Реакции получения оксидов солеобразующие. Оксиды: классификация, получение и химические свойства. Реагирует с некоторыми сложными соединениями

Разложение хлоратов

Хлорамты -- группа химических соединений, соли хлорноватой кислоты HClO3. Хлорат анион имеет структуру тригональной пирамиды (dСl--О = 0,1452-0,1507 нм, угол ОСlО = 106°). Анион СlО3- не образует ковалентных связей через атом О и не склонен образовывать координационные связи. Обычно кристаллические вещества, растворимые в воде и некоторых полярных органических растворителях. В твердом состоянии при комнатной температуре довольно стабильны. При нагреве или в присутствии катализатора разлагаются с выделением кислорода. С горючими веществами могут образовывать взрывчатые смеси.

Xлораты являются сильными окислителями как в раствoре, так и в твердом состоянии: смеси безводных хлоратов с серой, углем и другими восстановителями, взрываются при быстром нагревании и ударе. Хотя хлор в хлоратах находится не в высшей степени окисления, окислить его до в водном растворе удается только электрохимически или под действием XeF2. Xлораты металлов переменной валентности обычно неустойчивы и склонны к взрывному распаду. Все хлораты щелочных металлов разлагаются с выделением большого количества тепла на МеСl и О2, с промежуточным образованием перхлоратов. Разложение хлоратов при нагревании рассмотрим на примере хлората калия:

2KClO 3 = 2KCl + 3O 2 ^ (200 °C, в присутствии MnO2, Fe2O3, CuO и др.)

Без катализаторов эта реакция идет с промежуточным образованием перхлората калия:

4KClO3 = 3KClO4 + KCl (400 °C)

который потом разлагается:

KClO4 = KCl + 2O2^ (550--620 °C)

Нужно отметить то, что хлораты калия с восстановителями (фосфором, серой, органическими соединениями) взрывчаты и чувствительны к трению и ударам, чувствительность повышается в присутствии броматов и солей аммония. Из-за высокой чувствительности составов с бертолетовой солью, они практически не применяются для производства промышленных и военных взрывчатых веществ.

Иногда эта смесь используется в пиротехнике как источник хлора для цветнопламенных составов, входит в состав горючего вещества спичечной головки, и крайне редко в качестве инициирующих взрывчатых веществ (хлоратный порох - "сосис", детонирующий шнур, терочный состав ручных гранат вермахта).

Разложение карбонатов

Карбонаты - соли угольной кислоты, имеют состав Мех(СО3) у. Все карбонаты разлагаются при нагревании с образованием оксида металла и углекислого газа:

Na2CO3 > Na2O + CO2^ (при 1000 ?С)

МgCO3 > MgO + CO2^ (при 650 ?С)

Можно так же отметить кислые соли уголной кислоты, которые распадаются на оксид металла, воду и углекислый газ. Гидрокарбонат аммония же распадается уже при t 60 °C быстро распадается на NH3, CO2 и H2O, в пищевой промышленности он классифицируется как эмульгатор.

На процессе разложения, связанном с выделением газов, основано применение карбоната аммония вместо дрожжей в хлебопечении и кондитерской промышленности (пищевая добавка Е503).

Разложение нерастворимых в воде оснований

Гидроксиды металлов, нерастворимые в воде легко высушить а после нагреть. Вещество распадется на оксид металла и воду, так при разложении Cu(OH)2 , который в воде имеет ярко-синюю творожистую структуру, мы можем наблюдать почернение раствора, говорящее нам об образовании оксида меди (II).

Разложение оксидов

Разложение оксидов можно рассмотреть на примере с водой. Разложение воды происходит при очень высоких температурах(порядка 3000°C):

2 H 2 О(ж) + 572 кДж = 2 H 2 (г) + O 2 (г);

Данная реакция проходит в электрической дуге, где как раз сохраняется нужная температура. По данному примеру можно сказать о высокой устойчивости оксидов, разложение которых может являться очень трудоемким и энергозатратным процессом.

1 группа - несолеобразующие - N 2 O, NO, CO, SiO.

