Как вывести формулу максимальной высоты подъема. Свободное падение тел. Примеры задач с решением


Обновлено:

На нескольких примерах (которые я изначально решал, как обычно, на otvet.mail.ru) рассмотрим класс задач элементарной баллистики: полет тела, запущенного под углом к горизонту с некоторой начальной скоростью, без учета сопротивления воздуха и кривизны земной поверхности (то есть направление вектора ускорения свободного падения g считаем неизменным).

Задача 1. Дальность полета тела равна высоте его полета над поверхностью Земли. Под каким углом брошено тело? (в некоторых источниках почему-то приведен неправильный ответ - 63 градуса).

Обозначим время полета как 2*t (тогда в течение t тело поднимается вверх, и в течение следующего промежутка t - спускается). Пусть горизонтальная составляющая скорости V1, вертикальная - V2. Тогда дальность полета S = V1*2*t. Высота полета H = g*t*t/2 = V2*t/2. Приравниваем
S = H
V1*2*t = V2*t/2
V2/V1 = 4
Отношение вертикальной и горизонтальной скоростей есть тангенс искомого угла α, откуда α = arctan(4) = 76 градусов.

Задача 2. Тело брошено с поверхности Земли со скоростью V0 под углом α к горизонту. Найти радиус кривизны траектории тела: а) в начале движения; б) в верхней точке траектории.

В обоих случая источник криволинейности движения - это гравитация, то есть ускорение свободного падения g, направленное вертикально вниз. Все что здесь требуется - найти проекцию g, перпендикулярную текущей скорости V, и приравнять ее центростремительному ускорению V^2/R, где R - искомый радиус кривизны.

Как видно из рисунка, для начала движения мы можем записать
gn = g*cos(a) = V0^2/R
откуда искомый радиус R = V0^2/(g*cos(a))

Для верхней точки траектории (см. рисунок) имеем
g = (V0*cos(a))^2/R
откуда R = (V0*cos(a))^2/g

Задача 3. (вариация на тему) Снаряд двигался горизонтально на высоте h и разорвался на два одинаковых осколка, один из которых упал на землю через время t1 после взрыва. Через какое время после падения первого осколка упадёт второй?

Какую бы вертикальную скорость V ни приобрел первый осколок, второй приобретет ту же по модулю вертикальную скорость, но направленную в противоположную сторону (это следует из одинаковой массы осколков и сохранения импульса). Кроме того, V направлена вниз, поскольку иначе второй осколок прилетит на землю ДО первого.

h = V*t1+g*t1^2/2
V = (h-g*t1^2/2)/t1
Второй полетит вверх, потеряет вертикальную скорость через время V/g, и затем через такое же время долетит вниз до начальной высоты h, и время t2 его задержки относительно первого осколка (не время полета от момента взрыва) составит
t2 = 2*(V/g) = 2h/(g*t1)-t1

дополнено 2018-06-03

Цитата:
Камень брошен со скоростью 10 м/с под углом 60° к горизонту. Определить тангенциальное и нормальное ускорение тела спустя 1,0 с после начала движения, радиус кривизны траектории в этот момент времени, длительность и дальность полета. Какой угол образует вектор полного ускорения с вектором скорости при t = 1,0 с

Начальная горизонтальная скорость Vг = V*cos(60°) = 10*0.5 = 5 м/с, и она не меняется в течение всего полёта. Начальная вертикальная скорость Vв = V*sin(60°) = 8.66 м/с. Время полёта до максимально высокой точки t1 = Vв/g = 8.66/9.8 = 0.884 сек, а значит длительность всего полёта 2*t1 = 1.767 с. За это время тело пролетит по горизонтали Vг*2*t1 = 8.84 м (дальность полёта).

Через 1 секунду вертикальная скорость составит 8.66 - 9.8*1 = -1.14 м/с (направлена вниз). Значит угол скорости к горизонту составит arctan(1.14/5) = 12.8° (вниз). Поскольку полное ускорение здесь единственное и неизменное (это ускорение свободного падения g , направленное вертикально вниз), то угол между скоростью тела и g в этот момент времени составит 90-12.8 = 77.2°.

