. Период полураспада трития около 12,5 лет.

Группа итальянских физиков, изучив несколько тысяч снимков ядерных реакций, обнаружила четвертого "брата" в семействе атомов водорода (его атомный вес равен 4). Насколько трудной была задача обнаружения "сверхтяжелейшего " водорода, говорит время его существования, равное 0,00000000001 доли секунды.

Кроме обычных молекул водорода, состоящих из двух атомов, предполагается возможность получения трехатомной молекулы - гизония . Не исключено, что гизоний столь же недолговечен, как и "сверхтяжелейший " водород.

Практическое применение водорода разнообразно. Являясь наилегчайшим газом, он используется для наполнения оболочек воздушных шаров, метеорологических зондов, стратостатов и других воздухоплавательных аппаратов. История воздухоплавания, начиная с воздушного шара в 18 куб. м, созданного французским физиком Шарлем, до гигантских управляемых дирижаблей германского конструктора Цеппелина, неразрывно связана с водородом. Однако горючесть водорода при легкой его воспламеняемости от случайных и трудно устранимых причин (грозовые разряды, искры при электризации трением и др.) ограничивала возможности его использования в воздухоплавании.

С ясного и безоблачного неба в самых неожиданных местах на территории США в годы второй мировой войны падали бомбы раздавались взрывы, пылали пожары. Но об этих таинственных налетах, без сигналов тревоги и вражеских самолетов в воздухе, хранила молчание даже падкая на сенсации американская печать. Лишь несколько лет назад было сообщено, что эти таинственные бомбардировки осуществлялись воздушными шарами, запущенными с японских островов. Таких шаров было запущено более тысячи.

В химической промышленности водород служит исходным материалом для получения различных веществ (аммиака, твердых жиров и т. д.). Высокая температура горения водорода (до 2500°С) в кислороде используется с помощью специальных горелок для плавления кварца, тугоплавких металлов, разрезания стальных плит и т. д.

Весьма заманчива своей дешевизной идея двигателя внутреннего сгорания, использующего в качестве топлива водород. Такой мотор, потребляя водород и воздух, выбрасывает в качестве продукта сгорания воду.

Для получения водорода в качестве топлива нужна только...в ода. Запасы воды - основного "сырья" для получения водорода - на земном шаре буквально неисчерпаемы и составляют 2 миллиарда миллиардов тонн. Так же неисчерпаема и энергия текучей веды крупных рек, которая, превращаясь на электростанциях в энергию электричества, может служить для получения водорода из воды разложением ее электрическим током.

Успехи атомной физики и химии открыли путь к возможности использования в практических целях изотопов водорода. К сожалению, эти возможности в первую очередь были использованы для целей военного характера, для создания водородной бомбы.

В водородной бомбе используется энергия термоядерной реакции (между дейтерием и тритием), ведущей к образованию гелия и выделению нейтронов. Чтобы между изотопами водорода началась реакция, надо нагреть их до сверхвысоких температур порядка не менее 10 млн. градусов. Такая температура возникает при взрыве атомной бомбы, которая играет роль запала в водородной бомбе.

Водородная бомба превосходит по своей силе атомную . Дело в том, что в атомной бомбе количество атомного взрывчатого материала ограничено и не может превышать определенной так называемой критической массы; в водородной бомбе количество взрывчатого вещества (смесь изотопов водорода) не ограничено.

1 1 p = 1 + 0 n = 0

H = --------------------

Степени окисления: + 1; 0; -1.

II. Физические свойства:

Водород открыт в 1776 году английским химиком Кэвендишем.

Это газ, легче воздуха, молекула двухатомная, без цвета, без запаха. Малорастворим в воде. При - 252,8°С переходит в жидкое состояние. Жидкий водород бесцветен.

Существует три изотопа водорода:

1. Протий Ar = I;

2. Дейтерий Ar = 2;

3. Тритий Ar =3.

III. Распространение в природе:

В земной коре - 0,150 % от массы, с учетом гидросферы – 1%, в атомных процентах 15,6 %. По распространенности водород занимает третье место после кислорода и кремния.