2 группа - солеобразующие:

  1. Основные - это такие оксиды, которым соответствуют основания. Оксиды металлов , степень окисления которых +1, +2: Na 2 O, CaO, CuO, FeO, CrO. Реагируют с избытком кислоты с образованием соли и воды. Основным оксидам соответствуют основания: 1) щелочные металлы; 2) щелочноземельные металлы; 3) некоторые - CrO, MnO, FeO. Типичные реакции основных оксидов:
    • Основный оксид + кислота → соль + вода (реакция обмена).
    • Основный оксид + кислотный оксид → соль (реакция соединения)
    • Основный оксид + вода → щелочь (реакция соединения).
  2. Кислотные - - это такие оксиды, которым соответствуют кислоты. Оксиды неметаллов. Оксиды металлов , степень окисления которых > +5: SO 2 , SO 3 , P 2 O 5 , CrO 3 , Mn 2 O 7 . Реагируют с избытком щелочи с образованием соли и воды. Типичные реакции кислотных оксидов:
    • Кислотный оксид + основание → соль + вода (реакция обмена).
    • Кислотный оксид + основный оксид → соль (реакция соединения).
    • Кислотный оксид + вода → кислота (реакция соединения)
  3. Амфотерные - это оксиды, которые в зависимости от условий проявляют основные или кислотные свойства. Оксиды металлов , степень окисления которых +2, +3, +4: BeO, ZnO, Al 2 O 3 , Cr 2 O 3 , MnO 2 . Взаимодействуют как с кислотами так и с основаниями. Реагируют с основными и кислотными оксидами. Амфотерные оксиды с водой непосредственно не соединяются. Типичные реакции амфотерных оксидов:
    • Амфотерный оксид + кислота → соль + вода (реакция обмена).
    • Амфотерный оксид + основание → соль + вода или комплексное соединение.

Оксид углерода 2 и 4

Оксид углерода(II) в химическом отношении – инертное вещество. Не реагирует с водой, однако при нагревании с расплавленными щелочами образует соли муравьиной кислоты: CO + NaOH = HCOONa.

Взаимодействие с кислородом

При нагревании в кислороде сгорает красивым синим пламенем: 2СО + О 2 = 2СО 2 .

Взаимодействие с водородом : СО + Н 2 = С + Н 2 О.

Взаимодействие с другими неметаллами. При облучении и в присутствии катализатора взаимодействует с галогенами: СО + Cl 2 = COCl 2 (фосген). и серой СО + S = COS (карбонилсульфид).

Восстановительные свойства

СО – энергичный восстановитель. Восстанавливает многие металлы из их оксидов:

C +2 O + CuO = Сu + C +4 O 2 .

Взаимодействие с переходными металлами

С переходными металлами образует карбонилы:

  • Ni + 4CO = Ni(CO) 4 ;
  • Fe + 5CO = Fe(CO) 5 .

Оксид углерода (IV) (углекислый газ, диоксид углерода, двуокись углерода,угольный ангидрид) - CO 2 , бесцветный газ (в нормальных условиях), без запаха, со слегка кисловатым вкусом. Химически оксид углерода (IV) инертен.

Окислительные свойства

С сильными восстановителями при высоких температурах проявляет окислительные свойства. Углем восстанавливается до угарного газа: С + СО 2 = 2СО.

Магний, зажженный на воздухе, продолжает гореть и в атмосфере углекислого газа: 2Mg + CO 2 = 2MgO + C.

Свойства кислотного оксида

Типичный кислотный оксид. Реагирует с основными оксидами и основаниями, образуя соли угольной кислоты:

  • Na 2 O + CO 2 = Na 2 CO 3 ,
  • 2NaOH + CO2 = Na 2 CO 3 + H 2 O,
  • NaOH + CO 2 = NaHCO 3 .

Качественна реакция - для обнаружения углекислого газа является помутнение известковой воды.

Прежде чем начать говорить про химические свойства оксидов, нужно вспомнить о том, что все оксиды делятся на 4 типа, а именно основные, кислотные, амфотерные и несолеобразующие. Для того чтобы определить тип какого-либо оксида, прежде всего нужно понять — оксид металла или неметалла перед вами, а затем воспользоваться алгоритмом (его надо выучить!), представленным в следующей таблице:

Помимо типов оксидов, указанных выше, введем также еще два подтипа основных оксидов, исходя из их химической активности, а именно активные основные оксиды и малоактивные основные оксиды.

  • К активным основным оксидам отнесем оксиды щелочных и щелочноземельных металлов (все элементы IA и IIA групп, кроме водорода H, бериллия Be и магния Mg). Например, Na 2 O, CaO, Rb 2 O, SrO и т.д.
  • К малоактивным основным оксидам отнесем все основные оксиды, которые не попали в список активных основных оксидов . Например, FeO, CuO, CrO и т.д.

Логично предположить, что активные основные оксиды часто вступают в те реакции, в которые не вступают малоактивные.

