Состояние невесомости наблюдается. Интересные факты про невесомость. Почему в центре Земли тела невесомы

Мы привыкли к тому, что все предметы вокруг нас имеют вес. Происходит это потому, что сила гравитации притягивает их к Земле. Даже если мы летим в самолёте или прыгаем с парашютом, вес никуда от нас не девается. Но что же произойдёт, если вес всё же исчезнет, когда это бывает и какие интересные явления наблюдаются в условиях невесомости? Обо всём этом — в данном посте.

Закон всемирного тяготения, открытый ещё Ньютоном, гласит, что все тела, имеющие массу, притягиваются друг к другу. Для тел с маленькой массой такое притяжение практически не заметно, но если тело имеет большую массу, такую, как наша планета Земля (а её масса в килограммах выражается 25-значным числом), то притяжение становится заметным. Поэтому все предметы притягиваются к Земле — если их поднять, они падают вниз, а когда упадут, сила тяжести прижимает их к поверхности. Это и приводит к тому, что всё на Земле имеет вес, даже воздух прижимается к Земле силой тяжести и своим весом давит на всё, что находится на её поверхности.

Когда вес может исчезнуть? Либо тогда, когда сила тяжести вообще не действует на тело, либо тогда, когда она действует, но телу ничто не мешает свободно падать. Хотя с удалением от Земли сила притяжения к ней уменьшается, даже на высоте в сотни и тысячи километров она остаётся ещё большой, поэтому избавиться от силы тяжести непросто. А вот оказаться в состоянии свободного падения вполне возможно.

Например, можно оказаться в состоянии невесомости, если оказаться в самолёте, движущемся по специальной траектории — так же, как тело, которому не мешало бы сопротивление воздуха.

Выглядит всё это так:

Конечно, долго по такой траектории самолёт двигаться не может, т. к. врежется в землю. Поэтому с длительным пребыванием в условиях невесомости сталкиваются только космонавты, живущие на орбитальной станции. И им приходится привыкать к тому, что многие привычные нам явления в условиях невесомости происходят совсем не так, как на Земле.

1) В невесомости можно легко перемещать тяжёлые предметы и перемещаться самому, приложив лишь небольшое усилие. Правда, по этой же причине любые предметы нужно специально закреплять, чтобы они не летали по орбитальной станции, а на время сна космонавты забираются в специальные мешки, прикреплённые к стене.

Для того, чтобы научиться двигаться в невесомости, нужно время, и у новичков это получается не сразу. «Они толкаются со всей силы и ударяются головой, путаются в проводах и прочее, так что это источник бесконечного веселья» — сказал на эту тему один из американских астронавтов.

2) Жидкости в невесомости принимают шарообразную форму. Воду не получится, как мы привыкли на Земле, хранить в открытой посуде, вылить из чайника и налить в чашку, даже вымыть руки не получится привычным для нас способом.

3) Пламя в условиях невесомости очень слабое и со временем затухает. Если в обычных условиях зажечь свечу, она будет гореть ярко, пока не сгорит. Но происходит это потому, что нагретый воздух становится легче и поднимается вверх, освобождая место для свежего воздуха, насыщенного кислородом. В невесомости конвекции воздуха не наблюдается и со временем кислород вокруг пламени выгорает и горение прекращается.

Горение свечи в обычных условиях и в невесомости (справа)

Но постоянный приток кислорода нужен не только для горения, но и для дыхания. Поэтому если космонавт неподвижен (например, спит), то в отсеке должен работать вентилятор, чтобы перемешивать воздух.

4) В невесомости можно получать уникальные материалы, которые трудно или вообще невозможно получить в земных условиях. Например, сверхчистые вещества, новые композиционные материалы, большие правильные кристаллы и даже лекарства. Если бы удалось снизить стоимость доставки грузов на орбиту и обратно, это решило бы многие технологические проблемы.