IV. Получение:

А) В лаборатории:

1. Zn + 2НСl ® ZnCl 2 + Н 2 ­ в аппарате

Fe + Н 2 SO 4 ® Fe SO 4 + Н 2 ­ Киппа

2. Электролизом воды:

2Н 2 О + NaOH эл. ток O 2 ­ + 2Н 2 ­ + NaOH

(катод) (анод) (р-р)

3. 2Na +2 Н 2 О ® 2 NaOH + Н 2 ­

Ca +2 Н 2 О ® Ca(OH) 2 + Н 2 ­

б) В промышленности:

Электролиз водных растворов KCl, NaCl, как рабочий продукт.

1. 2 KCl + 2 Н 2 О эл. ток Н 2 ­ + Сl 2 ­ + 2KOH

(катод) (анод) (р-р)

2. Конверсионный способ (конверсия превращения), получают этим способом 50% водорода. Получают сначала водяной газ, а затем водород

А) C + Н 2 О t I 000 ° C CO ­ + Н 2 ­;

пар водяной газ

t°, k= Fe 2 O 3

Б) CO + Н 2 + Н 2 О 400 - 450 ° С СО 2 ­ + 2 Н 2 ­

водян.газ. пар

3. Конверсия метана с водяным паром:

CH 4 + 2Н 2 О СО 2 ­ + 4Н 2 ­

4. Разложение метана:

CH 4 t=350 ° C, K=Fe, Na C + 2Н 2 ­

5. Глубоким охлаждением коксового газа (-196°С): Все газы при такой температур конденсируются, кроме Н 2.

V. Химические свойства:

1. Водород может образовывать газообразные соединения состава RH 4 , RH 3 , RH 2 ,

При высокой температуре водород соединяется со щелочными и щелочно-земельными металлами, образуя гидриды металлов (LiH, NaH, KH, CaН 2.)



Ca + Н 2 t CaН 2 ;

Гидриды металлов – белые кристаллические вещества.

Гидриды металлов разлагаются водой с образованием щелочи и водорода:

Ca Н 2 +2 Н 2 О ® Са (ОН) 2 + 2H 2 ­

2. Взаимодействие с кислородом:

2Н 2 + О 2 t 2Н 2 О

3. Водород восстанавливает металлы из их оксидов:

CuO + H 2 t H 2 O + Cu¯

VI. Важнейшие соединения:

Важнейшим соединением водорода является ВОДА (H 2 O) .

Вода прозрачна, без запаха, без вкуса, плотность равна 1г/см 3 (при t- 4 o C), может быть в трех агрегатных состояниях:

1. Твердое вещество, жидкая вода переходит в твердое состояние при t = 0 o C

2. Жидкость

3. Газообразное состояние (пар)

Вода плохо проводит тепло и электрический ток, хороший растворитель. Молекула воды имеет угловую форму, атомы водорода по отношению к кислороду образуют угол = 104,5 o . Вода – диполь.

В жидкой воде вместе с обычными молекулами существуют ассоциированные молекулы, связанные между собой водородными связями: (H 2 O)×n

Вода бывает гигроскопическая. Это вода, содержащаяся в порах и смачивающая многие вещества с поверхности.

Вещества с повышенной способностью притягивать воду (влагу) называются гигроскопическими.

Минеральная вода - вода, содержащая в I л более 1г растворенных минеральных веществ.

Способы очистки воды:

1. Фильтрование– освобождение воды от механических примесей при пропускании через мелкопористый материал. В качестве фильтра используют: вату, фильтровальную бумагу, ткани, активированный уголь, смесь песка и гравия.

2. Дистилляция (перегонка). Этот вид очистки воды проводят в дистилляторах. В них воду превращают в пар, затем конденсируют в холодильнике и в приемнике собирается чистая вода. Примеси остаются в перегонной колбе.

Хлорирование – это обеззараживание воды.

Жесткость воды:

Общая жесткость воды обусловлена присутствием в ней катионов Mg 2+ и Са 2+ , анионов НСО 3 - и SO 4 2- .