Следует отметить, что несмотря на то что фактически вода является оксидом неметалла (H 2 O), обычно ее свойства рассматривают в отрыве от свойств иных оксидов. Обусловлено это ее специфически огромным распространением в окружающем нас мире, в связи с чем в большинстве случаев вода является не реагентом, а средой, в которой может осуществляться бесчисленное множество химических реакций. Однако нередко она принимает и непосредственное участие в различных превращениях, в частности, некоторые группы оксидов с ней реагируют.

Какие оксиды реагируют с водой?

Из всех оксидов с водой реагируют только:

1) все активные основные оксиды (оксиды ЩМ и ЩЗМ);

2) все кислотные оксиды, кроме диоксида кремния (SiO 2);

т.е. из вышесказанного следует, что с водой точно не реагируют :

1) все малоактивные основные оксиды;

2) все амфотерные оксиды;

3) несолеобразующие оксиды (NO, N 2 O, CO, SiO).

Примечание:

Оксид магния медленно реагирует с водой при кипячении. Без сильного нагревания реакция MgO с H 2 O не протекает.

Способность определить то, какие оксиды могут реагировать с водой даже без умения писать соответствующие уравнения реакций, уже позволяет получить баллы за некоторые вопросы тестовой части ЕГЭ.

Теперь давайте разберемся, как же все-таки те или иные оксиды реагируют с водой, т.е. научимся писать соответствующие уравнения реакций.

Активные основные оксиды , реагируя с водой, образуют соответствующие им гидроксиды. Напомним, что соответствующим оксиду металла является такой гидроксид, который содержит металл в той же степени окисления, что и оксид. Так, например, при реакции с водой активных основных оксидов K +1 2 O и Ba +2 O образуются соответствующие им гидроксиды K +1 OH и Ba +2 (OH) 2:

K 2 O + H 2 O = 2KOH – гидроксид калия

BaO + H 2 O = Ba(OH) 2 – гидроксид бария

Все гидроксиды, соответствующие активным основным оксидам (оксидам ЩМ и ЩЗМ), относятся к щелочам. Щелочами называют все хорошо растворимые в воде гидроксиды металлов, а также малорастворимый гидроксид кальция Ca(OH) 2 (как исключение).

Взаимодействие кислотных оксидов с водой так же, как и реакция активных основных оксидов с водой, приводит к образованию соответствующих гидроксидов. Только в случае кислотных оксидов им соответствуют не основные, а кислотные гидроксиды, чаще называемые кислородсодержащими кислотами . Напомним, что соответствующей кислотному оксиду является такая кислородсодержащая кислота, которая содержит кислотообразующий элемент в той же степени окисления, что и в оксиде.

Таким образом, если мы, например, хотим записать уравнение взаимодействия кислотного оксида SO 3 с водой, прежде всего мы должны вспомнить основные, изучаемые в рамках школьной программы, серосодержащие кислоты. Таковыми являются сероводородная H 2 S, сернистая H 2 SO 3 и серная H 2 SO 4 кислоты. Cероводородная кислота H 2 S, как легко заметить, не является кислородсодержащей, поэтому ее образование при взаимодействии SO 3 с водой можно сразу исключить. Из кислот H 2 SO 3 и H 2 SO 4 серу в степени окисления +6, как в оксиде SO 3 , содержит только серная кислота H 2 SO 4 . Поэтому именно она и будет образовываться в реакции SO 3 с водой:

H 2 O + SO 3 = H 2 SO 4

Аналогично оксид N 2 O 5 , содержащий азот в степени окисления +5, реагируя с водой, образует азотную кислоту HNO 3 , но ни в коем случае не азотистую HNO 2 , поскольку в азотной кислоте степень окисления азота, как и в N 2 O 5 , равна +5, а в азотистой — +3:

N +5 2 O 5 + H 2 O = 2HN +5 O 3

Исключение:

Оксид азота (IV) (NO 2) является оксидом неметалла в степени окисления +4, т.е. в соответствии с алгоритмом, описанным в таблице в самом начале данной главы, его нужно отнести к кислотным оксидам. Однако не существует такой кислоты, которая содержала бы азот в степени окисления +4.

2NO 2 + H 2 O = HNO 2 + HNO 3

Взаимодействие оксидов друг с другом

Прежде всего нужно четко усвоить тот факт, что среди солеобразующих оксидов (кислотных, основных, амфотерных) практически никогда не протекают реакции между оксидами одного класса, т.е. в подавляющем большинстве случаев невозможно взаимодействие:

1) основный оксид + основный оксид ≠

2) кислотный оксид + кислотный оксид ≠

3) амфотерный оксид + амфотерный оксид ≠

В то время, как практически всегда возможно взаимодействие между оксидами, относящимися к разным типам, т.е. практически всегда протекают реакции между:

1) основным оксидом и кислотным оксидом;

2) амфотерным оксидом и кислотным оксидом;

3) амфотерным оксидом и основным оксидом.

