Исследовательская работа графическое решение уравнений и неравенств. Графическое решение неравенств, системы совокупностей неравенств с двумя переменными. Графическое решение квадратного уравнения

Графическое решение уравнений

Расцвет, 2009

Введение

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид , Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx , у = kx + m , у = x 2,у = – x 2, в 8 классе – у = √ x , у = |x |, у = ax 2 + bx + c , у = k / x . В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x 3, у = x 4,у = x 2n, у = x - 2n, у = 3√x , (x a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задаётся уравнением у = kx + b , гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k / x , где k ¹ 0. График этой функции называется гиперболой.

Функция (x a ) 2 + (у – b ) 2 = r 2 , где а , b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а , b ).

Квадратичная функция y = ax 2 + bx + c где а, b , с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение у 2 (a x ) = x 2 (a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.

/>Уравнение(x 2 + y 2 ) 2 = a (x 2 y 2 ) . График этого уравнения называется лемнискатой Бернулли.

Уравнение. График этого уравнения называется астроидой.

Кривая(x 2 y 2 – 2 a x) 2 =4 a 2 (x 2 + y 2 ) . Эта кривая называется кардиоидой.

Функции: у = x 3 – кубическая парабола, у = x 4, у = 1/ x 2.

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f (x ) , можно построить графики функций у = f (x + m ) ,у = f (x )+ l и у = f (x + m )+ l . Все эти графики получаются из графика функции у = f (x ) с помощью преобразования параллельного переноса: на m единиц масштаба вправо или влево вдоль оси x и на l единиц масштаба вверх или вниз вдоль оси y .

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский , живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

Находим координаты вершины параболы А (х0; у0): х =- b /2 a ;

y0=ахо2+вх0+с;

Находим ось симметрии параболы (прямая х=х0);

PAGE_BREAK--

Составляем таблицу значений для построения контрольных точек;

Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьём уравнение на две функции: y = x 2 и y = 2 x + 3

3. Разобьём уравнение на две функции: y = x 2 –3 и y =2 x . Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = (x –1) 2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x , получим x – 2 – 3/ x = 0 , разобьём данное уравнение на две функции: y = x – 2, y = 3/ x . Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Пример 1. Решить уравнение x 5 = 3 – 2 x .

y = x 5 , y = 3 – 2 x .

Ответ: x = 1.

Пример 2. Решить уравнение 3 x = 10 – x .

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 x , y = 10 – x .

Ответ: x = 8.

Заключение

Рассмотрев графики функций: у = ax 2 + bx + c , у = k / x , у = √ x , у = |x |, у = x 3, у = x 4,у = 3√x , я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y .

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

Литература

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г.И. История математики в школе. VII–VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

6. Графическое решение уравнений сайты в Интернете: Тол ВИКИ; stimul.biz/ru; wiki.iot.ru/images; berdsk.edu; pege 3–6.htm.

Графическое представление функций позволяет приближённо решать неравенства с одним неизвестным и системы неравенств с одним и двумя неизвестными. Чтобы решить графически неравенство с одним неизвестным , необходимо перенести все его члены в одну часть, т.e. привести к виду:

f (x ) > 0 ,

и построить график функции y = f ( x ). После этого, используя построенный график, можно найти нули функции , которые разделят ось Х на несколько интервалов. Теперь на основе этого определим интервалы x , внутри которых знак функции соответствует знаку неравенства. Например, нули нашей функции: a и b (рис.30). Тогда из графика очевидно, что интервалы, внутри которых f ( x ) > 0: x < a и x > b (они выделеныжирными стрелками). Ясно, что знак > здесь условный; вместо него может быть любой другой: < , .


Чтобы решить графически систему неравенств с одним неизвестным, нужно перенести в каждом из них все члены в одну часть, т.e. привести неравенства к виду:

и построить графики функций y = f (x ), y = g (x ) , ... , y = h (x ). Каждое из этих неравенств решается графическим методом, описанным выше. После этого нужно найти пересечение решений всех неравенств, т.e. их общую часть.

П р и м е р. Решить графически систему неравенств:

Р е ш е н и е. Сначала построим графики функций y = - 2 / 3 x + 2 и

y = x 2 -1 (рис.31):


Решением первого неравенства является интервал x > 3, обозначенный на рис.31 чёрной стрелкой; решение второго неравенства состоит из двух интервалов: x < -1 и x > 1, обозначенных на рис.31 серыми стрелками.