В жесткой воде мыло не пенится, плохо развариваются овощи, ухудшается качество тканей, в котлах много накипи…

Жесткость бывает:

1. Временная (гидрокарбонатная) – этот вид жесткости устраняется, как правило кипячением. Обусловлена эта жесткость присутствием катионов Mg 2+ ,Са 2+ и анионом НСО 3 -

Ca(HCO 3) 2 t Ca CO 3 ¯ + СО 2 ­+ H 2 O

Мg(HCO 3) 2 t Мg CO 3 ¯ + СО 2 ­ + H 2 O

Ее можно устранить также химическим путем:

Ca(HCO 3) 2 + Ca(ОН) 2 ® 2 Ca CO 3 ¯ + 2 H 2 O

Известковая

2. Постоянная жесткость - жесткость, обусловленная

присутствием ионов Mg 2+ , Ca 2+ и SO 4 2- и её нельзя устранить при кипячении.

Ее можно устранить химическим путем:

CaSO 4 + Na 2 CO 3 ® Ca CO 3 ¯ + Na 2 SO 4

Устранить жесткость воды можно также при помощи катионитов и анионитов. Катиониты и аниониты называют по-другому иониты. Катиониты - это иониты (ионно-обменные смолы), которые могут обменивать свои катионы на катионы среды.

Аниониты – это иониты, которые могут обменивать свои анионы на анионы среды.

Если пропустить воду через слои катионита, то катионы (чаще всего это соединения содержащие катионы натрия) будут обмениваться на ионы Ca 2+ и Mg 2+ , содержащиеся в воде. Жесткость при этом устраняется.

Na 2 R + Ca 2+ ® 2 Na + + Ca R

Катионит

Na 2 R + Mg 2+ ® 2 Na + + Mg R

В качестве катионов можно использовать ионно-обменные смолы и алюмосиликаты:

1. пермутит NaAlSiO 4

2NaAlSiO 4 + CaSO 4 ® Ca(AlSiO 4) 2 + Na 2 SO 4

2. ионно-обменная смола: Na 2 [ Al 2 Si 2 O 8 H 2 O]

Если катиониты, содержащие катионы Ca 2+ , Mg 2+ (MgR,Ca R) выдержат в растворе NaCl, то катионы Na + замещают катионы Ca 2+ и Mg 2+ и регенированный катионит можно снова использовать для смягчения воды.

CaR + 2Na + ® Na 2 R + Ca 2+

MgR +2Na + ® Na 2 R + Mg 2+

По значению жесткости природную воду различают:

1. очень мягкая

3. средней жесткости

4. жесткая

5. очень жесткая

Химические свойства воды:

Вода взаимодействует:

1. с металлами

Ca + 2H 2 O ® Ca(OH) 2 + Н 2 ­

2Li + 2H 2 O ® 2LiOH + Н 2 ­

2. с неметаллами:

H 2 O + CI 2 ® HCIO + HCI

3. с оксидами:

а) с основными оксидами:

Na 2 O + H 2 O ® 2NaOH

б) с кислотными оксидами:

1. CO 2 + H 2 O Û H 2 CO 3

2. SO 2 + H 2 O Û H 2 SO 3

3. SO 3 + H 2 O ® H 2 SO 4

4. с основаниями:

NaOH + H 2 O ® NaOH·H 2 O + Q

5. с кислотами:

H 2 SO 4 + 2H 2 O® H 2 SO 4 ·2H 2 O+ Q

6. с солями, образуя кристаллогидраты:

а) 10 H 2 O + Na 2 СO 3 ® Na 2 СO 3 ·10 H 2 O

б) 5 H 2 O + СuSO 4 ® СuSO 4 ·5 H 2 O

Кристаллизационная вода – вода, входящая в состав кристаллов.

Кристаллогидраты – это вещества, содержащие кристаллизационную воду.

7. гидролиз солей:

Na 2 CO 3 + H 2 O « NaOH + NaHCO 3

Тяжелая вода – это вода, содержащая в своем составе изотопы: дейтерий и тритий.

С тяжелой водой реакции протекают медленнее, ее применяют в качестве замедлителя нейтронов в ядерных реакциях.