Тангенциальное ускорение - это проекция g на направление вектора скорости, а значит составляет g*sin(12.8) = 2.2 м/с2. Нормальное ускорение - это перпендикулярная к вектору скорости проекция g , она равна g*cos(12.8) = 9.56 м/с2. И поскольку последнее связано со скоростью и радиусом кривизны выражением V^2/R, то имеем 9.56 = (5*5 + 1.14*1.14)/R, откуда искомый радиус R = 2.75 м.

Рассмотрим в качестве примера применения выведенных формул движение тела, брошенного под углом к горизонту в отсутствии сопротивления воздуха. Скажем, на горе, на высоте над уровнем моря стоит пушка, охраняющая прибрежные воды. Пусть снаряд выпускается под углом к горизонту с начальной скоростью из точки , положение которой определяется радиус-вектором (рис. 2.16).

Рис. 2.16. Движение тела, брошенного под углом к горизонту

Дополнение.

Вывод уравнений движения материальной точки в поле силы тяжести

Напишем уравнение движения (уравнение второго закона Ньютона):

это означает, что тела - материальные точки - любых масс при одних и тех же начальных условиях будут двигаться в однородном поле тяжести одинаково. Спроектируем уравнение (2.7.2) на оси декартовой системы координат. Горизонтальная ось ОХ показана на рис. 13 пунктиром, ось OY проведем через точку О вертикально вверх, а горизонтальную ось OZ , также проходящую через точку О , направим перпендикулярно вектору на нас. Получаем:

Вертикальным направлением, по определению, называется направление вектора , поэтому его проекции на горизонтальные оси OX и OY равны нулю. Во втором уравнении учтено, что вектор направлен вниз, а ось OY - вверх.

Рис. 2.17. Движение тела, брошенного под углом к горизонту.

Добавим к уравнениям движения начальные условия, которые определяют положение и скорость тела в начальный момент времени t 0 , пусть t 0 = 0 . Тогда, согласно рис. 2.7.4

Если производная некоторой функции равна нулю, то функция постоянна, соответственно из первого и третьего уравнений (2.7.3) получаем:

Во втором уравнении (2.7.3) производная равна константе, откуда следует, что функция зависит от своего аргумента линейно, то есть

Объединяя (2.7.7) и (2.7.9), получаем окончательные выражения для зависимостей проекций скорости на оси координат от времени:

Третье уравнение (2.7.11) показывает, что траектория тела плоская, целиком лежит в плоскости XOY , это вертикальная плоскость, определяемая векторами и . Очевидно, что последнее утверждение общее: как бы ни были выбраны направления осей координат, траектория тела брошенного под углом к горизонту плоская, она всегда лежит в плоскости, определяемой вектором начальной скорости и вектором ускорения свободного падения .

Если три уравнения (2.7.10) умножить на орты осей , , и и сложить, а потом то же самое проделать с тремя уравнениями (2.7.11), то мы получим зависимости от времени вектора скорости частицы и её радиус вектора. С учетом начальных условий имеем:

Формулы (2.7.12) и (2.7.13) можно было получить сразу, непосредственно из (2.7.2), если учесть, что ускорение свободного падения есть постоянный вектор. Если ускорение - производная от вектора скорости - постоянно, то вектор скорости зависит от времени линейно, а радиус-вектор, производная по времени от которого и есть линейно зависящий от времени вектор скорости, зависит от времени квадратично. Это и записано в соотношениях (2.7.12) и (2.7.13) с константами - постоянными векторами - подобранными соответственно начальным условиям в форме (2.7.4).

Из (2.7.13) в частности видно, что радиус-вектор является суммой трех векторов, складывающихся по обычным правилам, что наглядно показано на рис. 2.18.

