Чем отличается континентальная кора от океанической. Строение земной коры. Параметры океанической коры

Гипотезы, объясняющие происхождение и развитие земной коры

Понятие о земной коре.

Земная кора – это комплекс поверхностных слоев твердого тела Земли. В научной географической литературе нет единого представления о происхождении и путях развития земной коры.

Существует несколько концепций (гипотез), раскрывающих механизмы образования и развития земной коры, наиболее обоснованными из которых являются следующие:

1. Теория фиксизма (от лат. fixus – неподвижный, неизменный) утверждает, что материки всегда оставались на тех местах, которые они занимают в настоящее время. Данная теория отрицает всякое движение материков и крупных частей литосферы.

2. Теория мобилизма (от лат. mobilis – подвижный) доказывает, что блоки литосферы находятся в постоянном движении. Эта концепция особенно утвердилась в последние годы в связи с получением новых научных данных при исследовании дна Мирового океана.

3. Концепция роста материков за счет дна океана полагает, что первоначальные материки образовались в виде сравнительно небольших массивов, которые теперь составляют древние материковые платформы. В последствии эти массивы разрастались за счет образования гор на океаническом дне, примыкающем к краям первоначальных ядер суши. Исследование дна океанов, особенно в зоне срединно-океанических хребтов, дало основание сомневаться в правильности концепции роста материков за счет океанского дна.

4. Теория геосинклиналей утверждает, что увеличение размеров суши происходит путем образования гор в геосинклиналях. Геосинклинальный процесс, как один из основных в развитии земной коры материков, положен в основу многих современных научных объяснений процесса происхождения и развития земной коры.

5. Ротационная теория строит свое объяснение на положении о том, что поскольку фигура Земли не совпадает с поверхностью математического сфероида и перестраивается в связи с неравномерным вращением, зональные полосы и меридиональные секторы на вращающейся планете неизбежно тектонически неравнозначны. Они с разной степенью активности реагируют на тектонические напряжения, вызванные внутриземными процессами.

Существует два основных типа земной коры: океанская и материковая. Выделяется также переходный тип земной коры.

Океанская земная кора. Мощность океанской земной коры в современную геологическую эпоху колеблется от 5 до 10 км. Она состоит из следующих трех слоев:

1) верхний тонкий слой морских осадков (мощность не более 1 км);

2) средний базальтовый слой (мощность от 1,0 до 2,5 км);

3) нижний слой габбро (мощность около 5 км).

Материковая (континентальная) земная кора. Материковая земная кора имеет более сложное строение и большую мощность, чем океанская земная кора. Ее мощность в среднем составляет 35-45 км, а в горных странах увеличивается до 70 км. Она состоит также их трех слоев, но существенно отличается от океанской:



1) нижний слой, сложенный базальтами (мощность около 20 км);

2) средний слой занимает основную толщу материковой коры и условно называется гранитным. Он сложен в основном гранитами и гнейсами. Под океаны этот слой не распространяется;

3) верхний слой – осадочный. Его мощность в среднем составляет около 3 км. В некоторых районах мощность осадков достигает 10 км (например, в Прикаспийской низменности). В отдельных районах Земли осадочный слой отсутствует вообще и на поверхность выходят гранитный слой. Такие районы называются щитами (например, Украинский щит, Балтийский щит).

На материках в результате выветривания горных пород образуется геологическая формация, получившая название коры выветривания.

Гранитный слой от базальтового отделен поверхностью Конрада , на которой скорость сейсмических волн возрастает от 6,4 до 7,6 км/ сек.

Граница между земной корой и мантией (как на материках, так и на океанах) проходит по поверхности Мохоровичича (линия Мохо). Скорость сейсмических волн на ней скачкообразно увеличивается до 8 км/ час.

Кроме двух основных типов – океанского и материкового – есть также участки смешанного (переходного) типа.

