Восстановительная атмосфера земли. Первичная атмосфера земли. Изменение щелочно-кислотного потенциала морских вод, особенно в мелководьях, ведет к прекращению размножения многих беспозвоночных, вызывает гибель рыб и нарушает экологическое равновесие в оке

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Министерство высшего и среднего образования РФ МБОУ СОШ 43 г. Краснодара ПЕРВИЧНАЯ АТМОСФЕРА ЗЕМЛИ

2 слайд

Описание слайда:

Пока еще не удалось достоверно установить историю образования атмосферы. Но уже удалось выявить кое-какие вероятные изменения ее состава. Атмосфера стала зарождаться сразу после формирования Земли. В процессе эволюции она почти полностью утратила свою первоначальную атмосферу. На раннем этапе наша планета находилась в расплавленном состоянии. Твердое тело начало формироваться около четырех с половиной млрд лет тому назад. Это время и станет началом геологического летоисчисления.

3 слайд

Описание слайда:

Как раз именно в этот период и начинается медленная эволюция атмосферы. Такие процессы как выброс лавы во время извержения вулканов, сопровождается неизбежным выбросом газов, таких как азот, метан, водяной пар и другие.

4 слайд

Описание слайда:

При воздействии радиации солнца водяной пар разлагается на кислород и водород. Освободившийся кислород вступает в реакцию с оксидом углерода и образовывается углекислый газ. На азот и водород разлагается аммиак. В процессе диффузии водород поднимается вверх и покидает атмосферу. Азот, который намного тяжелее, не может улетучиться, и постепенно накапливался. Таким образом, азот становится основным компонентом

5 слайд

Описание слайда:

В первичной атмосфере Земли содержались углекислый газ и водород, а между ними возможна реакция, ведущая к образованию болотного газа (метана) и водяного пара. Но основная масса воды, по современным представлениям, была дегазирована из магмы в течение первых сотен миллионов лет после образования атмосферы. Вода сразу же сильно усложнила характер взаимодействия между компонентами и самую структуру биогеносферы.

6 слайд

Описание слайда:

Насыщение первичной атмосферы водяными парами, способность воды аккумулировать («медленно остывать») солнечную энергию заметно изменили термодинамические условия внутри биогеносферы и даже за ее пределами. Необходимо учитывать два момента; во-первых, с появлением воды значительно энергичнее стали протекать процессы выветривания, в результате которых «заряжаются» солнечной энергией геохимические аккумуляторы.

7 слайд

Описание слайда:

Во-вторых, продукты выветривания (глины, например) вступали в соединения с большим количеством воды, и это повышало их энергетический барьер, т. е. минералы удалялись от того момента, при котором они могли бы отдать аккумулированную солнечную энергию. Чтобы выделить эту энергию, им нужно было сначала «подсохнуть».

8 слайд

Описание слайда:

Осадочные породы обезвоживались, опускаясь в глубь земной коры в результате превращения глин в слюды. Если раньше они разряжались где-то неподалеку от поверхности, то после появления на Земле воды геохимические аккумуляторы получили возможность за счет влаги уносить солнечную энергию к нижней границе земной коры. Там они отдавали накопленную энергию и тем самым обеспечивали температурный градиент земной коры.

9 слайд

Описание слайда:

При опускании осадочных пород процессу обезвоживания противостоит увеличение давления, которое препятствует освобождению энергии. Магматические очаги - результат бурного освобождения энергии - возникали при тектонических разрывах, когда давление ослабевало. Если учесть, что в ту пору форма Земли была менее устойчивой, чем сейчас, то во взаимодействии этих факторов с геохимической аккумуляцией можно увидеть причину предполагаемой бурной вулканической деятельности на заре геологической истории нашей планеты.

10 слайд

Описание слайда:

При воздействии ультрафиолетовых лучей, а также электрических разрядов. Смесь из газов вступала в химическую реакцию, после которых образовались органические вещества – аминокислоты. Таким образом, жизнь могла зародиться в атмосфере, которая отличается от современной атмосферы.

11 слайд

Описание слайда:

Когда на Земле появились примитивные растения, начал происходить процесс фотосинтеза. Который, как известно, сопровождается выделением свободного кислорода. После диффузии в верхние слои атмосферы этот газ стал защищать нижние слои и поверхность самой Земли от опасного рентгеновского и ультрафиолетового излучения.

12 слайд

Описание слайда:

Можно предположить, что в первичной атмосфере было много углекислого газа, который расходовался в процессе фотосинтеза, по мере эволюции флоры. Ученые так же полагают, что колебания его концентрации повлияли на климатические изменения в ходе развития Земли.

Образование атмосферы Земли началось в далекие времена - в протопланетный этап развития Земли, в период активных вулканических извержений с выбросом огромного количества газов* Позже, когда на Земле появились океаны и биосфера, образование атмосферы продолжилось за счет газообмена между водой, растениями, животными и продуктами их разложения*

В течение всей геологической истории атмосфера Земли претерпела ряд глубоких трансформаций.


Первичная атмосфера Земли. Восстановительная.

В состав первичной атмосферы Земли на протопланетной стадии развития Земли (более 4,2 млрд л. н.) входили преимущественно метан, аммиак и углекислый газ. Затем в результате дегазации мантии Земли и непрерывных процессов выветривания на поверхности земли, состав первичной атмосферы Земли обогатился парами воды, соединениями углерода (СO 2 , СО) и серы, а также сильными галогенными кислотами (НСI, НF, НI) и борной кислотой. Первичная атмосфера была очень тонкая.

Вторичная атмосфера Земли. Окислительная.

В дальнейшем первичная атмосфера стала трансформироваться во вторичную. Это произошло в результате тех же процессов выветривания, происходивших на поверхности земли, вулканической и солнечной активности, а также вследствие жизнедеятельности цианобактерий и сине-зеленых водорослей.

Результатом трансформации стало разложение метана на водород и углекислоту, аммиака – на азот и водород. В атмосфере Земли стали накапливаться углекислый газ и азот.

Сине-зеленые водоросли посредством фотосинтеза стали вырабатывать кислород, который практически весь тратился на окисление других газов и горных пород. В результате этого аммиак окислился до молекулярного азота, метан и оксид углерода – до углекислоты, сера и сероводород – до SO 2 и SO 3 .

Таким образом, атмосфера из восстановительной постепенно превратилась в окислительную.

Образование и эволюция углекислого газа

Источники углекислого газа на ранних этапах образования атмосферы:

  • Окисление метана,
  • Дегазация мантии Земли,
  • Выветривание горных пород.

Содержание углекислоты в атмосфере ранней Земли было весьма значительно. Однако большая ее часть растворялась в водах гидросферы , где участвовала в постройке раковин различных водных организмов, биогенным путем превращаясь в карбонаты.

На рубеже протерозоя и палеозоя (ок. 600 млн. л.н.) содержание углекислого газа в атмосфере уменьшилось и составило всего лишь десятые доли процента от общего объема газов в атмосфере.

Современного уровня содержания в атмосфере углекислый газ достиг лишь 10-20 млн. лет назад.

Образование и эволюция кислорода

в первичной и вторичной атмосфере.

Источники кислорода на ранних этапах образования атмосферы :

  • Дегазация мантии Земли – практически весь кислород тратился на окислительные процессы.
  • Фотодиссоциация воды (разложения на молекулы водорода и кислорода) в атмосфере под действием ультрафиолетового излучения - в результате в атмосфере появились свободные молекулы кислорода.
  • Переработка углекислоты в кислород эукариотами. Появление свободного кислорода в атмосфере привело к гибели прокариот (приспособленных к жизни в восстановительных условиях) и появлению эукариот (приспособившихся жить в окислительной среде).