5) В невесомости на борту орбитальной станции были впервые обнаружены некоторые ранее неизвестные эффекты. Например, образование структур, напоминающих кристаллические, в плазме, или «эффект Джанибекова» — когда вращающийся предмет через определённые промежутки времени внезапно меняет ось вращения на 180 градусов.

Эффект Джанибекова:

6) Невесомость оказывает существенное влияние на человека и живые организмы. Хотя к жизни в невесомости можно приспособиться, сделать это не так просто. Оказавшись в состоянии невесомости впервые, человек теряет ориентацию в пространстве, возникает головокружение, т. к. вестибулярный аппарат перестаёт нормально работать. Другие изменения в организме включают перераспределение жидкости в организме, из-за чего отекает лицо и закладывает нос, из-за пропадания нагрузки на позвоночник увеличивается рост, а при длительном пребывании в невесомости атрофируются мышцы и теряют прочность кости. Чтобы уменьшить негативные изменения, космонавтам приходится регулярно выполнять специальные упражнения.

После возвращения на Землю космонавтам приходится вновь приспосабливаться к прежним условиям не только физически, но и психологически. Они могут, например, по привычке оставить стакан в воздухе, забыв, что он упадёт.

«Физика невесомости». Как работают законы физики в условиях невесомости, рассказывают космонавты на МКС:

), возникающая в связи с гравитационным притяжением или действием других массовых сил (в частности, силы инерции, возникающей при ускоренном движении тела).

Иногда в качестве синонима названия этого явления используется термин микрогравитация , что неверно (создаётся впечатление, что гравитация отсутствует или пренебрежительно мала).

Причины

Состояние невесомости имеет место, когда действующие на тело внешние силы являются только массовыми (силы тяготения), либо поле этих массовых сил локально однородно, то есть силы поля сообщают всем частицам тела в каждом его положении одинаковые по модулю и направлению ускорения (что при движении в поле тяготения Земли практически имеет место, если размеры тела малы по сравнению с радиусом Земли), либо начальные скорости всех частиц тела по модулю и направлению одинаковы (тело движется поступательно).

Например, космический аппарат и все находящиеся в нём тела, получив соответствующую начальную скорость, движутся под действием сил тяготения вдоль своих орбит практически с одинаковыми ускорениями, как свободные; ни сами тела, ни их частицы взаимных давлений друг на друга не оказывают, то есть находятся в состоянии невесомости. При этом по отношению к кабине аппарата находящееся в нём тело может в любом месте оставаться в покое (свободно "висеть" в пространстве). Хотя силы тяготения при невесомости действуют на все частицы тела, но нет внешних поверхностных сил, которые могли бы вызывать взаимные давления частиц друг на друга.

Таким образом, любое тело, размеры которого малы по сравнению с земным радиусом, совершающее свободное поступательное движение в поле тяготения Земли, будет, при отсутствии других внешних сил, находиться в состоянии невесомости. Аналогичным будет результат для движения в поле тяготения любых других небесных тел.

История

Изменение веса шарика при его свободном падении в жидкости было отмечено ещё Лейбницем . В 1892-1893 гг. несколько опытов, демонстрирующих возникновение невесомости при свободном падении, поставил профессор МГУ Н. А. Любимов , например, маятник , выведенный из положения равновесия при свободном падении не качался .

Особенности деятельности человека и работы техники

В условиях невесомости на борту космического аппарата многие физические процессы (конвекция, горение и т. д.) протекают иначе, чем на Земле. Отсутствие силы тяжести, в частности, требует специальной конструкции таких систем как душ, туалет, системы разогрева пищи, вентиляции и т. д. Во избежание образования застойных зон, где может скапливаться углекислый газ, и для обеспечения равномерного смешивания теплого и холодного воздуха, на МКС, например, установлено большое количество вентиляторов. Прием пищи и питьё, личная гигиена, работа с оборудованием и в целом обычные бытовые действия также имеют свои особенности и требуют от космонавта выработки привычки и нужных навыков.