Из графика видно, что пересечением этих двух решений является интервал x > 3. Это и есть решение заданной системы неравенств.

Чтобы решить графически систему двух неравенств сдвумя неизвестными, надо:

1) в каждом из них перенести все члены в одну часть, т.e. привести

неравенства к виду:

2) построить графики функций, заданных неявно: f ( x, y ) = 0 и g (x, y ) = 0;

3) каждый их этих графиков делит координатную плоскость на две части:

в одной из них неравенство справедливо, в другой - нет; чтобы решить

графически каждое из этих неравенств, достаточно проверить

справедливость неравенства в одной произвольной точке внутри любой

части плоскости; если неравенство имеет место в этой точке, значит

эта часть координатной плоскости является его решением, если нет - то

решением является противоположная часть плоскости ;

4) решением заданной системы неравенств является пересечение

(общая область) частей координатной плоскости.

П р и м е р. Решить систему неравенств:

Р е ш е н и е. Сначала строим графики линейных функций: 5x - 7y = -11 и

2x + 3y = 10 (рис.32). Для каждой из них находим полуплоскость,

Внутри которой соответствующее заданное неравенство

Справедливо. Мы знаем, что достаточно проверить справедливость

Неравенства в одной произвольной точке области; в данном

Случае легче всего использовать для этого начало координат O (0, 0).

Подставляя его координаты в наши неравенства вместо x и y ,

Получим: 5 · 0 - 7 · 0 = 0 > -11, следовательно, нижняя

Полуплоскость (жёлтого цвета) является решением первого

Неравенства; 2 · 0 + 3 · 0 = 0 < 10, поэтому второе неравенство

Имеет своим решением также нижнюю полуплоскость (голубого

Цвета). Пересечение этих полуплоскостей (область цвета бирюзы)

Является решением нашей системы неравенств.

учащийся 10 класса Котовчихин Юрий

Уравнения с модулями ученики начинают изучать уже с 6-го класса, они изучают стандартный метод решения с помощью раскрытия модулей на промежутках знакопостоянства подмодульных выражений. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования, задачи с модулем вызывают большие трудности у учащихся. В школьной программе встречаются задания, содержащие модуль как задания повышенной сложности и на экзаменах, следовательно, мы должны быть готовы к встречи с таким заданием.

Скачать:

Предварительный просмотр:

Муниципальное образовательное учреждение

Средняя общеобразовательная школа №5

Исследовательская работа на тему:

« Алгебраическое и графическое решение уравнений и неравенств, содержащих модуль »

Работу выполнил:

учащийся 10 класса

Котовчихин Юрий

Руководитель:

Преподаватель математики

Шанта Н.П.

Урюпинск

1.Введение………………………………………………………….3

2.Понятия и определения………………………………………….5

3.Доказательство теорем…………………………………………..6

4.Способы решение уравнений, содержащих модуль…………...7

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами…………………………………………………………12

4.2.Использование геометрической интерпретации модуля для решения уравнений…………………………………………………………..14

4.3.Графики простейших функций, содержащих знак абсолютной величины.

………………………………………………………………………15

4.4.Решение нестандартных уравнения, содержащие модуль….16

5.Заключение……………………………………………………….17

6.Список использованной литературы……………………………18

Цель работы: уравнения с модулями ученики начинают изучать уже с 6-го класса, они изучают стандартный метод решения с помощью раскрытия модулей на промежутках знакопостоянства подмодульных выражений. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования, задачи с модулем вызывают большие трудности у учащихся. В школьной программе встречаются задания, содержащие модуль как задания повышенной сложности и на экзаменах, следовательно, мы должны быть готовы к встречи с таким заданием.

1. Введение:

Слово "модуль" произошло от латинского слова "modulus", что в переводе означает "мера". Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках.

В архитектуре -это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике -это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и.т.п.

Модуль объемного сжатия (в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Модуль – абсолютное значение – действительного числа А обозначается |A|.

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, содержащее переменные.

Уравнение с модулем -это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

3.Доказательство теорем

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или -a.

Доказательство

1. Если число a положительно, то -a отрицательно, т. е. -a

Например, число 5 положительно, тогда -5 - отрицательно и -5

В этом случае |a| = a, т. е. |a| совпадает с большим из двух чисел a и - a.