Рис. 2.18. Представление радиус-вектора r(t) в произвольный момент времени t в виде суммы трех векторов

Эти векторы представляют собой:

Здесь отчетливо проявляется принцип независимости движений, известный в других областях физики как принцип суперпозиции (наложения). Вообще говоря, согласно принципу суперпозиции результирующий эффект нескольких воздействий представляет собой сумму эффектов от каждого воздействия в отдельности. Он является следствием линейности уравнений движения.

Видео 2.3. Независимость горизонтального и вертикального перемещений при движении в поле тяжести.

Поместим начало отсчета в точку бросания. Теперь =0 , оси, как и ранее, развернем так, чтобы ось 0x была горизонтальной, ось - вертикальной, а начальная скорость лежала в плоскости х0у (рис. 2.19).

Рис. 2.19. Проекции начальной скорости на координатные оси

Спроецируем на оси координат (см.(2.7.11)):

Траектория полета . Если из системы полученных уравнений исключить время t , то получим уравнение траектории:

Это уравнение параболы, ветви которой направлены вниз.

Дальность полета при стрельбе с высоты h . В момент падения тела (снаряд попадает в цель, находящуюся на поверхности моря). Расстояние по горизонтали от пушки до цели равно при этом . Подставляя ; в уравнение траектории, получаем квадратное уравнение для дальности полета :

У квадратного уравнения имеется два решения (в данном случае - положительное и отрицательное). Нам нужно положительное решение. Стандартное выражение для корня квадратного уравнения нашей задачи может быть приведено к виду:

достигается при , если h = 0 .

Максимальная дальность полета . При выстреле с горы высотой это уже не так. Найдем угол , при котором достигается максимальная дальность полета. Зависимость дальности полета от угла достаточно сложна, и вместо дифференцирования для нахождения максимума мы поступим следующим образом. Представим себе, что мы увеличиваем начальный угол . Сначала дальность полета растет (см. формулу (2.7.15)), достигает максимального значения и снова начинает падать (до нуля при выстреле вертикально вверх). Таким образом, для каждой дальности полета, кроме максимальной, соответсвует два направления начальной скорости.

Обратимся снова к квадратному уравнению относительности дальности полета и рассмотрим его как уравнение для угла . Учитывая, что

перепишем его в виде:

Мы снова получили квадратное уравнение, на этот раз - для неизвестной величины . Уравнение имеет два корня, что соответствует двум углам, при которых дальность полета равна . Но когда , оба корня должны совпасть. Это означает, что равен нулю дискриминант квадратного уравнения:

откуда следует результат

При этот результат воспроизводит формулу (2.7.16)

Обычно высота много меньше дальности полета на равнине. При квадратный корень может быть аппроксимирован первыми членами разложения в ряд Тейлора и мы получаем приближенное выражение

то есть дальность выстрела увеличивается примерно на высоту подъема пушки.

Когда l = l max , и a = a max , как уже отмечалось, дискриминант квадратного уравнения равен нулю, соответственно, его решение имеет вид:

Поскольку тангенс меньше единицы, угол, при котором достигается максимальная дальность полета, меньше .

Максимальная высота подъёма над начальной точкой. Эта величина может быть определена из равенства нулю вертикальной составляющей скорости в верхней точке траектории

При этом горизонтальная составляющая скорости не равна нулю, поэтому

Кинематика - это просто!


После броска, в полете, на тело действуют сила тяжести и сила сопротивления воздуха .
Если движение тела происходит на малых скоростях, то при расчете силу сопротивления воздуха обычно не учитывают.
Итак, можно считать, что на тело действует только сила тяжести, значит движение брошенного тела является свободным падением .
Если это свободное падение, то ускорение брошенного тела равно ускорению свободного падения g .
На малых высотах относительно поверхности Земли сила тяжести Fт практически не меняется, поэтому тело движется с постоянным ускорением.

Итак, движение тела, брошенного под углом к горизонту является вариантом свободного падения, т.е. движением с постоянным ускорением и криволинейной траекторией (т.к. векторы скорости и ускорения не совпадают по направлению).