Изменение концентрации кислорода в атмосфере.

Архей - первая половина протерозоя – концентрация кислорода 0,01% современного уровня (точка Юри). Практически весь возникающий кислород расходовался на окисление железа и серы. Это продолжалось до тех пор, пока все двухвалентное железо, находящееся на поверхности земли, не окислилось. С этого момента кислород стал накапливаться в атмосфере.

Вторая половина протерозоя – конец раннего венда – концентрация кислорода в атмосфере 0,1% от современного уровня (точка Пастера).

Поздний венд - силурийский период. Свободный кислород стимулировал развитие жизни - анаэробный процесс брожения сменился энергетически более перспективным и прогрессивным кислородным метаболизмом. С этого момента накопление кислорода в атмосфере происходило довольно быстро. Выход растений из моря на сушу (450 млн. л. н.) привел к стабилизации уровня кислорода в атмосфере.

Середина мелового периода . Окончательная стабилизация концентрации кислорода в атмосфере связана с появлением цветковых растений (100 млн. л. н.).

Образование и эволюция азота

в первичной и вторичной атмосфере.

Азот образовался на ранних стадиях развития Земли за счет разложения аммиака. Связывание атмосферного азота и захоронение его в морских осадках началось с появлением организмов. После выхода живых организмов на сушу, азот стал захороняться и в континентальных осадках. Процесс связывания азота особенно усилился с появлением наземных растений.

Таким образом, состав атмосферы Земли определял особенности жизнедеятельности организмов, способствовал их эволюции, развитию и расселению по поверхности земли. Но в истории Земли бывали порой и сбои в распределении газового состава. Причиной этого служили различные катастрофы, которые не раз возникали в течение криптозоя и фанерозоя. Эти сбои приводили к массовым вымираниям органического мира.

Состав древней и современной атмосферы в процентном соотношении приведен в таблице 1.

Таблица 1. Состав первичной и современной атмосферы Земли.

Водяной пар

Атмосфера Земли — это газовая оболочка нашей планеты. Кстати, подобные оболочки есть практически у всех небесных тел, начиная от планет Солнечной системы и заканчивая крупными астероидами. зависит от многих факторов — размера его скорости, массы и множества других параметров. Но только оболочка нашей планеты содержит в себе компоненты, которые позволяют нам жить.

Атмосфера Земли: краткая история возникновения

Считается, что в начале своего существования наша планета вообще не имела газовой оболочки. Но молодое, новообразованное небесное тело постоянно развивалось. Первичная атмосфера Земли образовалась в результате постоянных извержений вулканов. Именно так за много тысяч лет вокруг Земли образовалась оболочка из водяного пара, азота, углерода и других элементов (кроме кислорода).

Поскольку количество влаги в атмосфере ограничено, то ее избыток превращался в осадки — так формировались моря, океаны и прочие водоемы. В водной среде появлялись и развивались первые организмы, заселившие планету. Большинство из них относилось к растительным организмам, вырабатывающим кислород путем фотосинтеза. Таким образом, атмосфера Земли начала наполняться этим жизненно необходимым газом. А в результате скопления оксигена образовался и озоновый слой, которые защищал планету от губительного влияния ультрафиолетовых излучений. Именно эти факторы и создали все условия для нашего существования.

Строение атмосферы Земли

Как известно, газовая оболочка нашей планеты состоит из нескольких слоев — это тропосфера, стратосфера, мезосфера, термосфера. Нельзя провести четкие границы между этими слоями — все зависит от времени года и широты участка планеты.

Тропосфера — нижняя часть газовой оболочки, высота которой составляет в среднем от 10 до 15 километров. Именно здесь сосредоточенная большая часть Кстати, именно тут находится вся влага и формируются облака. За счет содержания кислорода тропосфера поддерживает жизнедеятельность всех организмов. Кроме того, она имеет решающее значение в формировании погоды и климатических особенностей местности — здесь образуются не только облака, но и ветра. Температура падает с высотой.

Стратосфера — начинается от тропосферы и заканчивается на высоте от 50 до 55 километров. Здесь температура с высотой растет. Эта часть атмосферы практически не содержит водяного пара, но зато имеет озоновый слой. Иногда здесь можно заметить образование «перламутровых» облаков, которые можно увидеть только ночью — считается, что они представлены сильно конденсированными водяными каплями.

Мезосфера — тянется до 80 километров ввысь. В этом слое можно заметить резкое падение температуры по мере продвижения вверх. Здесь также сильно развита турбулентность. Кстати, в мезосфере образовываются так называемые «серебристые облака», которые состоят из небольших кристаллов льда — увидеть их можно только ночью. Интересно, что у верхней границы мезосферы воздуха практически нет — его в 200 раз меньше, чем возле земной поверхности.

Термосфера — это верхний слой земной газовой оболочки, в котором принято различать ионосферу и экзосферу. Интересно, что с высотой температура здесь очень резко поднимается — на высоте 800 километров от земной поверхности она составляет более 1000 градусов Цельсия. Ионосфера характеризируется сильно разжиженным воздухом и огромным содержанием активных ионов. Что же касается экзосферы, то эта часть атмосферы плавно переходит в межпланетное пространство. Стоит отметить, что термосфера не содержит в себе воздуха.

Можно заметить, что атмосфера Земли — это очень важная часть нашей планеты, которая остается решающим фактором в появлении жизни. Она обеспечивает жизнедеятельность, поддерживает существование гидросферы (водной оболочки планеты) и защищает от ультрафиолетовых излучений.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

  • Введение
  • 2. Эволюция земной атмосферы
  • 3.1 Примеси в атмосфере
  • Заключение
  • Использованная литература

Введение

Воздушная оболочка, окружающая земной шар называется атмосферой. В атмосфере постоянно происходят разнообразные процессы: химические, физические, биологические и др. В результате данных процессов происходит изменение как нижних, так и верхних слоев атмосферы.

Происходящие в атмосфере процессы происходят закономерно и взаимосвязано. На атмосферу оказывает воздействие космическое пространство, поверхность земли, водоемов, растительного и снежного покрова. Происходит взаимообмен газами, теплом, влагой, жидкими и твердыми частицами. Солнечное излучение является основным источником энергии для атмосферных частиц. В атмосфере, благодаря происходящим в ней различным процессам, происходят некоторые химические реакции, которые изменяют ее состав. Развиваются движения воздушных масс, образуются облака, осадки, наблюдаются электрические, акустические и оптические явления. Состояние атмосферы постоянно изменяется во времени и в пространстве.

Атмосфера не имеет определенной верхней границы. Она постепенно переходит в межпланетную среду. Условно верхнюю границу атмосферы принято считать на высоте 1000-1200 км. Спутниковые данные изменения плотности воздуха с высотой позволяют считать, что плотность атмосферы приближается к плотности межпланетной среды, начиная с высоты 2000-3000 км.