На материковых отмелях или шельфах кора имеет мощность около 25 км и в целом сходна с материковой корой. Однако в ней может выпадать слой базальта. В Восточной Азии в области островных дуг (Курильские острова, Алеутские острова, Японские острова и др.) земная кора переходного типа. Наконец, весьма сложна и пока мало изучена земная кора срединных океанических хребтов. Здесь нет границы Мохо, и вещество мантии по разломам поднимается в кору и даже на ее поверхность.

Понятие «земная кора» следует отличать от понятия «литосфера». Понятие «литосфера» является более широким, чем «земная кора». В литосферу современная наука включает не только земную кору, но и самую верхнюю мантию до астеносферы, то есть до глубины примерно около 100 км.

Понятие об изостазии . Изучение распределения силы тяжести показало, что все части земной коры – материки, горные страны, равнины – уравновешены на верхней мантии. Это уравновешенное их положение называется изостазией (от лат. isoc - ровный, stasis – положение). Изостатическое равновесие достигается благодаря тому, что мощность земной коры обратно пропорциональна ее плотности. Тяжелая океаническая кора тоньше более легкой материковой.

Изостазия – в сущности это даже и не равновесие, а стремление к равновесию, непрерывно нарушаемое и вновь восстанавливаемое. Так, например, Балтийский щит после стаивания материковых льдов плейстоценового оледенения поднимается примерно на 1 метр в столетие. Площадь Финляндии все время увеличивается за счет морского дна. Территория Нидерландов, наоборот, понижается. Нулевая линия равновесия проходит в настоящее время несколько южнее 60 0 с.ш. Современный Санкт-Петербург находится примерно на 1,5 м выше, чем Санкт-Петербург времен Петра Первого. Как показывают данные современных научных исследований, даже тяжесть больших городов оказывается достаточной для изостатического колебания территории под ними. Следовательно, земная кора в зонах больших городов весьма подвижна. В целом же рельеф земной коры является зеркальным отражением поверхности Мохо, подошвы земной коры: возвышенным участкам соответствуют углубления в мантию, пониженным – более высокий уровень ее верхней границы. Так, под Памиром глубина поверхности Мохо составляет 65 км, а в Прикаспийской низменности – около 30 км.

Термические свойства земной коры . Суточные колебания температуры почвогрунтов распространяются на глубину 1,0 – 1,5 м, а годовые в умеренных широтах в странах с континентальным климатом до глубины 20-30 м. На той глубине, где прекращается влияние годовых колебаний температуры вследствие нагревания земной поверхности Солнцем, находится слой постоянной температуры грунта. Он называется изотермическим слоем . Ниже изотермического слоя в глубь Земли температура повышается, и это вызывается уже внутренней теплотой земных недр. В формировании климатов внутреннее тепло не участвует, но оно служит энергетической основой всех тектонических процессов.

Число градусов, на которое увеличивается температура на каждые 100 м глубины называется геотермическим градиентом . Расстояние в метрах, при опускании на которое температура возрастает на 1 0 С называется геотермической ступенью . Величина геотермической ступени зависит от рельефа, теплопроводности горных пород, близости вулканических очагов, циркуляции подземных вод и др. В среднем геотермическая ступень равна 33 м. В вулканических областях геотермическая ступень может быть равной всего около 5 м, а в геологически спокойных областях (например, на платформах) она может достигать 100 м.

– ограничена поверхностью суши или дном Мирового океана. Имеет она и геофизическую границу, которой является раздел Мохо . Граница характеризуется тем, что здесь резко нарастают скорости сейсмических волн. Установил её в $1909$ г. хорватский ученый А. Мохоровичич ($1857$-$1936$).

Земную кору слагают осадочные, магматические и метаморфические горные породы, а по составу в ней выделяется три слоя . Горные породы осадочного происхождения, разрушенный материал которых переотложился в нижние слои и образовал осадочный слой земной коры, покрывает всю поверхность планеты. В некоторых местах он очень тонкий и, возможно, прерывается. В других местах он достигает мощности нескольких километров. Осадочными являются глина, известняк, мел, песчаник и др. Образуются они путем осаждения веществ в воде и на суше, лежат обычно пластами. По осадочным породам можно узнать о существовавших на планете природных условиях, поэтому геологи их называют страницами истории Земли . Осадочные породы подразделяются на органогенные , которые образуются путем накопления останков животных и растений и неорганогенные , которые в свою очередь подразделяются на обломочные и хемогенные .