В результате всех таких взаимодействий всегда продуктом является средняя (нормальная) соль.

Рассмотрим все указанные пары взаимодействий более детально.

В результате взаимодействия:

Me x O y + кислотный оксид, где Me x O y – оксид металла (основный или амфотерный)

образуется соль, состоящая из катиона металла Me (из исходного Me x O y) и кислотного остатка кислоты, соответствующей кислотному оксиду.

Для примера попробуем записать уравнения взаимодействия следующих пар реагентов:

Na 2 O + P 2 O 5 и Al 2 O 3 + SO 3

В первой паре реагентов мы видим основный оксид (Na 2 O) и кислотный оксид (P 2 O 5). Во второй – амфотерный оксид (Al 2 O 3) и кислотный оксид (SO 3).

Как уже было сказано, в результате взаимодействия основного/амфотерного оксида с кислотным образуется соль, состоящая из катиона металла (из исходного основного/амфотерного оксида) и кислотного остатка кислоты, соответствующей исходному кислотному оксиду.

Таким образом, при взаимодействии Na 2 O и P 2 O 5 должна образоваться соль, состоящая из катионов Na + (из Na 2 O) и кислотного остатка PO 4 3- , поскольку оксиду P +5 2 O 5 соответствует кислота H 3 P +5 O 4 . Т.е. в результате такого взаимодействия образуется фосфат натрия:

3Na 2 O + P 2 O 5 = 2Na 3 PO 4 — фосфат натрия

В свою очередь, при взаимодействии Al 2 O 3 и SO 3 должна образоваться соль, состоящая из катионов Al 3+ (из Al 2 O 3) и кислотного остатка SO 4 2- , поскольку оксиду S +6 O 3 соответствует кислота H 2 S +6 O 4 . Таким образом, в результате данной реакции получается сульфат алюминия:

Al 2 O 3 + 3SO 3 = Al 2 (SO 4) 3 — сульфат алюминия

Более специфическим является взаимодействие между амфотерными и основными оксидами. Данные реакции осуществляют при высоких температурах, и их протекание возможно благодаря тому, что амфотерный оксид фактически берет на себя роль кислотного. В результате такого взаимодействия образуется соль специфического состава, состоящая из катиона металла, образующего исходный основный оксид и «кислотного остатка»/аниона, в состав которого входит металл из амфотерного оксида. Формулу такого «кислотного остатка»/аниона в общем виде можно записать как MeO 2 x — , где Me – металл из амфотерного оксида, а х = 2 в случае амфотерных оксидов с общей формулой вида Me +2 O (ZnO, BeO, PbO) и x = 1 – для амфотерных оксидов с общей формулой вида Me +3 2 O 3 (например, Al 2 O 3 , Cr 2 O 3 и Fe 2 O 3).

Попробуем записать в качестве примера уравнения взаимодействия

ZnO + Na 2 O и Al 2 O 3 + BaO

В первом случае ZnO является амфотерным оксидом с общей формулой Me +2 O, а Na 2 O – типичный основный оксид. Согласно сказанному выше, в результате их взаимодействия должна образоваться соль, состоящая из катиона металла, образующего основный оксид, т.е. в нашем случае Na + (из Na 2 O) и «кислотного остатка»/аниона c формулой ZnO 2 2- , поскольку амфотерный оксид имеет общую формулу вида Me +2 O. Таким образом, формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Na 2 ZnO 2:

ZnO + Na 2 O =t o => Na 2 ZnO 2

В случае взаимодействующей пары реагентов Al 2 O 3 и BaO первое вещество является амфотерным оксидом с общей формулой вида Me +3 2 O 3 , а второе — типичным основным оксидом. В этом случае образуется соль, содержащая катион металла из основного оксида, т.е. Ba 2+ (из BaO) и «кислотного остатка»/аниона AlO 2 — . Т.е. формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Ba(AlO 2) 2 , а само уравнение взаимодействия запишется как:

Al 2 O 3 + BaO =t o => Ba(AlO 2) 2

Как мы уже писали выше, практически всегда протекает реакция:

Me x O y + кислотный оксид ,

где Me x O y – либо основный, либо амфотерный оксид металла.