1. Общие особенности происхождения атмосферы Земли

Атмосфера начала образовываться вместе с формированием Земли. В процессе эволюции планеты и по мере приближения ее параметров к современным значениям произошли принципиально качественные изменения ее химического состава и физических свойств. Согласно эволюционной модели, на раннем этапе Земля находилась в расплавленном состоянии и около 4,5 млрд. лет назад сформировалась как твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени началась медленная эволюция атмосферы. Некоторые геологические процессы, (например, излияния лавы при извержениях вулканов) сопровождались выбросом газов из недр Земли. В их состав входили азот, аммиак, метан, водяной пар, оксид СО и диоксид СО 2 углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода, образуя углекислый газ. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным компонентом, хотя некоторая его часть связывалась в молекулы в результате химических реакций. Под воздействием ультрафиолетовых лучей и электрических разрядов смесь газов, присутствовавших в первоначальной атмосфере Земли, вступала в химические реакции, в результате которых происходило образование органических веществ, в частности аминокислот. С появлением примитивных растений начался процесс фотосинтеза, сопровождавшийся выделением кислорода. Этот газ, особенно после диффузии в верхние слои атмосферы, стал защищать ее нижние слои и поверхность Земли от опасных для жизни ультрафиолетового и рентгеновского излучений. Согласно теоретическим оценкам, содержание кислорода, в 25 000 раз меньшее, чем сейчас, уже могло привести к формированию слоя озона со всего лишь вдвое меньшей, чем сейчас, концентрацией. Однако этого уже достаточно, чтобы обеспечить весьма существенную защиту организмов от разрушительного действия ультрафиолетовых лучей.

Вероятно, что в первичной атмосфере содержалось много углекислого газа. Он расходовался в ходе фотосинтеза, и его концентрация должна была уменьшаться по мере эволюции мира растений, а также из-за поглощения в ходе некоторых геологических процессов. Поскольку парниковый эффект связан с присутствием углекислого газа в атмосфере, колебания его концентрации являются одной из важных причин таких крупномасштабных климатических изменений в истории Земли, как ледниковые периоды.

В зависимости от распределение температуры атмосферу Земли подразделяют на тропосферу, стратосферу, мезосферу, термосферу и экзосферу. Давление и плотность воздуха в атмосфере Земли с высотой убывают.

Присутствующий в современной атмосфере гелий большей частью является продуктом радиоактивного распада урана, тория и радия. Эти радиоактивные элементы испускают a-частицы, которые представляют собой ядра атомов гелия. Поскольку в ходе радиоактивного распада электрический заряд не образуется и не исчезает, с образованием каждой a-частицы появляются по два электрона, которые, рекомбинируя с a-частицами, образуют нейтральные атомы гелия. Радиоактивные элементы содержатся в минералах, рассеянных в толще горных пород, поэтому значительная часть гелия, образовавшегося в результате радиоактивного распада, сохраняется в них, очень медленно улетучиваясь в атмосферу. Некоторое количество гелия за счет диффузии поднимается вверх в экзосферу, но благодаря постоянному притоку от земной поверхности, объем этого газа в атмосфере почти не меняется. На основании спектрального анализа света звезд и изучения метеоритов можно оценить относительное содержание различных химических элементов во Вселенной. Концентрация неона в космосе примерно в десять миллиардов раз выше, чем на Земле, криптона - в десять миллионов раз, а ксенона - в миллион раз. Отсюда следует, что концентрация этих инертных газов, по-видимому, изначально присутствовавших в земной атмосфере и не пополнявшихся в процессе химических реакций, сильно снизилась, вероятно, еще на этапе утраты Землей своей первичной атмосферы. Исключение составляет инертный газ аргон, поскольку в форме изотопа 40Ar он и сейчас образуется в процессе радиоактивного распада изотопа калия.

1.1 Состав и строение атмосферы

В настоящее время Земля обладает атмосферой массой примерно 5,27х10 18 кг. Половина всей массы атмосферы сосредоточена в слое до 5 км, 75% - до высоты 10 км, 95% - до 20км. Около поверхности она содержит 78,08% азота, 20,95% кислорода, 0,94% инертных газов, 0,03% углекислого газа и в незначительных количествах другие газы. Давление и плотность в атмосфере убывают с высотой. Половина воздуха содержится в нижних 5,6 км, а почти вся вторая половина сосредоточена до высоты 11,3 км. На высоте 95 км плотность воздуха в миллион раз ниже, чем у поверхности. На этом уровне и химический состав атмосферы уже иной. Растет доля легких газов, и преобладающими становятся водород и гелий. Часть молекул разлагается на ионы, образуя ионосферу. Выше 1000 км находятся радиационные пояса. Их тоже можно рассматривать как часть атмосферы, заполненную очень энергичными ядрами атомов водорода и электронами, захваченными магнитным полем планеты.

Атмосфера является одним из необходимых условий возникновения и существования жизни на Земле. Она участвует в формировании климата на планете, регулирует ее тепловой режим, способствует перераспределению тепла у поверхности. Часть лучистой энергии Солнца поглощается атмосферой, а остальная энергия, достигая поверхности Земли, частично уходит в почву, водоемы, а частично отражается в атмосферу.

Атмосфера предохраняет Землю от резких колебаний температуры. При отсутствии атмосферы и водоемов температура поверхности Земли в течение суток колебалась бы в интервале 200°С. Благодаря наличию кислорода атмосфера участвует в обмене и круговороте веществ в биосфере.

В современном состоянии атмосфера существует сотни миллионов лет, все живое приспособлено к строго определенному ее составу. Газовая оболочка защищает живые организмы от губительных ультрафиолетовых, рентгеновских и космических лучей. Атмосфера предохраняет Землю от падения метеоритов.

В атмосфере распределяются и рассеиваются солнечные лучи, что создает равномерное освещение. Она является средой, где распространяется звук. Из-за действия гравитационных сил атмосфера не рассеивается в мировом пространстве, а, окружая Землю, вращается вместе с ней.

2. Эволюция земной атмосферы

Атмосфера начала образовываться вместе с формированием Земли. В процессе эволюции планеты и по мере приближения ее параметров к современным значениям произошли принципиально качественные изменения ее химического состава и физических свойств. Согласно эволюционной модели, на раннем этапе Земля находилась в расплавленном состоянии и около 4,5 млрд. лет назад сформировалась как твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени началась медленная эволюция атмосферы.

В догеологическое время, в фазу расплавления внешней сферы земного шара, огромные массы выделявшихся газов образовали первичную атмосферу Земли. Основными компонентами выделявшихся из недр Земли газов были углекислый газ и водяной пар. Состав первичной атмосферы Земли, образовавшейся за счет выделения газов и воды при расплавлении планетного вещества, был сходен по составу с компонентами вулканических извержений современности. Газы, выделяющиеся из современных вулканов, содержат преимущественно водяной пар. В составе газов базальтовых лав, например, гавайских вулканов с температурами до 1200°С водяной пар составляет 70-80% по объему. Вторым по значению компонентом, составляющим атмосферу, является углекислый газ. В газах из вулканических лав СО 2 содержится от 6 до 15%.

Итак, атмосфера того времени состояла главным образом из водяного пара с существенной примесью углекислого газа. В фазу расплавления внешней сферы земного шара практически вся гидросфера находилась в составе атмосферы. В эту фазу выделившийся водяной пар, охлаждаясь на большой высоте, образовывал густой облачный покров и интенсивные дождевые осадки. Однако падающие из облаков капли воды на некоторой высоте над поверхностью планеты, где температура воздуха была выше 100°С, превращались в пар, который снова поднимался вверх. Над раскаленной поверхностью Земли функционировал своеобразный круговорот воды: пар - дождевые осадки - пар, т.е. мощный парниковый эффект, аналогично наблюдаемый ныне на Венере.