Влияние невесомости неизбежно учитывается в конструкции жидкостного ракетного двигателя , предназначенного для запуска в невесомости. Жидкие компоненты топлива в баках ведут себя точно так же, как и любая жидкость (образуют жидкие сферы). По этой причине подача жидких компонентов из баков в топливные магистрали может стать невозможной. Для компенсации такого эффекта применяется специальная конструкция баков (с разделителями газовой и жидкой сред), а также - процедура осадки топлива перед запуском двигателя. Такая процедура состоит во включении вспомогательных двигателей корабля на разгон; создаваемое ими небольшое ускорение осаживает жидкое топливо на днище бака, откуда система подачи направляет топливо в магистрали.

Воздействие на организм человека

При переходе из условий наличия веса тела у поверхности Земли к условиям невесомости (в первую очередь - при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации .

При длительном (более недели) пребывании человека в космосе отсутствие веса тела начинает вызывать в организме определённые вредные изменения .

Первое и самое очевидное последствие невесомости - стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате падают все физические характеристики организма . Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его (гемоглобин) .

Также есть основания полагать, что ограничение подвижности нарушит фосфорный обмен в костях, что приведёт к снижению их прочности .

Вес и гравитация

Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения, но это вовсе не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 / ², что всего лишь на 10 % меньше, чем на поверхности Земли . Состояние невесомости на МКС возникает не из-за «отсутствия гравитации», а за счёт движения по круговой орбите с первой космической скоростью , то есть космонавты как бы постоянно «падают вперёд» со скоростью 7,9 км/с.

Невесомость на Земле

На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолёт под воздействием одной лишь силы земного притяжения. Эта траектория при небольших скоростях движения получается параболой , из-за чего её иногда ошибочно называют «параболической». В общем случае траектория представляет собой эллипс или гиперболу.

Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолёт покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе без натяжения нити. Для достижения этого эффекта самолёт должен иметь постоянное ускорение равное g и направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на «параболическую» траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она представляет собой полностью обитую мягким покрытием пассажирскую кабину без кресел, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.

Подобное чувство невесомости (частичной) человек испытывает при полётах рейсами гражданской авиации во время посадки. Однако в целях безопасности полёта и из-за большой нагрузки на конструкцию самолёта, любой рейсовый самолёт сбрасывает высоту, совершая несколько протяженных спиральных витков (с высоты полёта в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его немного отрывает от кресла вверх. Это же чувство испытывают и автомобилисты, знакомыми с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.

Утверждения, что самолёт для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова » - не более чем миф. Тренировки выполняются в слегка модифицированных серийных пассажирских или грузовых самолётах, для которых фигуры высшего пилотажа и подобные режимы полёта являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному износу несущих конструкций.

Состояние невесомости можно ощутить в начальный момент свободного падения тела в атмосфере , когда сопротивление воздуха ещё невелико.

Существует несколько самолётов, способных проводить полёты с достижением состояния невесомости без вылета в космос. Технология используется как для тренировок космическими агентствами, так и для коммерческих полётов частных лиц. Подобные полёты проводят американская авиакомпания Zero Gravity , Роскосмос (на Ил-76 МДК c 1988 года, полёты также доступны для частных лиц ), NASA (на Boeing KC-135) , Европейское космическое агентство (на Airbus A-310) Типичный полёт продолжается около полутора часов. В течение полёта проводятся 10-15 сессий невесомости, для достижения которых самолёт совершает крутое пике. Длительность каждой сессии невесомости около 25 секунд . Более 15000 человек совершили полёты по состоянию на ноябрь 2017 года . Многие известные люди совершили полёты в невесомости на борту самолёта, в их числе: Баз Олдрин , Джон Кармак , Тони Хоук , Ричард Брэнсон , Артемий Лебедев. Стивен Хокинг также совершил короткий полёт 26 апреля 2007 года .