Однако следует запомнить два «привередливых» кислотных оксида – углекислый газ (CO 2) и сернистый газ (SO 2). «Привередливость» их заключается в том, что несмотря на явные кислотные свойства, активности CO 2 и SO 2 недостаточно для их взаимодействия с малоактивными основными и амфотерными оксидами. Из оксидов металлов они реагируют только с активными основными оксидами (оксидами ЩМ и ЩЗМ). Так, например, Na 2 O и BaO, являясь активными основными оксидами, могут с ними реагировать:

CO 2 + Na 2 O = Na 2 CO 3

SO 2 + BaO = BaSO 3

В то время, как оксиды CuO и Al 2 O 3 , не относящиеся к активным основным оксидам, в реакцию с CO 2 и SO 2 не вступают:

CO 2 + CuO ≠

CO 2 + Al 2 O 3 ≠

SO 2 + CuO ≠

SO 2 + Al 2 O 3 ≠

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

FeO + H 2 SO 4 = FeSO 4 + H 2 O

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

SiO 2 + 6HF = H 2 + 2H 2 O ,

а в случае недостатка HF:

SiO 2 + 4HF = SiF 4 + 2H 2 O

2) SO 2 , будучи кислотным оксидом, легко реагирует с сероводородной кислотой H 2 S по типу сопропорционирования :

S +4 O 2 + 2H 2 S -2 = 3S 0 + 2H 2 O

3) Оксид фосфора (III) P 2 O 3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P 2 O 3 + 2H 2 SO 4 + H 2 O =t o => 2SO 2 + 2H 3 PO 4
(конц.)
3 P 2 O 3 + 4HNO 3 + 7 H 2 O =t o => 4NO + 6 H 3 PO 4
(разб.)
2HNO 3 + 3SO 2 + 2H 2 O =t o => 3H 2 SO 4 + 2NO
(разб.)

Взаимодействие оксидов с гидроксидами металлов

С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.

SO 3 + 2NaOH = Na 2 SO 4 + H 2 O

Кислотные оксиды, которым соответствуют многоосновные кислоты, с щелочами могут образовывать как нормальные, так и кислые соли:

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O

CO 2 + NaOH = NaHCO 3

P 2 O 5 + 6KOH = 2K 3 PO 4 + 3H 2 O

P 2 O 5 + 4KOH = 2K 2 HPO 4 + H 2 O

P 2 O 5 + 2KOH + H 2 O = 2KH 2 PO 4

«Привередливые» оксиды CO 2 и SO 2 , активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами в виде их суспензии в воде. При этом образуются только осно вные соли, называемые гидроксокарбонатами и гидроксосульфитами, а образование средних (нормальных) солей невозможно:

2Zn(OH) 2 + CO 2 = (ZnOH) 2 CO 3 + H 2 O (в растворе)

2Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O (в растворе)

Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH) 3 , Cr(OH) 3 и т.д., углекислый и сернистый газ не реагируют вовсе.

Следует отметить также особую инертность диоксида кремния (SiO 2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей, а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:

2NaOH + SiO 2 =t o => Na 2 SiO 3 + H 2 O

Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:

ZnO + 2NaOH + H 2 O = Na 2 — тетрагидроксоцинкат натрия

BeO + 2NaOH + H 2 O = Na 2 — тетрагидроксобериллат натрия

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na — тетрагидроксоалюминат натрия

А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO 2 x — , где x = 2 в случае амфотерного оксида типа Me +2 O и x = 1 для амфотерного оксида вида Me 2 +2 O 3:

ZnO + 2NaOH =t o => Na 2 ZnO 2 + H 2 O

BeO + 2NaOH =t o => Na 2 BeO 2 + H 2 O

Al 2 O 3 + 2NaOH =t o => 2NaAlO 2 + H 2 O

Cr 2 O 3 + 2NaOH =t o => 2NaCrO 2 + H 2 O

Fe 2 O 3 + 2NaOH =t o => 2NaFeO 2 + H 2 O

Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:

Na 2 =t o => Na 2 ZnO 2 + 2H 2 O

Na =t o => NaAlO 2 + 2H 2 O

Взаимодействие оксидов со средними солями

Чаще всего средние соли с оксидами не реагируют.

Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.

Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO 2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO 2) и углекислый (CO 2) газы соответственно. Например:

Al 2 O 3 + Na 2 CO 3 =t o => 2NaAlO 2 + CO 2

SiO 2 + K 2 SO 3 =t o => K 2 SiO 3 + SO 2

Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей — сульфитов и карбонатов, приводящее к образованию кислых солей:

Na 2 CO 3 + CO 2 + H 2 O = 2NaHCO 3

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2

Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:

K 2 СO 3 + SO 2 = K 2 SO 3 + CO 2

ОВР с участием оксидов

Восстановление оксидов металлов и неметаллов

Аналогично тому, как металлы могут реагировать с растворами солей менее активных металлов, вытесняя последние в свободном виде, оксиды металлов при нагревании также способны реагировать с более активными металлами.