Обломочные породы являются продуктом выветривания, а хемогенные – результат осаждения веществ, растворенных в воде морей и озер.

Магматические породы слагают гранитный слой земной коры. Образовались эти породы в результате застывания расплавленной магмы. На континентах мощность этого слоя $15$-$20$ км, он совсем отсутствует или очень сильно сокращается под океанами.

Магматическое вещество, но бедное кремнеземом слагает базальтовый слой, имеющий большой удельный вес. Слой этот хорошо развит в основании земной коры всех областей планеты.

Вертикальная структура и мощность земной коры различны, поэтому выделяют несколько её типов. По простой классификации существует океаническая и материковая земная кора.

Материковая земная кора

Материковая или континентальная кора отличается от океанической коры толщиной и устройством . Континентальная кора расположена под материками, но её край не совпадает с береговой линией. С точки зрения геологии настоящим материком является вся площадь сплошной материковой коры. Тогда получается, что геологические материки больше географических материков. Прибрежные зоны материков, называемые шельфом – это есть временно залитые морем части материков. Такие моря как Белое, Восточно-Сибирское, Азовское – расположены на материковом шельфе.

В континентальной земной коре выделяются три слоя :

  • Верхний слой – осадочный;
  • Средний слой – гранитный;
  • Нижний слой – базальтовый.

Под молодыми горами такой тип коры имеет толщину$ 75$ км, под равнинами – до $45$ км, а под островными дугами – до $25$ км. Верхний осадочный слой материковой коры формируется глинистыми отложениями и карбонатами мелководных морских бассейнов и грубообломочными фациями в краевых прогибах, а также на пассивных окраинах континентов атлантического типа.

Вторгшаяся в трещины земной коры магма сформировала гранитный слой в составе которого есть кремнезем, алюминий и другие минералы. Толщина гранитного слоя может доходить до $25$ км. Слой этот очень древний и имеет солидный возраст – $3$ млрд. лет. Между гранитным и базальтовым слоем, на глубине до $20$ км, прослеживается граница Конрада . Она характеризуется тем, что скорость распространения продольных сейсмических волн здесь увеличивается, на $0,5$ км/сек.

Формирование базальтового слоя произошло в результате излияния на поверхность суши базальтовых лав в зонах внутриплитного магматизма. Базальты содержат больше железа, магния и кальция, поэтому они тяжелее гранита. В пределах этого слоя скорость распространения продольных сейсмических волн от $6,5$-$7,3$ км/сек. Там, где граница становится размытой, скорость продольных сейсмических волн растет постепенно.

Замечание 2

Общая масса земной коры от массы всей планеты составляет всего $0,473$ %.

Одну из первых задач, связанную с определением состава верхней континентальной коры, взялась решать молодая наука геохимия . Так как кора состоит из множества самых разнообразных пород, эта задача была весьма сложной. Даже в одном геологическом теле состав пород может сильно варьироваться, а в разных районах могут быть распространены разные типы пород. Исходя из этого, задача заключалась в определении общего, среднего состава той части земной коры, которая на континентах выходит на поверхность. Эту первую оценку состава верхней земной коры сделал Кларк . Он работал сотрудником геологической службы США и занимался химическим анализом горных пород. В ходе многолетних аналитических работ, ему удалось обобщить результаты и рассчитать средний состав пород, который был близок к граниту . Работа Кларка подверглась жесткой критике и имела противников.

Вторую попытку по определению среднего состава земной коры предпринял В. Гольдшмидт . Он предположил, что двигающийся по континентальной коре ледник , может соскребать и смешивать выходящие на поверхность породы, которые в ходе ледниковой эрозии будут отлагаться. Они то и будут отражать состав средней континентальной коры. Проанализировав состав ленточных глин, которые во время последнего оледенения отлагались в Балтийском море , он получил результат, близкий к результату Кларка. Разные методы дали одинаковые оценки. Геохимические методы подтверждались. Этими вопросами занимались, и широкое признание получили оценки Виноградова, Ярошевского, Ронова и др .