2. Если a отрицательно, тогда -a положительно и a

Следствие. Из теоремы следует, что |-a| = |a|.

В самом деле, как, так и равны большему из чисел -a и a, а значит равны между собой.

Теорема 2. Абсолютная величина любого действительного числа a равна арифметическому квадратному корню из А 2 .

В самом деле, если то, по определению модуля числа, будем иметь lАl>0 С другой стороны, при А>0 значит |a| = √A 2

Если a 2

Эта теорема дает возможность при решении некоторых задач заменять |a| на

Геометрически |a| означает расстояние на координатной прямой от точки, изображающей число a, до начала отсчета.

Если то на координатной прямой существует две точки a и -a, равноудаленной от нуля, модули которых равны.

Если a = 0, то на координатной прямой |a| изображается точкой 0

4.Способы решения уравнений, содержащих модуль.

Для решения уравнений, содержащих знак абсолютной величины, мы будем основывается на определении модуля числа и свойствах абсолютной величины числа. Мы решим несколько примеров разными способами и посмотрим, какой из способов окажется проще для решения уравнений, содержащих модуль.

Пример 1. Решим аналитически и графически уравнение |x + 2| = 1.

Решение

Аналитическое решение

1-й способ

Рассуждать будем, исходя из определения модуля. Если выражение, находящееся под модулем неотрицательно, т. е. x + 2 ≥0 , тогда оно "выйдет" из под знака модуля со знаком "плюс" и уравнение примет вид: x + 2 = 1. Если значения выражения под знаком модуля отрицательно, тогда, по определению, оно будет равно: или x + 2=-1

Таким образом, получаем, либо x + 2 = 1, либо x + 2 = -1. Решая полученные уравнения, находим: Х+2=1 или Х+2+-1

Х=-1 Х=3

Ответ: -3;-1.

Теперь можно сделать вывод: если модуль некоторого выражения равен действительному положительному числу a, тогда выражение под модулем равно либо a, либо -а.

Графическое решение

Одним из способов решения уравнений, содержащих модуль является графический способ. Суть этого способа заключается в том, чтобы построить графики данных функций. В случае, если графики пересекутся, точки пересечений данных графиков будут является корнями нашего уравнения. В случае, если графики не пересекутся, мы сможем сделать вывод, что уравнение корней не имеет. Этот способ, вероятно, реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Другой способ решения уравнений, содержащих модуль- это способ разбиения числовой прямой на промежутки. В этом случае нам нужно разбить числовую прямую так, что по определению модуля, знак абсолютной величины на данных промежутках можно будет снять. Затем, для каждого из промежутков мы должны будем решить данное уравнение и сделать вывод, относительно получившихся корней(удовлетворяют они нашему промежутку или нет). Корни, удовлетворяющие промежутки и дадут окончательный ответ.

2-й способ

Установим, при каких значениях x, модуль равен нулю: |Х+2|=0 , Х=2

Получим два промежутка, на каждом из которых решим уравнение:

Получим две смешанных системы:

(1) Х+2 0

Х-2=1 Х+2=1

Решим каждую систему:

X=-3 X=-1

Ответ: -3;-1.

Графическое решение

y= |X+2|, y= 1.

Графическое решение

Для решения уравнения графическим способом, надо построить графики функций и

Для построения графика функции, построим график функции - это функция, пересекающая ось OX и ось OY в точках.

Абсциссы точек пересечения графиков функций дадут решения уравнения.

Прямая графика функции y=1 пересеклась с графиком функции y=|x + 2| в точках с координатами (-3; 1) и (-1; 1), следовательно решениями уравнения будут абсциссы точек:

x=-3, x=-1

Ответ: -3;-1

Пример 2. Решить аналитически и графически уравнение 1 + |x| = 0.5.

Решение:

Аналитическое решение

Преобразуем уравнение: 1 + |x| = 0.5

|x| =0.5-1

|x|=-0.5

Понятно, что в этом случае уравнение не имеет решений, так как, по определению, модуль всегда неотрицателен.

Ответ: решений нет.

Графическое решение

Преобразуем уравнение: : 1 + |x| = 0.5

|x| =0.5-1

|x|=-0.5

Графиком функции являются лучи - биссектрисы 1-го и 2-го координатных углов. Графиком функции является прямая, параллельная оси OX и проходящая через точку -0,5 на оси OY.

Графики не пересекаются, значит уравнение не имеет решений.