На вопрос На какой высоте наступает невесомость? заданный автором P.S. лучший ответ это А ты подпрыгни на месте - вот и будет тебе счастье!
Но только, конечно, весьма кратковременное. .
Ну, а если вопрос про космический полёт -
то как только произойдёт отключение двигателей!
С работающими же двигателями невесомость не наступит
даже за пределами Солнечной системы.
Да что там - даже за пределами Галактики!..

Ответ от Искандер Винтру [гуру]
приблизительно 35-36 тысяч км, на этой высоте спутники летают на второй космической


Ответ от Sant Valenti [гуру]
при стандартной высоте полета 11 000 метров это и дает требуемые 40 секунд "невесомости";


Ответ от Krab Bark [гуру]
На любой. Подпрыгни - во время прыжка ты будешь находиться в невесомости.На спутниках невесомость существует потому, что сила тяжести уравновешивается при большой скорости центробежной силой. От высоты полета зависит только необходимая скорость, но через атмосферу лететь на необходимой на такой высоте скорости порядка 8 км/с было бы затруднительно 😉


Ответ от Misha Chernomorets [гуру]
Невесомость может наступать как только объект оторвется от земли. Поскольку состояние невесомости - это когда объект не давит на опору, то есть отсутствует вес (но не масса! !) . Удаленность от земли тут в общем не при чем. Если человека посадить в ящик, и сбросить с самолета, он будет находиться в состоянии невесомости. Фишка тут в том, что космический корабль тоже "падает" на землю, но поскольку обладает достаточной скоростью, реально упасть не может, до тех пор пока скорость не упадет до определенного значения. Немного об этих понятиях: невесомость - состояние, наблюдаемое нами, когда сила взаимодействия тела с опорой (вес тела) , возникающая в связи с гравитационным притяжением, действием других массовых сил, в частности силы инерции, возникающей при ускоренном движении тела, отсутствует. Состояние невесомости характерно так же для инерциальной системы отсчёта (ИСО) , где вообще не действуют никакие силы на тело. Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения. Это не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС) . На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 м/с?, что всего лишь на 10 % меньше, чем на поверхности Земли. Состояние невесомости на МКС возникает за счёт движения по круговой орбите с первой космической скоростью. На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по параболической (а на самом деле - баллистической, то есть такой, по которой летел бы самолет под воздействием одной лишь силы земного притяжения; эта траектория является параболой лишь при небольших скоростях движения; для спутника это эллипс, окружность или гипербола) траектории. Состояние невесомости можно ощутить в начальный момент свободного падения тела в атмосфере, когда сопротивление воздуха ещё невелико. Для понимания сути невесомости можно рассмотреть летящий по баллистической траектории самолёт. Такие применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен грузик, который обычно натягивает нитку вниз (если самолет покоится либо движется равномерно и прямолинейно) . Когда нить, на которой висит шарик не натянута, имеет место состояние невесомости. Таким образом, пилот должен управлять самолётом так, что бы шарик висел в воздухе, а нить не была натянута. Для достижения этого эффекта самолёт должен иметь постоянное ускорение g, направленное вниз. Таким образом, можно сказать, что самолёт «падает» вместе с шариком, ниткой, пилотом и космонавтами.

Почему в центре Земли тела невесомы?

Прежде всего, попытаемся понять идею барона: он утверждает, что в центре Земли жилец будет притягиватьсяво все стороны одинаково , и поэтому будет находиться в состоянии невесомости. Чтобы эта мысль была более понятной, рассмотрим ситуацию, когда точечная массаm находится в центре кольца, состоящего из большого числа точечных массM (рис. 6.1).

Ясно, что каждые две противоположно лежащие массыM тянут жильца в противоположные стороны с одинаковыми по величине силами. Поэтому равнодействующая всех сил, приложенных к точечной массеm , равна нулю.