В самый ранний период формирование плотной атмосферы вокруг остывающей Земли, по-видимому, происходило за счет паров и газов, выделяющихся в результате дегазации мантии. Предполагается, что в дальнейшем формирование атмосферы происходило за счет газов, извергающихся вулканами в течение первых 500 млн. лет существования Земли, которые состояли из водорода, водяного пара, метана, оксидов углерода, аммиака и др.

Круговорот воды в природе, локализованный в первичной атмосфере Земли вблизи температурного уровня 100°С, практически не оказывал влияния на общий ход эволюции планеты и на развитие ее поверхности. Но это были предпосылки могучего круговорота воды на Земле, который сформировался позже и имел огромное влияние на развитие природной среды и планеты в целом. После охлаждения земной поверхности до температуры ниже 100°С произошел переход атмосферного водяного пара в жидкую воду. На сухой и очень горячей, тогда земной поверхности образовался сток, речная сеть и возникли водоемы. Земная поверхность стала сильно обводненной и начала подвергаться интенсивному воздействию водных потоков. Этот этап и явился началом геологической истории.

Следовательно, первоначальная атмосфера была восстановительной и содержала незначительное количество кислорода, который образовывался за счет фотодиссоциации водяного пара под действием ультрафиолетового излучения Солнца и дегазации базальтовой магмы. Конденсация водяного пара около 4 млрд. лет назад привела к образованию гидросферы.

Изменения температурных условий на Земле, а вслед за этим и всей природной обстановки не могли не отразиться и на атмосфере. Изъятие из атмосферы огромного количества воды и образование поверхностного стока и водоемов оказали огромное влияние на состав и эволюцию воздушной среды. Из водной атмосферы она превратилась в основном в углекислую, в которой водяной пар из господствующего компонента превратился во второстепенный.

Образование на земной поверхности крупных водоемов оказало воздействие на дальнейшую эволюцию атмосферы, в которой началось быстрое уменьшение содержания углекислого газа. СО 2 легко растворяется в воде, и основная его часть была поглощена ею. Во много раз уменьшилось и давление атмосферы. Природные условия на Земле резко изменились. Природная среда на нашей планете стала непохожей на ту, что была у нее в ранние фазы истории.

Некоторые геологические процессы, (например, излияния лавы при извержениях вулканов) сопровождались выбросом газов из недр Земли. В их состав входили азот, аммиак, метан, водяной пар, оксид СО и диоксид СО 2 углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода, образуя углекислый газ. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным компонентом, хотя некоторая его часть связывалась в молекулы в результате химических реакций. Под воздействием ультрафиолетовых лучей и электрических разрядов смесь газов, присутствовавших в первоначальной атмосфере Земли, вступала в химические реакции, в результате которых происходило образование органических веществ, в частности аминокислот.

Из-за отсутствия значительных количеств кислорода, а, следовательно, и озона, ультрафиолетовые лучи легко проникали сквозь атмосферу, что создавало благоприятные условия для образования таких органических веществ, как аминокислоты и пиридиновые основания, являющиеся главнейшими составными частями живой материи. Исходными веществами для этого процесса служили молекулы метана, оксида углерода (II), водорода, воды и аммиака. Необходимо отметить, что предпосылкой усложнения структуры являлось отсутствие полной деструкции молекул органических соединений до углекислого газа и воды, как это происходит при наличии в атмосфере кислорода. Следовательно, в восстановительной атмосфере происходило не окисление органических веществ, а разложение их на отдельные фрагменты, которые служили исходным материалом для синтеза более сложных веществ. Эти органические вещества могли постепенно накапливаться в отдельных, наиболее благоприятных местах первобытного океана, например на берегах, что обеспечило возникновение жизни и ее прогрессивную эволюцию. Первыми видами живых организмов были, вероятно, бактерии, у которых обмен веществ происходил без участия кислорода. Они получили название анаэробных.

Следовательно, на ранней стадии развития существовала анаэробная восстановительная атмосфера, и если, в конце концов, произошел переход к атмосфере окислительной и аэробной, то фактором, ответственным за этот переход, явилась жизнедеятельность фотосинтезирующих организмов. Сущность жизнедеятельности этих организмов заключается в том, что при поглощении из внешней среды неорганических веществ (углекислого газа и воды) и солнечной энергии с помощью хлорофилла они производят органические вещества и кислород. Суммарная химическая реакция этого процесса выражается уравнением:

6 CO 2 + 6H 2 = C 6 H 12 O 6 + 6O 2 .

Живые организмы, появившиеся в водах древнего океана, стали определяющим фактором развития атмосферы. Важнейшим результатом деятельности этих организмов явилось накопление большого количества кислорода в атмосфере, сопровождаемое поглощением углекислого газа.

Процесс накопления в атмосфере кислорода способствовало возникновению озонового слоя, который способен задерживать большую часть коротковолновых и ультрафиолетовых лучей, губительных для всего живого. Озоновый слой образовался на высоте 25-30 км от поверхности Земли за счет фотохимической реакции.

Когда озоновый слой атмосферы сформировался полностью, ультрафиолетовые лучи уже не достигали поверхности Земли и живые организмы смогли обитать на суше. Эволюция живых организмов пошла еще быстрее благодаря пышному развитию растительности. Все увеличивающееся содержание кислорода в атмосфере способствовало окислению аммиака, выделяющегося при интенсивном вулканизме. В результате реакции окисления аммиака образовывался азот:

4NH 3 + 3O 2 = 2N 2 + 6H 2 O.

Так постепенно создавалась азотно-кислородная атмосфера Земли. Большая часть кислорода, выделившегося вследствие фотосинтеза за геологическую историю планеты, была захоронена в литосфере в виде карбонатов, сульфатов, оксидов железа и других осадочных образований. Захоронению подвергался не только кислород, но и углерод. Продукцией биохимической деятельности живых организмов стали залежи каменных и бурых углей, нефти.

Процесс захоронения органического вещества способствовал обеднению атмосферы углекислым газом и обогащению кислородом. Древняя атмосфера, по современным расчетам, была насыщена СО 2 в 1000 раз больше, чем современная. Источником фотосинтетического кислорода является морская и континентальная растительность. Около 80 % общего его количества образуется в результате жизнедеятельности фитопланктона, содержащегося в верхних слоях морей и океанов. Фитопланктон представляет собой микроскопические растительные морские организмы. Наземные растительные организмы дают примерно 20 % фотосинтетического кислорода. По современным представлениям, весь свободный кислород атмосферы образовался в основном за счет двух мощных источников - фотосинтетического и эндогенного (глубинного), т.е. в результате дегазации базальтовой магмы.

По подсчетам В.И. Вернадского, общее количество свободного кислорода в атмосфере оценивается в 1,5 10 15 т, что согласуется с настоящими определениями.

2.1 Антропогенные изменения атмосферы

В настоящее время имеется множество различных источников антропогенного характера, вызывающих загрязнение атмосферы и приводящих к серьезным нарушениям экологического равновесия. По своим масштабам наибольшее воздействие на атмосферу оказывают два источника: транспорт и промышленность. В среднем на долю транспорта приходится около 60% общего количества атмосферных загрязнений, промышленности - 15, тепловой энергетики - 15, технологий уничтожения бытовых и промышленных отходов - 10%.

Транспорт в зависимости от используемого топлива и типов окислителей выбрасывает в атмосферу оксиды азота, серы, оксиды и диоксиды углерода, свинца и его соединений, сажу, бензопирен (вещество из группы полициклических ароматических углеводородов, которое является сильным канцерогеном, вызывающим рак кожи).