VII. Применение водорода и его соединений:

1. Для наполнения аэростатов и дирижаблей в смеси с гелием.

2. Водородно-кислородным пламенем режут и сваривают металлы.

3. Используют для получения редких металлов, как восстановитель.

MoO 3 + 3H 2 t Mo + 3H 2 O

4. Используют для получения аммиака, из которого в свою очередь получают НNO 3 и азотные удобрения.

5. В органическом синтезе водород используют в реакциях гидрирования. Гидрирование это присоединение водорода.

6. Дейтерий и тритий применяют в атомной энергетике, как термоядерное горючее.

7. Водород используется для синтеза соляной кислоты:

H 2 + CI 2 ® 2HCI

8. Вода используется как растворитель

Без H 2 O не возможна жизнь. В живых организмах воды » 63% по весу. Медузы и водоросли содержат до 90 % воды. Без воды человек может обойтись не более 3-4 суток.

Водород - это самый лёгкий и самый распространённый химический элемент. В наше время каждый слышал о нём, а ведь совсем недавно он представлял из себя великую тайну даже для лучших учёных. Согласитесь, этого достаточно, чтобы узнать побольше о химическом элементе водород.

Водород: распространение в природе

Как мы уже сказали выше, водород — это самый распространенный элемент. Причем не только на Земле, но и во всей Вселенной! Солнце почти наполовину состоит из этого химического элемента, да и большинство звёзд имеют в своей основе водород. В межзвездных пространствах водород также является самым распространенным элементом. На Земле водород находится в виде соединений. Он входит в состав нефти, газов, даже живых организмов. Мировой Океан содержит около 11% водорода по массе. В атмосфере его совсем немного, всего около 5 десятитысячных процента.

История открытия водорода

О существовании водорода догадывались ещё средневековые алхимики. Так, Парацельс в своих трудах указывал, что при действии кислоты и железа выделяются пузырьки «воздуха». Но что это за «воздух» он понять не мог. В те времена учёные думали, что в каждом горючем веществе есть какая-то мистическая огненная составляющая, которая поддерживает горение. Эта догадка получила название теории «флогистона». Алхимики считали, например, что дерево состоит из пепла, который остается после сжигания, и флогистона, который освобождается при горении.
Впервые же свойства водорода изучили английские химики Генри Кавендиш и Джозеф Пристли в XVIII веке. Но и они полностью не осознали сути своего открытия. Они думали, что легкий газ (а водород легче воздуха в 14 раз) есть ни что иное как мистический флогистон.
И только Антуан Лавуазье доказал, что водород это никакой не флогистон, а самый настоящий химический элемент. Во время своих опытов он сумел получить водород из воды и затем доказал, что обратно вода получается при горении водорода. Поэтому этот химический элемент и получил такое название — «рождающий воду».

Химические свойства водорода

Водород самый первый химический элемент, в таблице Менделеева обозначается символом H. Представляет собой легкий газ без запаха и цвета. Твердый водород – самое легкое твердое вещество, а жидкий — самая лёгкая жидкость. К тому же жидкий водород при попадании на кожу может вызвать сильнейшее обморожение. Атомы и молекулы водорода – самые маленькие. Поэтому то воздушный шарик, надутый этим газом, очень быстро сдувается — водород просачивается через резину. При смешении водорода с кислородом воздуха образуется очень взрывоопасная смесь. Она называется «гремучий газ».
При вдыхании газа частота голоса становится намного выше обычной. Например, мужской грубый бас будет похож на голоса Чипа и Дейла. Однако, подобные химические опыты проводить не стоит, по причине указанной выше. Водород и кислород образуют гремучий газ, который при выдохе может легко взорваться!