В аналогичной ситуации будет жилец, находящийся в центре Земли.

Почему же Профессор опасается, что вес жильца в центре Земли будет бесконечно большим? Он просто вспомнил формулу закона всемирного тяготения из школьного учебника:, гдеm иM — массы тел, аR — расстояние между ними. Он решил, что поскольку в центре Земли расстояние между жильцом и Землей равно нулю, то получается, что

Профессор забыл, что закон всемирного тяготениясправедлив только дляточечных масс, то есть тел, размерами которых в условиях данной задачи можно пренебречь по сравнению с расстояниями между ними. Такое приближение, например, вполне допустимо при расчетах движения планет вокруг Солнца, но в условиях нашей задачи считать Землю точечной массой, конечно же, нельзя!

Как будет изменяться вес тела по мере приближения к центру Земли?

Бизнесмен утверждает, что по мере погружения вглубь Земли вес тела будетвозрастать , а барон, напротив, судя по приведенному на плакате рисунку, полагает, что чем глубже под землей находится жилец, темменьше он весит. Кто же из них прав? Правы оба! Действительно, при погружении на глубину до 2000 км, вес телавозрастает , при дальнейшем погружении —убывает , и в центре Земли становится равным нулю!

Разберемся с этим вопросом подробнее.

Какой вес имеет тело, находящееся внутри сферической оболочки?

Пусть точечная масса m находится в точкеO" внутри сферической оболочки радиусомR (рис. 6.2) и пусть масса единицы площади поверхности сферы равна ρ.

Докажем, что равнодействующая всех гравитационных сил, действующих на точечную массуm со стороны сферы, равна нулю.

1. Построим две узких конических поверхности с малым углом раствора α и с общей вершиной в точкеO" , как показано на рис. 6.3. Эти конические поверхности «вырежут» на сфере кусочки поверхности, которые можно приближенно считать плоскими, что вполне допустимо, если угол α очень мал.

2. Площади вырезанных на сфере «кусочков»S 1 иS 2 пропорциональны квадратам их «диаметров» — отрезковAB иCD . ПустьAB = k·CD , тогдаS 1 = k 2 ·S 2 , для масс вырезанных кусочков действует то же самое соотношение:m 1 = k 2 ·m 2

3. Рассмотрим углыABC иADC . Они равны, как вписанные в окружность и опирающиеся на общую дугуАС , поэтому обозначим их одной буквой φ.

4. Два угла (α и φ) треугольникаO"AB равны двум углам треугольникаO"DC , следовательно, эти треугольники подобны. Из подобия треугольников следует, что еслиR 1 ,R 2 — расстояния от тела до центров масс соответствующих кусочков сферы, тоR 1 = k ·R 2 .

5. Найдем соотношение сил, действующих на тело массойm , находящееся в точкеO" , со стороны тел массамиm 1 иm 2 , которые можно считать точечными (поскольку их размеры очень малы).

То естьF 1 =F 2 , а значит, равнодействующая этих сил равна нулю.

6. Но ведь всю поверхность сферы можно разбить на такие пары противоположно лежащих «кусочков», и каждая такая пара даст равнодействующую, равную нулю.

Это значит, что суммарная сила, действующая со стороны сферы на точечную массуm , равна нулю. То есть сферавообще не действует на точечную массу, расположенную внутри нее, в каком бы месте эта точечная масса ни находилась (совершенно необязательно, чтобы она находилась в центре сферы!).

Какой вес имеет тело, находящееся внутри шарового слоя?

Теперь от тонкой сферы перейдем к шаровому слою конечной толщины. Пусть точечная массаm теперь находится внутри шарового слоя (рис 6.4).

Ясно, что шаровой слой конечной толщины можно разбить на множество очень тонких концентрических шаровых слоев очень малой толщины — практически сфер. А каждая такая сфера, как мы только что выяснили, не оказывает воздействия на расположенную внутри нее точечную массу. Стало быть, и шаровой слойникак не будет действовать на точечную массу, находящуюся внутри него.