Промышленность выбрасывает в атмосферу сернистый газ, оксиды и диоксиды углерода, углеводороды, аммиак, сероводород, серную кислоту, фенол, хлор, фтор и другие соединения и химические элементы. Но главенствующее положение среди выбросов (до 85%) занимает пыль.

В результате загрязнения меняется прозрачность атмосферы, в ней возникают аэрозоли, смог и кислотные дожди.

Аэрозоли представляют собой дисперсные системы, состоящие из частиц твердого тела или капель жидкости, находящихся во взвешенном состоянии в газовой среде. Размер частиц дисперсной фазы обычно составляет 10 -3 -10 -7 см. В зависимости от состава дисперсной фазы аэрозоли подразделяют на две группы. К одной относят аэрозоли, состоящие из твердых частиц, диспергированных в газообразной среде, ко второй - аэрозоли, являющиеся смесью газообразных и жидких фаз. Первые называют дымами, а вторые - туманами. В процессе их образования большую роль играют центры конденсации. В качестве ядер конденсации выступают вулканический пепел, космическая пыль, продукты промышленных выбросов, различные бактерии и др. Число возможных источников ядер концентрации непрерывно растет. Так, например, при уничтожении огнем сухой травы на площади 4000 м 2 образуется в среднем 11*10 22 ядер аэрозолей.

Аэрозоли начали образовываться с момента возникновения нашей планеты и влияли на природные условия. Однако их количество и действия, уравновешиваясь с общим круговоротом веществ в природе, не вызывали глубоких экологических изменений. Антропогенные факторы их образования сдвинули это равновесие в сторону значительных биосферных перегрузок. Особенно сильно эта особенность проявляется с тех пор, как человечество стало использовать специально создаваемые аэрозоли как в виде отравляющих веществ, так и для защиты растений.

Наиболее опасными для растительного покрова являются аэрозоли сернистого газа, фтористого водорода и азота. При соприкосновении с влажной поверхностью листа они образуют кислоты, губительно воздействующие на живые ткани. Кислотные туманы попадают вместе с вдыхаемым воздухом в дыхательные органы животных и человека, агрессивно воздействуют на слизистые оболочки. Одни из них разлагают живую ткань, а радиоактивные аэрозоли вызывают онкологические заболевания. Среди радиоактивных изотопов особую опасность представляет Sг 90 не только своей канцерогенностью, но и как аналог кальция, замещающий его в костях организмов, вызывая их разложение.

Во время ядерных взрывов в атмосфере образуются радиоактивные аэрозольные облака. Мелкие частицы радиусом 1 - 10 мкм попадают не только в верхние слои тропосферы, но и в стратосферу, в которой они способны находиться длительное время. Аэрозольные облака образуются также во время работы реакторов промышленных установок, производящих ядерное топливо, а также в результате аварий на АЭС.

Смог представляет собой смесь аэрозолей с жидкой и твердой дисперсными фазами, которые образуют туманную завесу над промышленными районами и крупными городами.

Различают три вида смога: ледяной, влажный и сухой. Ледяной смог назван аляскинским. Это сочетание газообразных загрязнителей с добавлением пылеватых частиц и кристалликов льда, которые возникают при замерзании капель тумана и пара отопительных систем.

Влажный смог, или смог лондонского типа, иногда называется зимним. Он представляет собой смесь газообразных загрязнителей (в основном сернистого ангидрита), пылеватых частиц и капель тумана. Метеорологической предпосылкой для появления зимнего смога является безветренная погода, при которой слой теплого воздуха располагается над приземным слоем холодного воздуха (ниже 700 м). При этом отсутствует не только горизонтальный, но и вертикальный обмен. Загрязняющие вещества, обычно рассеивающиеся в высоких слоях, в данном случае накапливаются в приземном слое.

Сухой смог возникает в летнее время, и его нередко называют смогом лос-анджелесского типа. Он представляет собой смесь озона, угарного газа, оксидов азота и паров кислот. Образуется такой смог в результате разложения загрязняющих веществ солнечной радиацией, особенно ультрафиолетовой ее частью. Метеорологической предпосылкой является атмосферная инверсия, выражающаяся в появлении слоя холодного воздуха над теплым. Обычно поднимаемые теплыми потоками воздуха газы и твердые частицы затем рассеиваются в верхних холодных слоях, но в данном случае накапливаются в инверсионном слое. В процессе фотолиза диоксиды азота, образованные при сгорании топлива в двигателях автомобилей, распадаются:

NO 2 > NO + О

Затем происходит синтез озона:

O + O 2 + M > O 3 + M

NO + О > NO 2

Процессы фотодиссоциации сопровождаются желто-зеленым свечением.

Кроме того, происходят реакции по типу: SO 3 + Н 2 0 - > Н 2 SO 4 , т.е. образуется сильная серная кислота.

С изменением метеорологических условий (появление ветра или изменение влажности) холодный воздух рассеивается и смог исчезает.

Наличие канцерогенных веществ в смоге приводит к нарушению дыхания, раздражению слизистых оболочек, расстройству кровообращения, возникновению астматических удуший и нередко к смерти. Особенно опасен смог для малолетних детей.

Кислотные дожди представляют собой атмосферные осадки, подкисленные растворенными в них промышленными выбросами оксидов серы, азота и паров хлорной кислоты и хлора. В процессе сжигания угля, нефти и газа большая часть находящейся в ней серы как в виде оксида, так в соединениях с железом, в частности в пирите, пирротине, халькопирите и т.д., превращается в оксид серы, который вместе с диоксидом углерода выбрасывается в атмосферу. При соединении атмосферного азота и технических выбросов с кислородом образуются различные оксиды азота, причем объем образовавшихся оксидов азота зависит от температуры горения. Основная масса оксидов азота возникает во время эксплуатации автотранспорта и тепловозов, а меньшая часть приходится на энергетику и промышленные предприятия. Оксиды серы и азота - главные кислотообразователи. При реакции с атмосферным кислородом и находящимися в нем парами воды образуются серная и азотная кислоты.

Известно, что щелочно-кислотный баланс среды определяется величиной рН. Нейтральная среда имеет величину рН, равную 7, кислая - 0, а щелочная - 14 (рис.6.7). В современную эпоху величина рН дождевой воды составляет 5,6, хотя в недавнем прошлом она была нейтральной. Уменьшение значения рН на единицу соответствует десятикратному повышению кислотности и, следовательно, в настоящее время практически повсеместно выпадают дожди с повышенной кислотностью. Максимальная кислотность дождей, зарегистрированная в Западной Европе, составляла 4-3,5 рН. При этом надо учесть, что величина рН, равная 4-4,5, смертельна для большинства рыб.

Кислотные дожди оказывают агрессивное воздействие на растительный покров Земли, на промышленные и жилые здания и способствуют существенному ускорению выветривания обнаженных горных пород. Повышение кислотности препятствует саморегуляции нейтрализации почв, в которых растворяются питательные вещества. В свою очередь, это приводит к резкому снижению урожайности и вызывает деградацию растительного покрова. Кислотность почв способствует освобождению находящихся в связанном состоянии тяжелых металлов, которые постепенно усваиваются растениями, вызывая у них серьезные повреждения тканей и проникая в пищевые цепочки человека.

Изменение щелочно-кислотного потенциала морских вод, особенно в мелководьях, ведет к прекращению размножения многих беспозвоночных, вызывает гибель рыб и нарушает экологическое равновесие в океанах.