Океаническая земная кора

Океаническая кора расположена там, где глубина моря больше $ 4$ км, а это значит, что она занимает не все пространство океанов. Остальная площадь покрыта корой промежуточного типа. Кора океанического типа устроена не так, как континентальная кора, хотя тоже разделяется на слои. В ней практически совсем отсутствует гранитный слой , а осадочный очень тонкий и имеет мощность менее $1$ км. Второй слой пока еще неизвестен , поэтому его называют просто вторым слоем . Нижний, третий слой – базальтовый . Базальтовые слои континентальной и океанической коры похожи скоростями сейсмических волн. Базальтовый слой в океанической коре преобладает. Как говорит теория тектоники плит, океаническая кора постоянно формируется в срединно-океанических хребтах, потом она от них отходит и в областях субдукции поглощается в мантию. Это свидетельствует о том, что океаническая кора является относительно молодой . Наибольшее количество зон субдукции характерно для Тихого океана , где с ними связаны мощные моретрясения.

Определение 1

Субдукция – это опускание горной породы с края одной тектонической плиты в полурасплавленную астеносферу

В том случае, когда верхней плитой является континентальная плита, а нижней – океаническая – образуются океанические желоба .
Её толщина в разных географических зонах варьируется от $5$-$7$ км. С течением времени толщина океанической коры практически не изменяется. Связано это с количеством расплава, выделяющегося из мантии в срединно-океанических хребтах и толщиной осадочного слоя на дне океанов и морей.

Осадочный слой океанической коры небольшой и редко превышает толщину в $0,5$ км. Состоит он из песка, отложений останков животных и осажденных минералов. Карбонатные породы нижней части на большой глубине не обнаруживаются, а на глубине больше $4,5$ км карбонатные породы замещаются красными глубоководными глинами и кремнистыми илами.

Базальтовые лавы толеитового состава сформировали в верхней части базальтовый слой , а ниже лежит дайковый комплекс .

Определение 2

Дайки – это каналы, по которым базальтовая лава изливается на поверхность

Базальтовый слой в зонах субдукции превращается в экголиты , которые погружаются в глубину, потому что имеют большую плотность окружающих мантийных пород. Их масса составляет около $7$ % от массы всей мантии Земли. В пределах базальтового слоя скорость продольных сейсмических волн составляет $6,5$-$7$ км/сек.

Средний возраст океанической коры составляет $100$ млн. лет, в то время как самые старые её участки имеют возраст $156$ млн. лет и располагаются во впадине Пиджафета в Тихом океане. Сосредоточена океаническая кора не только в пределах ложа Мирового океана, она может быть и в закрытых бассейнах, например, северная впадина Каспийского моря. Океаническая земная кора имеет общую площадь $306$ млн. км кв.

Земная кора – многослойное образование. Верхнюю ее часть – осадочный чехол, или первый слой,– образуют осадочные породы и не уплотненные до состояния пород осадки. Ниже как на континентах, так и в океанах залегает кристаллический фундамент. В его строении и кроются основные различия между континентальным и океаническим типами земной коры. На континентах в составе фундамента выделяются два мощных слоя – «гранитный» и базальтовый. Под абиссальным ложем океанов «гранитный» слой отсутствует. Однако базальтовый фундамент океана отнюдь не однороден в разрезе, он разделяется на второй и третий слои.

До сверхглубокого и глубоководного бурения о структуре земной коры судили главным образом по геофизическим данным, а именно по скоростям продольных и поперечных сейсмических волн. В зависимости от состава и плотности пород, слагающих те или иные слои земной коры, скорости прохождения сейсмических волн значительно изменяются. В верхних горизонтах, где преобладают слабо уплотненные осадочные образования, они относительно невелики, в кристаллических же породах резко возрастают по мере увеличения их плотности.