Формулы этого движения в векторном виде: Для расчета движения тела выбирают прямоугольную систему координат XOY, т.к. траекторией движения тела является парабола, лежащая в плоскости, проходящей через векторы Fт и Vo .
За начало координат обычно выбирают точку начала движения брошенного тела.


В любой момент времени изменение скорости движения тела по направлению совпадает с ускорением.

Вектор скорости тела в любой точке траектории можно разложить на 2 составляющих: вектор V x и вектор V y .
В любой момент времени скорость тела будет определяться, как геометрическая сумма этих векторов:

Согласно рисунку, проекции вектора скорости на координатные оси OX и OY выглядят так:


Расчет скорости тела в любой момент времени:

Расчет перемещения тела в любой момент времени:

Каждой точке траектории движения тела соответствуют координаты X и Y:


Расчетные формулы для координат брошенного тела в любой момент времени:


Из уравнения движения можно вывести формулы для расчета максимальной дальности полета L:

и максимальной высоты полета Н:


P.S.
1. При равных по величине начальных скоростях Vo дальность полета:
- возрастает, если начальный угол бросания увеличивать от 0 o до 45 o ,
- убывает, если начальный угол бросания увеличивать от 45 o до 90 o .

2. При равных начальных углах бросания дальность полета L возрастает с увеличением начальной скорости Vo.

3. Частным случаем движения тела, брошенного под углом к горизонту, является движение тела, брошенного горизонтально , при этом начальный угол бросания равен нулю.

Движение тела, брошенного под углом к горизонту

Рассмотрим движение тела, брошенного со скоростью V 0 , вектор которой направлен под углом α к горизонту, в плоскости XOY, расположив тело в момент бросания в начало координат, как это изображено на рисунке 1.

В отсутствии сил сопротивления, движение тела, брошенного под углом к горизонту, можно рассматривать как частный случай криволинейного движения под действием силы тяжести. Применяя 2 - ой закон Ньютона

∑ F i

получаем

mg = ma ,

a = g

Проекции вектора ускорения a на оси ОХ и ОУ равны:

= −g

где g = const - это

ускорение свободного падения,

которого всегда

направлен вертикально вниз,

численное значение g = 9,8м/с2 ;

= −g

т.к. ось ОУ на

рисунке 1 направлена вверх, в случае, когда ось OY направлена вниз, то проекция вектора

2 a на ось ОУ будет положительна (читая условия задач, выбирайте сами направление осей, если это не прописано в условии).

Значения проекций вектора ускорения a на оси ОХ и ОУ дают основание сделать

следующий вывод:

тело, брошенное под углом к горизонту, одновременно участвует в двух движениях - равномерном по горизонтали и равнопеременном по

вертикали.

Скорость тела в таком случае

V = Vx + Vy

Скорость тела в начальный момент времени (в момент бросания тела)

V 0 = V 0 x

V 0 y .

Проекции вектора начальной скорости на оси ОХ и ОУ равны

V cosα

V 0 y

V 0 sin α

Для равнопеременного движения зависимости скорости и перемещения от времени задаются уравнениями:

V 0 + at

S 0 + V 0 t +

и S 0 - это скорость и перемещение тела в начальный момент времени,

и S t - это скорость и перемещение тела в момент времени t.

Проекции векторного уравнения (8) на оси ОХ и ОУ равны

V 0 x

Ax t ,

V ty = V 0 y + a y t

Const

V 0 y - gt

Проекции векторного уравнения (9) на оси ОХ и ОУ равны

S ox + V ox t +

a y t 2

S 0 y

V oy t +

с учетом равенств (4), получаем

S 0 y

V oy t -

gt 2

где Sox и Soy -

координаты тела

в начальный момент времени,

а Stx и Sty -

координаты тела в момент времени t.

За время своего движения t (от момента бросания до момента падения на тот же

уровень) тело поднимается на максимальную высоту hmax , спускается с неё и отлетает от места бросания на расстояние L (дальность полета) - см. рисунок 1.