В результате кислотных дождей под угрозой гибели находятся лесные массивы Западной Европы, Прибалтики, Карелии, Урала, Сибири и Канады.

3. Эколого-геологическая роль атмосферных процессов

Уменьшение прозрачности атмосферы за счет появления в ней аэрозольных частиц и твердой пыли влияет на распределение солнечной радиации, увеличивая альбедо или отражательную способность. К такому же результату приводят и разнообразные химические реакции, вызывающие разложение озона и генерацию "перламутровых" облаков, состоящих из водяного пара. Глобальное изменение отражательной способности, так же как изменения газового состава атмосферы, главным образом парниковых газов, являются причиной климатических изменений.

Неравномерное нагревание, вызывающее различия в атмосферном давлении над разными участками земной поверхности, приводит к атмосферной циркуляции, которая является отличительной чертой тропосферы. При возникновении разности в давлении воздух устремляется из областей повышенного давления в область пониженных давлений. Эти перемещения воздушных масс вместе с влажностью и температурой определяют основные эколого-геологические особенности атмосферных процессов.

В зависимости от скорости ветер производит на земной поверхности различную геологическую работу. При скорости 10 м/с он качает толстые ветви деревьев, поднимает и переносит пыль и мелкий песок; со скоростью 20 м/с ломает ветви деревьев, переносит песок и гравий; со скоростью 30 м/с (буря) срывает крыши домов, вырывает с корнем деревья, ломает столбы, передвигает гальку и переносит мелкий щебень, а ураганный ветер со скоростью 40 м/с разрушает дома, ломает и сносит столбы линий электропередач, вырывает с корнем крупные деревья.

Большое негативное экологическое воздействие с катастрофическими последствиями оказывают шквальные бури и смерчи (торнадо) - атмосферные вихри, возникающие в теплое время года на мощных атмосферных фронтах, имеющие скорость до 100 м/с. Шквалы - это горизонтальные вихри с ураганной скоростью ветра (до 60-80 м/с). Они часто сопровождаются мощными ливнями и грозами продолжительностью от нескольких минут до получаса. Шквалы охватывают территории шириной до 50 км и проходят расстояние в 200-250 км. Шквальная буря в Москве и Подмосковье в 1998 г. повредила крыши многих домов и повалила деревья.

Смерчи, называемые в Северной Америке торнадо, представляют собой мощные воронкообразные атмосферные вихри, часто связанные с грозовыми облаками. Это суживающиеся в середине столбы воздуха диаметром от нескольких десятков до сотен метров. Смерч имеет вид воронки, очень похожей на хобот слона, спускающейся с облаков или поднимающейся с поверхности земли. Обладая сильной разреженностью и высокой скоростью вращения, смерч проходит путь до нескольких сотен километров, втягивая в себя пыль, воду из водоемов и различные предметы. Мощные смерчи сопровождаются грозой, дождем и обладают большой разрушительной силой.

Смерчи редко возникают в приполярных или экваториальных областях, где постоянно холодно или жарко. Мало смерчей в открытом океане. Смерчи происходят в Европе, Японии, Австралии, США, а в России особенно часты в Центрально-Черноземном районе, в Московской, Ярославской, Нижегородской и Ивановской областях.

Смерчи поднимают и перемещают автомобили, дома, вагоны, мосты. Особенно разрушительные смерчи (торнадо) наблюдаются в США. Ежегодно отмечается от 450 до 1500 торнадо с числом жертв в среднем около 100 человек. Смерчи относятся к быстродействующим катастрофическим атмосферным процессам. Они формируются всего за 20-30 мин, а время их существования 30 мин. Поэтому предсказать время и место возникновения смерчей практически невозможно.

Другими разрушительными, но действующими продолжительное время атмосферными вихрями являются циклоны. Они образуются из-за перепада давления, которое в определенных условиях способствует возникновению кругового движения воздушных потоков. Атмосферные вихри зарождаются вокруг мощных восходящих потоков влажного теплого воздуха и с большой скоростью вращаются по часовой стрелке в южном полушарии и против часовой - в северном. Циклоны в отличие от смерчей зарождаются над океанами и производят свои разрушительные действия над материками. Основными разрушительными факторами являются сильные ветры, интенсивные осадки в виде снегопада, ливней, града и нагонные наводнения. Ветры со скоростями 19 - 30 м/с образуют бурю, 30 - 35 м/с - шторм, а более 35 м/с - ураган.

Тропические циклоны - ураганы и тайфуны - имеют среднюю ширину в несколько сот километров. Скорость ветра внутри циклона достигает ураганной силы. Длятся тропические циклоны от нескольких дней до нескольких недель, перемещаясь со скоростью от 50 до 200 км/ч. Циклоны средних широт имеют больший диаметр. Поперечные размеры их составляют от тысячи до нескольких тысяч километров, скорость ветра штормовая. Движутся в северном полушарии с запада и сопровождаются градом и снегопадом, имеющими катастрофический характер. По числу жертв и наносимому ущербу циклоны и связанные с ними ураганы и тайфуны являются самыми крупными после наводнений атмосферными стихийными явлениями. В густонаселенных районах Азии число жертв во время ураганов измеряется тысячами. В 1991 г. в Бангладеш во время урагана, который вызвал образование морских волн высотой 6 м, погибло 125 тыс. человек. Большой ущерб наносят тайфуны территории США. При этом гибнут десятки и сотни людей. В Западной Европе ураганы приносят меньший ущерб.

Катастрофическим атмосферным явлением считаются грозы. Они возникают при очень быстром поднятии теплого влажного воздуха. На границе тропического и субтропического поясов грозы происходят по 90-100 дней в году, в умеренном поясе по 10-30 дней. В нашей стране наибольшее количество гроз случается на Северном Кавказе.

Грозы обычно продолжаются менее часа. Особую опасность представляют интенсивные ливни, градобития, удары молнии, порывы ветра, вертикальные потоки воздуха. Опасность градобития определяется размерами градин. На Северном Кавказе масса градин однажды достигала 0,5 кг, а в Индии отмечены градины массой 7 кг. Наиболее градоопасные районы у нас в стране находятся на Северном Кавказе. В июле 1992 г. град повредил в аэропорту "Минеральные Воды" 18 самолетов.

К опасным атмосферным явлениям относятся молнии. Они убивают людей, скот, вызывают пожары, повреждают электросеть. От гроз и их последствий ежегодно в мире гибнет около 10 000 человек. Причем в некоторых районах Африки, во Франции и США число жертв от молний больше, чем от других стихийных явлений. Ежегодный экономический ущерб от гроз в США составляет не менее 700 млн. долларов.

Засухи характерны для пустынных, степных и лесостепных регионов. Недостаток атмосферных осадков вызывает иссушение почвы, понижение уровня подземных вод и в водоемах до полного их высыхания. Дефицит влаги приводит к гибели растительности и посевов. Особенно сильными бывают засухи в Африке, на Ближнем и Среднем Востоке, в Центральной Азии и на юге Северной Америки.

Засухи изменяют условия жизнедеятельности человека, оказывают неблагоприятное воздействие на природную среду через такие процессы, как осолонение почвы, суховеи, пыльные бури, эрозия почвы и лесные пожары. Особенно сильными пожары бывают во время засухи в таежных районах, тропических и субтропических лесах и саваннах.