После того как в 1949 г. впервые были измерены скорости распространения сейсмических волн в породах ложа океана, стало ясно, что скоростные разрезы коры континентов и океанов весьма различны. На небольшой глубине от дна, в фундаменте под абиссальной котловиной, эти скорости достигали величин, которые на материках фиксировались в самых глубоких слоях земной коры. Вскоре выяснилась причина подобного несоответствия. Дело в том, что кора океанов оказалась поразительно тонкой. Если на континентах толщина земной коры составляет в среднем 35 км, а под горно‑складчатыми системами даже 60 и 70 км, то в океане она не превышает 5–10, редко 15 км, а в отдельных районах мантия находится почти у самого дна.

Стандартный скоростной разрез континентальной коры включает верхний, осадочный слой со скоростью продольных волн 1–4 км/с, промежуточный, «гранитный» – 5,5–6,2 км/с и нижний, базальтовый – 6,1–7,4 км/с. Ниже, как полагают, залегает так называемый перидотитовый слой, входящий уже в состав астеносферы, со скоростями 7,8–8,2 км/с. Названия слоев носят условный характер, так как реальные сплошные разрезы континентальной коры никто до сих пор не видел, хотя Кольская сверхглубокая скважина проникла в глубь Балтийского щита уже на 12 км.

В абиссальных котловинах океана под тонким осадочным плащом (0,5–1,5 км), где скорости сейсмических волн не превышают 2,5 км/с, находится второй слой океанической коры. По данным американского геофизика Дж. Уорзела и других ученых, он отличается удивительно близкими значениями скорости – 4,93–5,23 км/с, в среднем 5,12 км/с, а средняя мощность под ложем океанов равна 1,68 км (в Атлантическом – 2,28, в Тихом – 1,26 км). Впрочем, в периферийных частях абиссали, ближе к окраинам континентов, мощности второго слоя довольно резко увеличиваются. Под этим слоем выделяется третий слой коры с не менее однородными скоростями распространения продольных сейсмических волн, равными 6,7 км/с. Его толщина колеблется от 4,5 до 5,5 км.

В последние годы выяснилось, что для скоростных разрезов океанической коры характерен больший разброс значений, чем это предполагалось ранее, что, по‑видимому, связано с глубинными неоднородностями, существующими в ней [Пущаровский, 1987].

Как видим, скорости прохождения продольных сейсмических волн в верхних (первом и втором) слоях континентальной и океанической коры существенно различны.

Что касается осадочного чехла, то это обусловлено преобладанием в его составе на континентах древних образований мезозойского, палеозойского и докембрийского возраста, претерпевших довольно сложные преобразования в недрах. Дно же океана, как говорилось выше, относительно молодо, и осадки, лежащие над базальтами фундамента, слабо уплотнены. Это связано с действием целого ряда факторов, определяющих эффект недоуплотнения, который известен как парадокс глубоководного диагенеза.

Сложнее объяснить разницу в скоростях сейсмических волн при их распространении через второй («гранитный») слой континентальной и второй (базальтовый) слой океанической коры. Как ни странно, в базальтовом слое океана эти скорости оказались ниже (4,82–5,23 км/с), чем в «гранитном» (5,5–6,2 км/с). Дело тут в том, что скорости продольных сейсмических волн в кристаллических породах с плотностью 2,9 г/см 3 приближаются к 5,5 км/с. Отсюда вытекает, что если «гранитный» слой на континентах действительно сложен кристаллическими породами, среди которых преобладают метаморфические образования нижних ступеней трансформации (по данным сверхглубокого бурения на Кольском полуострове), то в составе второго слоя океанической коры, помимо базальтов, должны участвовать образования с плотностью меньшей, чем у кристаллических пород (2–2,55 г/см 3).

Действительно, в 37‑м рейсе бурового судна «Гломар Челленджер» были вскрыты породы океанического фундамента. Бур проник сквозь несколько базальтовых покровов, между которыми находились горизонты карбонатных пелагических осадков. В одной из скважин была пройдена 80‑метровая толща базальтов с прослоями известняков, в другой – 300‑метровая серия пород вулканогенно‑осадочного происхождения. Бурение первой из перечисленных скважин было остановлено в ультраосновных породах – габбро и гипербазитах, которые, вероятно, уже относятся к третьему слою океанической коры.