Применение водорода

Несмотря на свою горючесть, водород широко используется во многих отраслях промышленности. В основном его используют при производства аммиака для минеральных удобрений и при производстве спирта и пластмассы. Когда-то водородом наполняли дирижабли и воздушные шары, этот легкий газ поднимал их в воздух совершенно без труда. Но сейчас в авиации и космической технике он используется только в качестве топлива для космических ракет. Созданы двигатели для автомобилей, работающие на водороде. Они самые экологически чистые, ведь при сгорании выделяется только вода. Однако на данный момент водородные двигатели имеют ряд существенных недостатков, не отвечаю в полной мере требованиям безопасности, поэтому их применение пока совершенно ничтожно. В пищевой промышленности водород используется при производстве маргарина, а также для упаковки продуктов. Он даже зарегистрирован в качестве пищевой добавки E949. В энергетике водород применяется для охлаждения генераторов и для выработки электроэнергии в водородно-кислородных топливных элементах.

Введение

Водород (Hudrogenium) был открыт в первой половине XVI века немецким врачом и естествоиспытателем Парацельсом. В 1776 г. Кавендиш (Англия) установил его свойства и указал отличия от других газов. Водород имеет три изотопа: протий №Н, дейтерий ІН или D, тритий іН или Т. Их массовые числа равны 1, 2 и 3. Протий и дейтерий стабильны, тритий - радиоактивен (период полураспада 12,5 лет). В природных соединениях дейтерий и протий в среднем содержатся в отношении 1:6800 (по числу атомов). Тритий в природе находится в ничтожно малых количествах.

Ядро атома водорода №Н содержит один протон. Ядро дейтерия и трития включают не только протон, но и один, два нейтрона. Молекула водорода состоит из двух атомов. Приведем некоторые свойства, характеризующие атом и молекулу водорода:

Энергия ионизации атома, эВ 13,60

Сродство атома к электрону, эВ 0,75

Относительная электроотрицательность 2,1

Радиус атома, нм 0,046

Межъядерное расстояние в молекуле, нм 0,0741

Стандартная энтальпия диссоциации молекул при 25єС 436,1

Водород. Положение водорода в периодической таблице Д.И. Менделеева

В самом конце XVIII и в начале XIХ века химия вступила в период установления количественных закономерностей: в 1803 году был сформулирован закон кратных отношений (вещества реагируют между собой в весовых отношениях, кратных химическим эквивалентам), а в 1814 году опубликована первая в истории химической науки таблица относительных атомных весов элементов. В этой таблице на первом месте оказался водород, а атомные массы других элементов выражались числами, близкими к целым.

Особое положение, которое с самого начала занял водород, не могло не привлечь внимания ученых, и в 1841 году химики смогли ознакомиться с теорией Уильяма Праута, развившего теорию Древнегреческих философов о единстве мира и предположившего, что все элементы образованы из водорода как из самого легкого элемента. Прауту возражал Й.Я. Берцелиус, как раз занимавшийся уточнением атомных весов: из его опытов следовало, что атомные веса элементов не находятся в целочисленных отношениях к атомному весу водорода. Но, возражали сторонники Праута, атомные веса определены еще недостаточно точно и в качестве примера ссылались на эксперименты Жана Стаса, который в 1840 году исправил атомный вес углерода с 11,26 (эта величина была установлена Берцелиусом) на 12,0.

И все же привлекательную гипотезу Праута пришлось на время оставить: вскоре тот же Стас тщательными и не подлежащими сомнению исследованиями установил, что, например, атомный вес хлора равен 35,45, т. е. никак не может быть выражен числом, кратным атомному весу водорода...

Но вот в 1869 году Дмитрий Иванович Менделеев создал свою периодическую классификацию элементов, положив в ее основу атомные веса элементов как их наиболее фундаментальную характеристику. И на первом месте в системе элементов, естественно, оказался водород.

С открытием периодического закона стадо ясно, что химические элементы образуют единый ряд, построение которого подчиняется какой-то внутренней закономерности. И это не могло вновь не вызвать к жизни гипотезу Праута, -- правда, в несколько измененной форме: в 1888 году Уильям Крукс предположил, что все элементы, в том числе и водород, образованы путем уплотнения некоторой первичной материи, названной им протилом. А так как протил, рассуждал Крукс, по-видимому, имеет очень малый атомный вес, то отсюда понятно и возникновение дробных атомных весов.