1) Время движения тела t можно найти, учитывая значения координат тела Sy в

Soy = 0, Sty = 0,

подставив значения Voy и (14) во второе уравнение системы (13), получаем

2) Дальность полета L можно найти, учитывая значения координат тела Sх в

начальный момент времени и в момент времени t (см. рис.1)

Soх = 0, Stх = L,

подставив значения Vox и (17) в первое уравнение системы (13), получаем

L = V 0 cosα × t ,

откуда, с учетом (16), получаем

L = V cosα ×

2V sin α

3) Максимальную высоту подъёма тела h max можно найти, учитывая значение

скорости тела V в точке максимального подъёма тела

V 0 x

Т.к. в этой точке V y

Используя вторые уравнения систем (11) и (13) ,

значение Voу , а также тот факт,

что в точке максимального подъёма тела Sy = hmax , получаем

0 = V 0 sin α - g × t под

gt под2

V 0 sin α × t -

h max

где tпод - время подъёма - время движения на высоту максимального подъёма тела.

Решая эту систему, получаем

t под =

V 0 sin α

sin 2 α

Сравнение значений (16) и (22), даёт основание сделать вывод

· время движения на высоту максимального подъёма тела (t под ) равно времени спуска тела (tсп ) с этой высоты и равно половине времени всего движения тела от момента бросания до момента падения на тот же уровень

t под

T сп

Изучать движение тела, брошенного со скоростью V 0 , вектор которой направлен под углом α к горизонту, в плоскости XOY, очень наглядно на компьютерной модели

"Свободное падение тел" в сборнике компьютерных моделей "Открытая физика"

компании ФИЗИКОН. В этой модели можно задавать разные начальные условия.

Например, рассмотренный нами случай нужно задавать (команда "Очистить") при начальном условии h = 0 и выбранных V0 и α. Команда "Старт" продемонстрирует движение тела и даст картинку траектории движения и направление векторов скорости тела в фиксированные моменты времени.

Рис.2. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело движется из точки начала координат и падает на том же уровне .

Если условие задачи отличается от рассмотренного нами случая, то необходимо

для решения задачи, выбрав направление осей, разместить тело в начальный момент

времени, изобразить траекторию движения тела до точки падения, таким образом

определив координаты тела в начальный и конечный моменты времени. Затем

использовать уравнения (3), (5), (8) и (9) как основу для решения и рассмотренный выше

алгоритм решения задачи.

Рассмотрим частные случаи.

6 1. Тело бросили со скоростью V 0 , вектор которой направлен под углом α к

горизонту, с высоты h и оно упало на расстоянии L от места бросания. y в начальный

Soy = h,

а значения остальных координат будут выбраны так же, как мы выбирали.

Рис.3. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело движется из точки h = 50м и падает на нулевой уровень .

2. Тело бросили горизонтально со скоростью V 0 , с высоты h и оно упало на расстоянии L от места бросания. Отличие от рассмотренного нами случая заключается в том, значения координат тела S y в начальный момент определится так же уравнением (25),

а значения остальных координат будут выбраны так же, как мы выбирали. Но в этом случае начальная скорость тела в проекции на ось ОУ равна нулю (так как α = 0), т.е.

проекции вектора начальной скорости на оси ОХ и ОУ равны

V 0 y

Рис.4. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело, брошенное горизонтально, движется из точки h = 50м и падает на нулевой уровень .

Когда изучают механическое движение в физике, то после ознакомления с равномерным и равноускоренным перемещением объектов, переходят к рассмотрению движения тела под углом к горизонту. В данной статье изучим подробнее этот вопрос.

Что собой представляет движение тела под углом к горизонту?

Этот тип перемещения объектов возникает, когда человек бросает камень в воздух, пушка совершает выстрел ядром, или вратарь выбивает от ворот футбольный мяч. Все подобные случаи рассматриваются наукой баллистикой.

Отмеченный вид перемещения объектов в воздухе происходит по параболической траектории. В общем случае проведение соответствующих расчетов является делом не простым, поскольку необходимо учитывать сопротивление воздуха, вращение тела во время полета, вращение Земли вокруг оси и некоторые другие факторы.