Точечная масса внутри однородного шара

А теперь перейдем к более сложному случаю: пусть точечная массаm находится внутри однородного шара радиусомR и плотностью ρ на расстоянииr от центра шара (рис. 6.5). Внешняя для точечной массы часть шара — наружный шаровой слой, — как мы только что доказали, на точечную массу действоватьне будет , а внутренняя часть большого шара (малый шар радиусомr ) будет притягивать нашу точечную массу с силой, гдеМ = — масса малого шара. Подставляя значениеМ в формулу дляF , получим:

То есть сила тяжести прямо пропорциональна расстоянию до центра шара. Ясно, что еслиr = 0, тоF = 0.

Значит, если бы Земля былаоднородным шаром, то вес тела действительно постепенно уменьшался с глубиной, и барон Мюнхаузен был бы абсолютно прав. Но на самом деле Земляне является однородным шаром : ее плотность с глубиной изменяется — а именно, увеличивается.

При погружении в шахту на величину силы тяжести оказывают действие два фактора: с одной стороны, уменьшается расстояние до центра Земли, поэтому сила тяготения увеличивается:

а с другой стороны, уменьшается масса «малого» шара, находящегосяпод погружаемым телом:

Вопрос в том, какой фактор окажет большее влияние на величину силы тяжести. Разберем два крайних случая.

1. Пусть шаровой слойнад точечной массойm (см. рис. 6.5) имеет ничтожно малую плотность (ρ → 0), тогда масса «малого» шара радиусомr точно такая же, как и масса «большого» шара радиусомR . Тогда сила тяжести на расстоянииr < R от центра будет явнобольше силы тяжести на расстоянииR от центра. То есть в этом случае при погружении в шахту сила тяжести будет возрастать.

2. Пусть нулевую плотность имеет «малый» шар (см. рис. 6.5), то есть вся масса сосредоточена в шаровом слоенад точечной массой m . Тогда уже на расстоянииr от центра сила тяжести будет равна нулю:

Как мы уже говорили, Земля представляет собой неоднородный шар, причем плотность верхних слоев значительно меньше, чем плотность внутренних слоев. Поэтому при погружении под землю примерно до глубины 2000 км преобладает первый эффект — сила тяжести возрастает:, а потом сила тяжести начинает убывать — преобладает эффект убывания массы «малого» шара.

Сколько времени займет спуск до нижнего этажа?

Теперь ответим нашему Инженеру, которого интересует прежде всего практическая целесообразность проекта: как долго жилец перевернутого небоскреба будет спускаться до своей квартиры, если он живет в самом центре Земли?

Допустим, что лифт будет сначала разгоняться до какой-то очень приличной скорости (скажем, 1 км/c), потом будет какое-то время двигаться с этой скоростью, а в конце пути тормозить. Тогда для того, чтобы спуститься до центра Земли, потребуется время

В заключение отметим еще одну трудность практической реализации проекта: дом должен бытьабсолютно герметичным , во-первых, иочень прочным, во-вторых, так как атмосферное давление в центре Земли будет просто чудовищным!

Прикинем, каким будет давление воздуха в шахте глубиной «всего лишь» 100 км. (Заметим, что самые глубокие современные скважины не превышают пока 12 км.) Будем исходить из того, что на поверхности Земли атмосферное давление равно 100 000 Па, а плотность воздуха равна 1,29 кг/м 3 и не меняется с глубиной (на самом деле, плотность с глубиной, конечно, возрастает, поэтому наша оценка будет заниженной).

Тогда искомое давление будет равно:

p =p a + ρgh ≈ 100000 Па + 1,29 кг/м 3 ·9,8 м/c 2 ·100000 м =

1364200 Па ≈ 13,6 атм.

Такое же давление под водой на глубине 136 м! А ведь речь пока идет только о глубине в 100 км, а центр Земли находится на глубине 6400 км!