Но вот что любопытно. Самого Менделеева необычайно занимал вопрос: а почему периодическая система должна начинаться именно с водорода? Что мешает существованию элементов с атомным весом, меньше единицы? И в качестве такого элемента в 1905 году Менделеев называет... «мировой эфир». Более того, он помещает его в нулевую группу над гелием и рассчитывает его атомный вес -- 0,000001! Инертный газ со столь малым атомным весом должен быть по мнению Менделеева, всепроникающим, а его упругие колебания могли бы объяснить световые явления...

Увы, атому предвидению великого ученого не было суждено сбыться. Но Менделеев был прав в том отношении, что элементы не построены из тождественных частиц: мы знаем теперь, что они построены из протонов, нейтронов и электронов.

Но позвольте, воскликнете вы, ведь протон -- это ядро атома водорода. Значит Праут был все-таки прав? Да, он действительно был по-своему прав. Но это была, если можно так выразиться, преждевременная правота, потому что в то время ее нельзя было ни по-настоящему подтвердить, ни по-настоящему опровергнуть...

Впрочем, сам водород сыграл в истории развития научной мысли еще немалую роль. В 1913 году Нильс Бор сформулировал свои знаменитые постулаты, объяснившие на основе квантовой механики особенности строения атома и внутреннюю сущность закона периодичности. И теория Бора была признана потому, что рассчитанный на ее основе спектр водорода полностью совпал с наблюдаемым.

Заряд ядра атома водорода равен 1 и поэтому в Периодической системе он стоит под номером 1. Водород расположен в первом периоде, где находятся всего два химических элемента H и He. Емкость первого электронного слоя равна 2 и поэтому у атомов гелия имеется завершенная электронная оболочка, а He является аналогом инертных газов (Ne, Ar, Kr, Xe и Rn). У атома водорода один электрон и его электронная конфигурация 1s1. В реакциях окисления или восстановления атом водорода может либо присоединять, либо отдавать один электрон. Какие же (по группам Периодической системы) одновалентные аналоги могут быть у водорода? В первую очередь - это щелочные металлы, у атомов которых на внешнем электронном слое также имеется 1 s электрон. Кроме того, металлические свойства химических элементов уменьшаются при переходе в Периодической системе по группам снизу вверх, а значит увеличиваются неметаллические свойства. И, если мы отнесем водород к первой группе, у него могут появиться слабые неметаллические свойства? Да его считают самым слабым неметаллом. Так что помещение водорода в первую группу не противоречит логике Периодической системы.

У атома водорода для завершения электронной оболочки не хватает всего одного электрона, поэтому при взаимодействии с активными металлами (щелочными и щелочноземельными) атом водорода стремится их внешний валентный электрон присоединить себе и тем самым он ведет себя подобно атомам галогенов. А получаемые водородные соединения (гидриды металлов - MeH) подобны соединениям галогенов со щелочными и щелочноземельными металлам. Значит они являются солями? По внешнему виду, по физическим свойствам, по способности проводить электрический ток в расплавленном состоянии гидриды металлов напоминают хлориды соответствующих металлов. При переходе в группе неметаллические свойства химических элементов снизу вверх возрастают. Тогда водород должен бы быть самым активным неметаллом. Это не так. Самый активный неметалл это фтор. Поскольку свойства водорода в чем-то напоминает свойства галогенов, то условно (в скобках) его можно было бы поместить в 7-ую группу над фтором.

Есть учебники, в которых клетку в первом периоде, предназначенную для водорода - делают размером в семь клеток - от Li до F - и считают водород аналогом сразу всех семи элементов 2-го периода. С этим вряд ли можно согласиться, так как водород во всех своих соединениях является одновалентным, а для элементов 2 - 6 групп валентность равная 1 не характерна.

Мы специально излагаем этот материал не в категоричной, как обычно написаны учебники для школьников, а в дискуссионной форме. Химия как наука все еще находится в стадии становления и развития. И не нужно бояться "противоречий" в разных учебных пособиях по химии. Нужно попробовать понять точку зрения автора, понять его доводы и стремиться формировать собственное обоснованное мнение.