Напомним, что сравнить активность металлов можно либо используя ряд активности металлов, либо, если одного или сразу двух металлов нет в ряду активности, по их положению относительно друг друга в таблице Менделеева: чем ниже и левее металл, тем он более активен. Также полезно помнить, что любой металл из семейства ЩМ и ЩЗМ будет всегда активнее металла, не являющегося представителем ЩМ или ЩЗМ.

В частности, на взаимодействии металла с оксидом менее активного металла основан метод алюмотермии, используемый в промышленности для получения таких трудновосстанавливаемых металлов, как хром и ванадий:

Cr 2 O 3 + 2Al =t o => Al 2 O 3 + 2Cr

При протекании процесса алюмотермии образуется колоссальное количество тепла, а температура реакционной смеси может достигать более 2000 o C.

Также оксиды практически всех металлов, находящихся в ряду активности правее алюминия, могут быть восстановлены до свободных металлов водородом (H 2), углеродом (C) и угарным газом (CO) при нагревании. Например:

Fe 2 O 3 + 3CO =t o => 2Fe + 3CO 2

CuO + C =t o => Cu + CO

FeO + H 2 =t o => Fe + H 2 O

Следует отметить, что в случае, если металл может иметь несколько степеней окисления, при недостатке используемого восстановителя возможно также неполное восстановление оксидов. Например:

Fe 2 O 3 + CO =t o => 2FeO + CO 2

4CuO + C =t o => 2Cu 2 O + CO 2

Оксиды активных металлов (щелочных, щелочноземельных, магния и алюминия) с водородом и угарным газом не реагируют .

Однако оксиды активных металлов реагируют с углеродом, но иначе, чем оксиды менее активных металлов.

В рамках программы ЕГЭ, чтобы не путаться, следует считать, что в результате реакции оксидов активных металлов (до Al включительно) с углеродом образование свободного ЩМ, ЩЗМ, Mg, а также Al невозможно. В таких случаях происходит образование карбида металла и угарного газа. Например:

2Al 2 O 3 + 9C =t o => Al 4 C 3 + 6CO

CaO + 3C =t o => CaC 2 + CO

Оксиды неметаллов нередко могут быть восстановлены металлами до свободных неметаллов. Так, например, оксиды углерода и кремния при нагревании реагируют с щелочными, щелочноземельными металлами и магнием:

CO 2 + 2Mg =t o => 2MgO + C

SiO 2 + 2Mg =t o => Si + 2MgO

При избытке магния последнее взаимодействие может приводить также к образованию силицида магния Mg 2 Si:

SiO 2 + 4Mg =t o => Mg 2 Si + 2MgO

Оксиды азота могут быть относительно легко восстановлены даже менее активными металлами, например, цинком или медью:

Zn + 2NO =t o => ZnO + N 2

2NO 2 + 4Cu =t o => 4CuO + N 2

Взаимодействие оксидов с кислородом

Для того чтобы в заданиях реального ЕГЭ суметь ответить на вопрос, реагирует ли какой-либо оксид с кислородом (O 2), прежде всего нужно запомнить, что оксиды, способные реагировать с кислородом (из тех, что могут попасться вам на самом экзамене) могут образовать только химические элементы из списка:

углерод С, кремний Si, фосфор P, сера S, медь Cu, марганец Mn, железо Fe, хром Cr, азот N

Встречающиеся в реальном ЕГЭ оксиды любых других химических элементов с кислородом реагировать не будут (!) .

Для более наглядного удобного запоминания перечисленных выше списка элементов, на мой взгляд, удобна следующая иллюстрация:

Все химические элементы, способные образовывать оксиды, реагирующие с кислородом (из встречающегося на экзамене)

В первую очередь, среди перечисленных элементов следует рассмотреть азот N, т.к. отношение его оксидов к кислороду заметно отличается от оксидов остальных элементов приведенного выше списка.