Засухи относятся к кратковременным процессам, которые продолжаются в течение одного сезона. В том случае, когда засухи длятся более двух сезонов, возникает угроза голода и массовой смертности. Обычно действие засухи распространяется на территорию одной или нескольких стран. Особенно часто продолжительные засухи с трагическими последствиями возникают в Сахельской области Африки.

Большой ущерб приносят такие атмосферные явления, как снегопады, кратковременные ливневые дожди и продолжительные затяжные дожди. Снегопады вызывают массовые сходы лавин в горах, а быстрое таяние выпавшего снега и ливневые продолжительные дожди приводят к наводнениям. Огромная масса воды, падающая на земную поверхность, особенно в безлесных районах, вызывает сильную эрозию почвенного покрова. Происходит интенсивный рост овражно-балочных систем. Наводнения возникают в результате крупных паводков в период обильного выпадения атмосферных осадков или половодья после внезапно наступившего потепления или весеннего таяния снега и, следовательно, по происхождению относятся к атмосферным явлениям (они рассматриваются в главе, посвященной экологической роли гидросферы).

3.1 Примеси в атмосфере

В атмосферном воздухе содержатся различные примеси - пыль, газы и т.д. Часть этих примесей имеет природное происхождение. Например, вулканическая и почвенная пыль, пыль лесных пожаров и т.д. Гниение органических веществ ведет к поступлению в атмосферу сероводорода, аммиака; брожение углеродсодержащих веществ - к выделению метана. В атмосфере имеются различные неорганические соли, которые попадают в нее из океанов и морей в результате испарения и разбрызгивания во время волнения. При испарении воды соли поступают в воздух в молекулярно-дисперсном состоянии. С 1 м 3 воды уносится 0,5 г соли. При испарении со всей поверхности Мирового океана (500 тыс. км 2) в атмосферу ежегодно переходит с водяным паром примерно 250 млн. т растворенных веществ, в состав которых входят такие элементы: йод, бром, свинец, цинк, медь, никель и др. Например, ежегодно из морской воды в атмосферу испаряется около 50 000 т йода. Но главным природным источником металлов в атмосфере является пыль, образуемая при выветривании горных пород и переносимая ветровыми потоками. Некоторое количество металлов приносит космическая пыль, 1 млн. т которой ежегодно оседает на поверхность Земли. В настоящее время главным поставщиком металлов в атмосферу являются антропогенные источники, приносящие в воздух в 18 раз больше свинца, в 9 - больше кадмия и в 7 раз больше цинка.

За последнее десятилетие в атмосферу поступило свинца больше, чем за всю историю цивилизации до 1900 г. Количество углекислого газа, ежегодно образующегося в сфере товарного производства, в 100-200 раз больше, чем его поступление при извержении вулканов. Под действием земного радиоактивного излучения и космических лучей в атмосфере образуется много ионов. В 1 см 3 воздуха их может содержаться от нескольких сотен до нескольких десятков тысяч.

Непосредственными составляющими атмосферы природного происхождения являются S0 2 , HF, HC1 (вулканического происхождения), а также H 2 S (из природного газа). В атмосфере всегда присутствует водяной пар. Количество водяного пара в тропосфере зависит от времени года и географической широты. Масса воды, содержащейся в атмосфере, достигает 13,25 10 12 т.

В тропосферу непрерывно поступает пыль различного происхождения - космическая, вулканическая, почвенная, пыль лесных пожаров. Обычно в естественных условиях на 1 км 2 ежегодно выпадает около 5 т пыли.

Химический состав атмосферы остается практически постоянным на протяжении многих миллионов лет. Это можно объяснить тем, что ее состав регулируется биологическими процессами, происходящими в направлении оптимизации условий развития биосферы. Как писал В.И. Вернадский, жизнь создает в окружающей ее среде условия, благоприятные для своего существования.

атмосфера земля антропогенный природный

Заключение

Согласно современным представлениям, основывающимся на определении содержания изотопов свинца в древнейших урановых породах, наша планета образовалась около 4,6 млрд. лет назад из газопылевого облака, рассеянного в околосолнечном пространстве. Прежде чем приобрести современные свои свойства и состав, земная атмосфера прошла несколько стадий развития.

С появлением примитивных растений начался процесс фотосинтеза, сопровождавшийся выделением кислорода. Этот газ, особенно после диффузии в верхние слои атмосферы, стал защищать ее нижние слои и поверхность Земли от опасных для жизни ультрафиолетового и рентгеновского излучений. Согласно теоретическим оценкам, содержание кислорода, в 25 000 раз меньшее, чем сейчас, уже могло привести к формированию слоя озона со всего лишь вдвое меньшей, чем сейчас, концентрацией. Однако этого уже достаточно, чтобы обеспечить весьма существенную защиту организмов от разрушительного действия ультрафиолетовых лучей.

Вопрос об эволюции атмосферы Земли в течение различных геологических эпох решается с помощью данных о составе горных пород, о процессах их образования, о содержании в них различных газов. Процессы, влиявшие на формирование атмосферы земли в прошлом, т.е. расщепление молекул под влиянием солнечного излучения, вулканическая деятельность, взаимодействие атмосферы с почвой, водной поверхностью, растительным покровом, продолжают действовать и сейчас. Существующая современная атмосфера Земли является результатом многообразных географических и биологических процессов, которые продолжаются и в настоящее время.

Использованная литература

1. Аганбегян А.Г., Социально-экономическое развитие России. М., 2003

2. Акопова Е.С., Мировая экономика и международные экономические отношения, М., 2005

3. Арустамова. - М.: Издательский Дом "Дашков и Кє", 2001. - 236 с.

4. Арустамов Э.В. и др. Природопользование: Учебник. - 6-е изд. - М.: "Дашков и Кє", 2004. - 312 с.

5. Вронский В.А. Прикладная экология: учебное пособие. - Ростов н/Д.: Изд-во "Феникс". 1996. - 512 с.

6. Гуральник И.И., Дубинский Г.П. Метеорология: Учебник. - Л.: Гидрометеоиздат. 1972 - 416 с.

7. Делятицкий С., Экологический словарь, М., 1993

8. Коробкин В.И., Передельский Л.В. Экология. - Ростов н/Д, 2001, - 576 с.

9. Лопатин В.Н., Экологическая безопасность России: Проблемы правоприменительной практики. М., 2003

10. Мышко Ф.Г., Экологическая безопасность. М., 2003

11. Новиков Ю.В. Природа и человек. - М.: Просвещение, 1991. - 223 с.

12. Погорелецкий А.И., Экономика зарубежных стран, М., 2001

13. Протасов В.Ф., Экология, здоровье и охрана окружающей среды в России, М., 1999

14. Ситаров В.А., Пустовойтов В.В. Социальная экология: учеб. пособие. - М.: "Академия", 2000. - 280 с.

15. Хотунцев Ю.Л., Экология и экологическая безопасность. М., 2004

16. Чернобаев И.П. Химия окружающей среды: Учебное пособие. - К.: Выща шк., 1990. - 191 с.

17. Шмидхейни С. "Смена курса. Перспективы развития и проблемы окружающей среды: подход предпринимателя" М., 1994

18. Экологические основы природопользования: Учебное пособие/ Под ред.Э. А.

19. Экология. Учебник. М., 2005

20. Экологический словарь. М., 2006

21. Экология. Учебник. М., 2006

22. Global Environmental Outlook 1997

Размещено на Allbest.ru

...