В данной статье мы не будем учитывать все эти факторы, а рассмотрим вопрос с чисто теоретической точки зрения. Тем не менее, полученные формулы достаточно хорошо описывают траектории тел, перемещающихся на небольшие расстояния.

Получение формул для рассматриваемого вида движения

Выведем тела к горизонту под углом. При этом будем учитывать только одну-единственную силу, действующую на летящий объект - силу тяжести. Поскольку она действует вертикально вниз (параллельно оси y и против нее), то, рассматривая горизонтальную и вертикальную составляющие движения, можно сказать, что первая будет иметь характер равномерного прямолинейного перемещения. А вторая - равнозамедленного (равноускоренного) прямолинейного перемещения с ускорением g. То есть, компоненты скорости через значение v 0 (начальная скорость) и θ (угол направления движения тела) запишутся так:

v x = v 0 *cos(θ)

v y = v 0 *sin(θ)-g*t

Первая формула (для v x) справедлива всегда. Что касается второй, то тут нужно отметить один нюанс: знак минус перед произведением g*t ставится только в том случае, если вертикальная компонента v 0 *sin(θ) направлена вверх. В большинстве случаев так и происходит, однако, если бросить тело с высоты, направив его вниз, тогда в выражении для v y следует поставить знак "+" перед g*t.

Проинтегрировав формулы для компонент скорости по времени, и учитывая начальную высоту h полета тела, получаем уравнения для координат:

x = v 0 *cos(θ)*t

y = h+v 0 *sin(θ)*t-g*t 2 /2

Вычисление дальности полета

При рассмотрении в физике движения тела к горизонту под углом, полезным для практического применения, оказывается расчет дальности полета. Определим ее.

Поскольку это перемещение представляет собой равномерное движения без ускорения, то достаточно подставить в него время полета и получить необходимый результат. Дальность полета определяется исключительно перемещением вдоль оси x (параллельно горизонту).

Время нахождения тела в воздухе можно вычислить, приравняв к нулю координату y. Имеем:

0 = h+v 0 *sin(θ)*t-g*t 2 /2

Это квадратное уравнение решаем через дискриминант, получаем:

D = b 2 - 4*a*c = v 0 2 *sin 2 (θ) - 4*(-g/2)*h = v 0 2 *sin 2 (θ) + 2*g*h,

t = (-b±√D)/(2*a) = (-v 0 *sin(θ)±√(v 0 2 *sin 2 (θ) + 2*g*h))/(-2*g/2) =

= (v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

В последнем выражении один корень со знаком минуса отброшен, в виду его незначительного физического значения. Подставив время полета t в выражение для x, получаем дальность полета l:

l = x = v 0 *cos(θ)*(v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

Проще всего это выражение проанализировать, если начальная высота равна нулю (h=0), тогда получим простую формулу:

l = v 0 2 *sin(2*θ)/g

Это выражение свидетельствует, что максимальную дальность полета можно получить, если тело бросить под углом 45 o (sin(2*45 o) = м1).

Максимальная высота подъема тела

Помимо дальности полета, также полезно найти высоту над землей, на которую может подняться тело. Поскольку этот тип движения описывается параболой, ветви которой направлены вниз, то максимальная высота подъема является ее экстремумом. Последний рассчитывается путем решения уравнения для производной по t для y:

dy/dt = d(h+v 0 *sin(θ)*t-g*t 2 /2)/dt = v 0 *sin(θ)-gt=0 =>

=> t = v 0 *sin(θ)/g.

Подставляем это время в уравнение для y, получаем:

y = h+v 0 *sin(θ)*v 0 *sin(θ)/g-g*(v 0 *sin(θ)/g) 2 /2 = h + v 0 2 *sin 2 (θ)/(2*g).

Это выражение свидетельствует, что на максимальную высоту тело поднимется, если его бросить вертикально вверх (sin 2 (90 o) = 1).