Следует четко запомнить тот факт, что всего азот способен образовать пять оксидов, а именно:

Из всех оксидов азота с кислородом может реагировать только NO. Данная реакция протекает очень легко при смешении NO как с чистым кислородом, так и с воздухом. При этом наблюдается быстрое изменение окраски газа с бесцветной (NO) на бурую (NO 2):

2NO + O 2 = 2NO 2
бесцветный бурый

Для того чтобы дать ответ на вопрос — реагирует ли с кислородом какой-либо оксид любого другого из перечисленных выше химических элементов (т.е. С, Si , P , S , Cu , Mn , Fe , Cr ) — прежде всего обязательно нужно запомнить их основные степени окисления (СО). Вот они:

Далее нужно запомнить тот факт, что из возможных оксидов указанных выше химических элементов, с кислородом будут реагировать только те, которые содержат элемент в минимальной, среди указанных выше, степени окисления. При этом степень окисления элемента повышается до ближайшего положительного значения из возможных:

элемент

Отношение его оксидов к кислороду

С

Минимальная среди основных положительных степеней окисления углерода равна +2 , а ближайшая к ней положительная — +4 . Таким образом, с кислородом из оксидов C +2 O и C +4 O 2 реагирует только CO. При этом протекает реакция:

2C +2 O + O 2 =t o => 2C +4 O 2

CO 2 + O 2 ≠ — реакция невозможна в принципе, т.к. +4 – высшая степень окисления углерода.

Si

Минимальная среди основных положительных степеней окисления кремния равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов Si +2 O и Si +4 O 2 реагирует только SiO. Из-за некоторых особенностей оксидов SiO и SiO 2 возможно окисление лишь части атомов кремния в оксиде Si +2 O. Т.е. в результате его взаимодействия с кислородом, образуется смешанный оксид, содержащий как кремний в степени окисления +2, так и кремний в степени окисления +4, а именно Si 2 O 3 (Si +2 O·Si +4 O 2):

4Si +2 O + O 2 =t o => 2Si +2 ,+4 2 O 3 (Si +2 O·Si +4 O 2)

SiO 2 + O 2 ≠ — реакция невозможна в принципе, т.к. +4 – высшая степень окисления кремния.

P

Минимальная среди основных положительных степеней окисления фосфора равна +3, а ближайшая к нему положительная — +5. Таким образом, с кислородом из оксидов P +3 2 O 3 и P +5 2 O 5 реагирует только P 2 O 3 . При этом протекает реакция доокисления фосфора кислородом от степени окисления +3 до степени окисления +5:

P +3 2 O 3 + O 2 =t o => P +5 2 O 5

P +5 2 O 5 + O 2 ≠ — реакция невозможна в принципе, т.к. +5 – высшая степень окисления фосфора.

S

Минимальная среди основных положительных степеней окисления серы равна +4, а ближайшая к ней по значению положительная — +6. Таким образом, с кислородом из оксидов S +4 O 2 , S +6 O 3 реагирует только SO 2 . При этом протекает реакция:

2S +4 O 2 + O 2 =t o => 2S +6 O 3

2S +6 O 3 + O 2 ≠ — реакция невозможна в принципе, т.к. +6 – высшая степень окисления серы.

Cu

Минимальная среди положительных степеней окисления меди равна +1, а ближайшая к ней по значению — положительная (и единственная) +2. Таким образом, с кислородом из оксидов Cu +1 2 O, Cu +2 O реагирует только Cu 2 O. При этом протекает реакция:

2Cu +1 2 O + O 2 =t o => 4Cu +2 O

CuO + O 2 ≠ — реакция невозможна в принципе, т.к. +2 – высшая степень окисления меди.

Cr

Минимальная среди основных положительных степеней окисления хрома равна +2, а ближайшая к ней по значению положительная равна +3. Таким образом, с кислородом из оксидов Cr +2 O, Cr +3 2 O 3 и Cr +6 O 3 реагирует только CrO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +3:

4Cr +2 O + O 2 =t o => 2Cr +3 2 O 3

Cr +3 2 O 3 + O 2 ≠ — реакция не протекает, несмотря на то что существует оксид хрома и в большей, чем +3, степени окисления (Cr +6 O 3). Невозможность протекания данной реакции связана с тем, что требуемый для ее гипотетического осуществления нагрев сильно превышает температуру разложения оксида CrO 3 .

Cr +6 O 3 + O 2 ≠ — данная реакция не может протекать в принципе, т.к. +6 – высшая степень окисления хрома.