Ответ: нет решений.

Пример 3. Решите аналитически и графически уравнение |-x + 2| = 2x + 1.

Решение:

Аналитическое решение

1-й способ

Прежде следует установить область допустимых значений переменной. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости делать этого, а сейчас она возникла.

Дело в том, что в этом примере в левой части уравнения модуль некоторого выражения, а в правой части не число, а выражение с переменной, - именно это важное обстоятельство отличает данный пример от предыдущих.

Поскольку в левой части - модуль, а в правой части, выражение, содержащее переменную, необходимо потребовать, чтобы это выражение было неотрицательным, т. е. Таким образом, область допустимых

значений модуля

Теперь можно рассуждать также, как и в примере 1, когда в правой части равенства находилось положительной число. Получим две смешанных системы:

(1) -X+2≥0 и (2) -X+2

X+2=2X+1; X-2=2X+1

Решим каждую систему:

(1) входит в промежуток и является корнем уравнения.

X≤2

X=⅓

(2) X>2

X=-3

X = -3 не входит в промежуток и не является корнем уравнения.

Ответ: ⅓.

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами этих чисел.

Помимо приведенных мною выше способов существует определенная равносильность, между числами и модулями данных чисел, а также между квадратами и модулями данных чисел:

|a|=|b| a=b или a=-b

A2=b2 a=b или a=-b

Отсюда в свою очередь получим, что

|a|=|b| a 2 =b 2

Пример 4. Решим уравнение |x + 1|=|2x - 5| двумя различными способами.

1.Учитывая соотношение (1), получим:

X + 1=2x - 5 или x + 1=-2x + 5

x - 2x=-5 - 1 x + 2x=5 - 1

X=-6|(:1) 3x=4

X=6 x=11/3

Корень первого уравнения x=6, корень второго уравнения x=11/3

Таким образом корни исходного уравнения x 1 =6, x 2 =11/3

2. В силу соотношения (2), получим

(x + 1)2=(2x - 5)2, или x2 + 2x + 1=4x2 - 20x + 25

X2 - 4x2 +2x+1 + 20x - 25=0

3x2 + 22x - 24=0|(:-1)

3x2 - 22x + 24=0

D/4=121-3 24=121 - 72=49>0 ==>уравнение имеет 2 различных корня.

x 1 =(11 - 7)/3=11/3

x 2 =(11 + 7)/3=6

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x 1 =6, x 2 =11/3

Пример 5. Решим уравнение (2x + 3) 2 =(x - 1) 2 .

Учитывая соотношение (2), получим, что |2x + 3|=|x - 1|, откуда по образцу предыдущего примера(и по соотношению (1)):

2х + 3=х - 1 или 2х + 3=-х + 1

2х - х=-1 - 3 2х+ х=1 - 3

Х=-4 х=-0,(6)

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Ответ: х1=-4, х 2 =0,(6)

Пример 6. Решим уравнение |x - 6|=|x2 - 5x + 9|

Пользуясь соотношением, получим:

х - 6=х2 - 5х + 9 или х - 6 = -(х2 - 5х + 9)

Х2 + 5х + х - 6 - 9=0 |(-1) x - 6=-x2 + 5x - 9

x2 - 6x + 15=0 x2 - 4x + 3=0

D=36 - 4 15=36 - 60= -24 D=16 - 4 3=4 >0==>2 р.к.

==> корней нет.

X 1 =(4- 2) /2=1

X 2 =(4 + 2) /2=3

Проверка: |1 - 6|=|12 - 5 1 + 9| |3 - 6|=|32 - 5 3 + 9|

5 = 5(И) 3 = |9 - 15 + 9|

3 = 3(И)

Ответ: x 1 =1; x 2 =3

4.2.Использование геометрической интерпретации модуля для решения уравнений.

Геометрический смысл модуля разности величин -это расстояние между ними. Например, геометрический смысл выражения |x - a | -длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример7. Решим уравнение |x - 1| + |x - 2|=1 с использованием геометрической интерпретации модуля.

Будем рассуждать следующим образом: исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка обладают требуемым свойством, а точки, расположенные вне этого отрезка- нет. Отсюда ответ: множеством решений уравнения является отрезок .

Ответ:

Пример8. Решим уравнение |x - 1| - |x - 2|=1 1 с использованием геометрической интерпретации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно решением данного уравнения будет является не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Ответ: }