Глубоководное бурение и исследование рифтовых зон с подводных обитаемых аппаратов (ПОА) позволили выяснить в общих чертах структуру океанической коры. Правда, нельзя с уверенностью утверждать, что нам известен полный и непрерывный ее разрез, не искаженный последующими наложенными процессами. Наиболее детально изучен в настоящее время верхний, осадочный слой, вскрытый частично или полностью почти в 1000 точках дна буром «Гломара Челленджера» и «Джойдес Резолюшн». Гораздо менее исследован второй слой океанической коры, который вскрыт на ту или иную глубину гораздо меньшим числом скважин (несколькими десятками). Однако сейчас очевидно, что этот слой сформирован в основном лавовыми покровами базальтов, между которыми заключены разнообразные осадочные образования небольшой мощности. Базальты относятся к толеитовым разностям, возникшим в подводных условиях. Это подушечные лавы, сложенные зачастую пустотелыми лавовыми трубами и подушками. Находящиеся между базальтами осадки в центральных частях океана состоят из остатков мельчайших планктонных организмов с карбонатной или кремнистой функцией.

Наконец, третий слой океанической коры отождествляют с так называемым дайковым поясом – сериями небольших магматических тел (интрузий), тесно пригнанных одно к другому. Состав этих интрузий основной в ультраосновной. Это габбро и гипербазиты, формировавшиеся не при излиянии магм на поверхности дна, как базальты второго слоя, а в недрах самой коры. Иначе говоря, речь вдет о магматических расплавах, которые застыли вблизи магматического очага, так и не достигнув поверхности дна. Их более «тяжелый» ультраосновной состав свидетельствует об остаточном характере этих магматических расплавов. Если же вспомнить, что толщина третьего слоя обычно в 3 раза превышает мощность второго слоя океанической коры, то определение ее как базальтовой может показаться большим преувеличением.

Подобно этому и «гранитный» слой континентальной коры, как выяснилось в процессе бурения Кольской сверхглубокой скважины, оказался вовсе не гранитным, по крайней мере в верхней его половине. Как уже говорилось выше, в пройденном здесь разрезе преобладали метаморфические породы низших и средних ступеней преобразования. В большинстве своем они являются измененными при высоких температурах и давлении, существующих в недрах Земли, древними осадочными породами. В этой связи сложилась парадоксальная ситуация, заключающаяся в том, что мы теперь больше знаем о коре океанической, чем о континентальной. И это при том, что первая изучается интенсивно от силы два десятилетия, тогда как вторая – объект исследований по крайней мере полутора столетий.

Обе разновидности земной коры не являются антагонистами. В краевых частях молодых океанов, Атлантического и Индийского, граница между континентальной и океанической корой несколько «размыта» за счет постепенного утонения первой из них в области перехода от континента к океану. Эта граница в целом тектонически спокойна, т. е. не проявляет себя ни мощными сейсмическими толчками, которые случаются здесь крайне редко, ни вулканическими извержениями.

Однако такое положение сохраняется не везде. В Тихом океане граница между континентальной и океанической корой относится, пожалуй, к самым драматическим рубежам раздела на нашей планете. Так что же все‑таки, эти две разновидности земной коры – антиподы или нет? Думается, что мы можем с полным основанием считать их таковыми. Ведь несмотря на существование целого ряда гипотез, предполагающих океанизацию континентальной коры или, напротив, превращение океанического субстрата в континентальный за счет целого ряда минеральных трансформаций базальтов, на самом деле доказательств непосредственного перехода одного типа коры в другой нет. Как будет показано ниже, континентальная кора формируется в специфических тектонических обстановках в активных зонах перехода между материком и океаном и в основном в результате преобразования другой разновидности земной коры, называемой субокеанической. Океанический субстрат исчезает в зонах Беньофа, либо выдавливается, как паста из тюбика, на край континента, либо превращается в тектонический меланж (крошево из перетертых пород) в областях «захлопывания» океанов. Впрочем, об этом позднее.