Подобные документы

    Исследования газового состава атмосферы. Атмосферная химия. Спутниковый мониторинг атмосферы. Прогнозирование изменений состава атмосферы и климата Земли. Явление парникового эффекта атмосферы. Влияние увеличивающейся концентрации СО2.

    реферат , добавлен 27.12.2002

    Последствия загрязнения приземной атмосферы. Отрицательное влияние загрязненной атмосферы на почвенно-растительный покров. Состав и расчет выбросов загрязняющих веществ. Трансграничное загрязнение, озоновый слой Земли. Кислотность атмосферных осадков.

    реферат , добавлен 12.01.2013

    Озоносфера как важнейшая составная часть атмосферы, влияющая на климат и защищающая все живое на Земле от ультрафиолетового излучения Солнца. Образование озоновых дыр в озоновом слое Земли. Химические и геологические источники загрязнения атмосферы.

    реферат , добавлен 05.06.2012

    Строение и состав атмосферы. Загрязнение атмосферы. Качество атмосферы и особенности ее загрязнения. Основные химические примеси, загрязняющие атмосферу. Методы и средства защиты атмосферы. Классификация систем очистки воздуха и их параметры.

    реферат , добавлен 09.11.2006

    Загрязнение атмосферы в результате антропогенной деятельности, изменение химического состава атмосферного воздуха. Природное загрязнение атмосферы. Классификация загрязнения атмосферы. Вторичные и первичные промышленные выбросы, источники загрязнения.

    реферат , добавлен 05.12.2010

    Основные загрязнители атмосферного воздуха и глобальные последствия загрязнения атмосферы. Естественные и антропогенные источники загрязнения. Факторы самоочищения атмосферы и методы очистки воздуха. Классификация типов выбросов и их источников.

    презентация , добавлен 27.11.2011

    Виды антропогенные воздействий на биосферу. Атмосфера – элемент биосферы. Источники загрязнения и влияние атмосферных загрязнений на здоровье населения. Современный газовый состав атмосферы. Основные виды вмешательства человека в экологические процессы.

    презентация , добавлен 15.10.2015

    контрольная работа , добавлен 03.02.2011

    Атмосферный воздух, важнейшая жизнеобеспечивающая природная среда, представляет собой смесь газов и аэрозолей приземного слоя атмосферы. Масса атмосферы нашей планеты. Газовый состав атмосферы - результат длительного исторического развития земного шара.

    контрольная работа , добавлен 01.02.2009

    Атмосфера, как часть природной среды. Естественные и искусственны источники загрязнения атмосферы. Последствия загрязнения атмосферы. Меры по охране атмосферы от загрязнения.

Образование атмосферы Земли началось в далекие времена - в протопланетный этап развития Земли, в период активных с выбросом огромного количества газов. Позже, когда на Земле появились и биосфера, образование атмосферы продолжилось за счет газообмена между водой, растениями, животными и продуктами их разложения.

В течение всей геологической истории атмосфера Земли претерпела ряд глубоких трансформаций.

Первичная атмосфера Земли. Восстановительная.

В состав первичной атмосферы Земли на протопланетной стадии развития Земли (более 4,2 млрд л. н.) входили преимущественно метан, аммиак и углекислый газ. Затем в результате дегазации и непрерывных процессов выветривания на поверхности земли, состав первичной атмосферы Земли обогатился парами воды, соединениями углерода (СO 2 , СО) и серы, а также сильными галогенными кислотами (НСI, НF, НI) и борной кислотой. Первичная атмосфера была очень тонкая.

Вторичная атмосфера Земли. Окислительная.

В дальнейшем первичная атмосфера стала трансформироваться во вторичную. Это произошло в результате тех же процессов выветривания, происходивших на поверхности земли, вулканической и солнечной активности, а также вследствие жизнедеятельности цианобактерий и сине-зеленых водорослей.

Результатом трансформации стало разложение метана на водород и углекислоту, аммиака - на азот и водород. В атмосфере Земли стали накапливаться углекислый газ и азот.

Сине-зеленые водоросли посредством фотосинтеза стали вырабатывать кислород, который практически весь тратился на окисление других газов и горных пород. В результате этого аммиак окислился до молекулярного азота, метан и оксид углерода - до углекислоты, сера и сероводород - до SO 2 и SO 3 .

Таким образом, атмосфера из восстановительной постепенно превратилась в окислительную.

Образование и эволюция углекислого газа в первичной и вторичной атмосфере.

Источники углекислого газа на ранних этапах образования атмосферы:

  • Окисление метана,
  • Дегазация мантии Земли,
  • Выветривание горных пород.

На рубеже протерозоя и палеозоя (ок. 600 млн. л.н.) содержание углекислого газа в атмосфере уменьшилось и составило всего лишь десятые доли процента от общего объема газов в атмосфере.

Современного уровня содержания в атмосфере углекислый газ достиг лишь 10-20 млн. лет назад.

Образование и эволюция кислорода в первичной и вторичной атмосфере.

Источники кислорода на ранних этапах образования атмосферы :

  • Дегазация мантии Земли - практически весь кислород тратился на окислительные процессы.
  • Фотодиссоциация воды (разложения на молекулы водорода и кислорода) в атмосфере под действием ультрафиолетового излучения - в результате в атмосфере появились свободные молекулы кислорода.
  • Переработка углекислоты в кислород эукариотами. Появление свободного кислорода в атмосфере привело к гибели прокариот (приспособленных к жизни в восстановительных условиях) и появлению эукариот (приспособившихся жить в окислительной среде).

Изменение концентрации кислорода в атмосфере.

Архей - первая половина протерозоя - концентрация кислорода 0,01% современного уровня (точка Юри). Практически весь возникающий кислород расходовался на окисление железа и серы. Это продолжалось до тех пор, пока все двухвалентное железо, находящееся на поверхности земли, не окислилось. С этого момента кислород стал накапливаться в атмосфере.

Вторая половина протерозоя - конец раннего венда - концентрация кислорода в атмосфере 0,1% от современного уровня (точка Пастера).

Поздний венд - силурийский период. Свободный кислород стимулировал развитие жизни - анаэробный процесс брожения сменился энергетически более перспективным и прогрессивным кислородным метаболизмом. С этого момента накопление кислорода в атмосфере происходило довольно быстро. Выход растений из моря на сушу (450 млн. л. н.) привел к стабилизации уровня кислорода в атмосфере.

Середина мелового периода . Окончательная стабилизация концентрации кислорода в атмосфере связана с появлением цветковых растений (100 млн. л. н.).

Образование и эволюция азота в первичной и вторичной атмосфере.

Азот образовался на ранних стадиях развития Земли за счет разложения аммиака. Связывание атмосферного азота и захоронение его в морских осадках началось с появлением организмов. После выхода живых организмов на сушу, азот стал захороняться и в континентальных осадках. Процесс связывания азота особенно усилился с появлением наземных растений.

Таким образом, состав атмосферы Земли определял особенности жизнедеятельности организмов, способствовал их эволюции, развитию и расселению по поверхности земли. Но в истории Земли бывали порой и сбои в распределении газового состава. Причиной этого служили различные катастрофы, которые не раз возникали в течение криптозоя и фанерозоя. Эти сбои приводили к массовым вымираниям органического мира.

Состав древней и современной атмосферы в процентном соотношении приведен в таблице 1.

Таблица 1. Состав первичной и современной атмосферы Земли.

Газы

Состав земной атмосферы

Первичная атмосфера, %

Современная атмосфера, %

Кислород О 2

Углекислый газ СО 2

Оксид углерода СО

Водяной пар