О трудностях, связанных с тем, что глубоко под Землей, мягко скажем, жарковато, мы распространяться не будем. Возможно, кто-то предложит принцип охлаждения перевернутого небоскреба?

Согласно закону всемирного тяготения все тела притягиваются друг к другу, и сила притяжения прямо пропорциональна массам тел и обратна пропорциональна квадрату расстояния между ними. То есть выражение «отсутствие гравитации» вообще не имеет смысла. На высоте нескольких сотен километров над поверхностью Земли — там, где летают пилотируемые корабли и космические станции — сила притяжения Земли очень велика и практически не отличается от силы гравитации вблизи поверхности.

Если бы существовала техническая возможность сбросить некий предмет с башни высотой километров 300, он бы начал падать вертикально и с ускорением свободного падения, точно так же, как он падал бы с высоты небоскреба или с высоты человеческого роста. Таким образом, во время орбитальных полетов сила земного притяжения не отсутствует и не ослабевает в значимых масштабах, а компенсируется. Точно так же, как для водных судов и аэростатов, сила притяжения земли компенсируется архимедовой силой, а для крылатых летательных аппаратов — подъемной силой крыла.

Да, но вот самолет-то летит и не падает, а пассажиру внутри салона не летают как космонавты на МКС. При обычном полете пассажир прекрасно ощущает свой вес, и от падения на землю его удерживает не непосредственно подъемная сила, а сила реакции опоры. Лишь во время аварийного или искусственно вызванного резкого снижения человек вдруг чувствует, что перестает давить на опору. Возникает невесомость. Почему? А потому что если потеря высоты происходит с ускорением, близким к ускорению свободного падения, то опора больше не мешает пассажиру падать — она и сама падает.

spaceref.com Понятно, что когда самолет прекратит резкое снижение, или, к несчастью, упадет на землю, тут-то и станет ясно, что гравитация никуда не девалась. Ибо в земных и околоземных условиях эффект невесомости возможен только во время падения. Собственно продолжительным падением и является орбитальный полет. Космическому кораблю, двигающемуся по орбите с первой космической скоростью, мешает упасть на Землю сила инерции. Взаимодействие гравитации и инерции имеет название «центробежной силы», хотя в реальности такой силы не существует, это в некотором роде фикция. Аппарат стремится двигаться по прямой (по касательной к околоземной орбите), но земная гравитация постоянно «закручивает» траекторию движения. Здесь эквивалентом ускорения свободного падения является так называемое центростремительное ускорение, в результате которого меняется не значение скорости, а ее вектор. И поэтому скорость корабля остается неизменной, а направление движение постоянно меняется. Поскольку и корабль, и космонавт движутся с одной и той же скоростью и с тем же самым центростремительным ускорением, космический аппарат не может выступать в качестве опоры, на которую давит вес человека. Вес — это возникающая в поле сил тяжести сила воздействия тела на опору препятствующую падению, А корабль, как и резко снижающийся самолет, падать не мешает.

Вот поэтому совершенно неправильно говорить об отсутствии земной гравитации или о наличии «микрогравитации» (как принято в англоязычных источниках) на орбите. Напротив, притяжение земли является одним из главных факторов возникающего на борту феномена невесомости.

Об истинной микрогравитации можно говорить лишь в применении к полетам в межпланетном и межзвездном пространстве. Вдали от крупного небесного тела действие сил притяжения отдаленных звезд и планет будет настолько слабым, что возникнет эффект невесомости. О том, как с этим бороться, мы не раз читали в фантастических романах. Космические станции в виде тора (баранки) станут раскручиваться вокруг центральной оси и создавать имитацию гравитации с помощью центробежной силы. Правда, чтобы создать эквивалент земного притяжения, придется задать тору диаметр более 200 м. Есть и другие проблемы, связанные с искусственной гравитацией. Так что все это дело отдаленного будущего.