Mn

Минимальная среди основных положительных степеней окисления марганца равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из возможных оксидов Mn +2 O, Mn +4 O 2 , Mn +6 O 3 и Mn +7 2 O 7 реагирует только MnO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +4:

2Mn +2 O + O 2 =t o => 2Mn +4 O 2

в то время, как:

Mn +4 O 2 + O 2 ≠ и Mn +6 O 3 + O 2 ≠ — реакции не протекают, несмотря на то что существует оксид марганца Mn 2 O 7 , содержащий Mn в большей, чем +4 и +6, степени окисления. Связанно это с тем, что требуемый для дальнейшего гипотетического окисления оксидов Mn +4 O 2 и Mn +6 O 3 нагрев существенно превышает температуру разложения получаемых оксидов MnO 3 и Mn 2 O 7.

Mn +7 2 O 7 + O 2 ≠ — данная реакция невозможна в принципе, т.к. +7 – высшая степень окисления марганца.

Fe

Минимальная среди основных положительных степеней окисления железа равна +2 , а ближайшая к ней среди возможных — +3 . Несмотря на то что для железа существует степень окисления +6, кислотного оксида FeO 3 , впрочем, как и соответствующей ему «железной» кислоты не существует.

Таким образом, из оксидов железа с кислородом могут реагировать только те оксиды, которые содержат Fe в степени окисления +2. Это либо оксид Fe +2 O, либо смешанный оксид железа Fe +2 ,+3 3 O 4 (железная окалина):

4Fe +2 O + O 2 =t o => 2Fe +3 2 O 3 или

6Fe +2 O + O 2 =t o => 2Fe +2,+3 3 O 4

смешанный оксид Fe +2,+3 3 O 4 может быть доокислен до Fe +3 2 O 3:

4Fe +2 ,+3 3 O 4 + O 2 =t o => 6Fe +3 2 O 3

Fe +3 2 O 3 + O 2 ≠ — протекание данной реакции невозможно в принципе, т.к. оксидов, содержащих железо в степени окисления выше, чем +3, не существует.

Взаимодействие оксидов с водой

Правило Комментарий
Основный оксид + H 2 O → Щелочь

Реакция идет, если образуется растворимое основание, а также Ca(OH) 2:
Li 2 O + H 2 O → 2LiOH
Na 2 O + H 2 O → 2NaOH
K 2 O + H 2 O → 2KOH

CaO + H 2 O → Ca(OH) 2
SrO + H 2 O → Sr(OH) 2
BaO + H 2 O → Ba(OH) 2

MgO + H 2 O → Реакция не идет, ак как Mg(OH) 2 нерастворим*
FeO + H 2 O → Реакция не идет, так как Fe(OH) 2 нерастворим
CrO + H 2 O → Реакция не идет, так как Cr(OH) 2 нерастворим
CuO + H 2 O → Реакция не идет, так как Cu(OH) 2 нерастворим

Амфотерный оксид Амфотерные оксиды, также как и амфотерные гидроксиды, с водой не взаимодействуют
Кислотный оксид + H 2 O → Кислота

Все реакции идут за исключением SiO 2 (кварц, песок):
SO 3 + H 2 O → H 2 SO 4
N 2 O 5 + H 2 O → 2HNO 3
P 2 O 5 + 3H 2 O → 2H 3 PO 4 и т.д.

SiO 2 + H 2 O → реакция не идет

* Источник: "Я сдам ЕГЭ. Курс самоподготовки", стр. 143.

Взаимодействие оксидов друг с другом

1. Оксиды одного типа друг с другом не взаимодействуют:

Na 2 O + CaO → реакция не идет
CO 2 + SO 3 → реакция не идет

2. Как правило, оксиды разных типов взаимодействуют друг с другом (исключения: CO 2 , SO 2 , о них подробнее ниже):

Na 2 O + SO 3 → Na 2 SO 4
CaO + CO 2 → CaCO 3
Na 2 O + ZnO → Na 2 ZnO 2

Взаимодействие оксидов с кислотами

1. Как правило, основные и амфотерные оксиды взаимодействуют с кислотами:

Na 2 O + HNO 3 → NaNO 3 + H 2 O
ZnO + 2HCl → ZnCl 2 + H 2 O
Al 2 O 3 + 3H 2 SO 4 → Al 2 (SO 4) 3 + 3H 2 O

Исключением является очень слабая нерастворимая (мета)кремниевая кислота H 2 SiO 3 . Она реагирует только с щелочами и оксидами щелочных и щелочноземельных металлов.
CuO + H 2 SiO 3 → реакция не идет.

2. Кислотные оксиды не вступают в реакции ионного обмена с кислотами, но возможны некоторые окислительно-восстановительные реакции:

SO 2 + 2H 2 S → 3S + 2H 2 O
SO 3 + H 2 S → SO 2 - + H 2 O

SiO 2 + 4HF(нед.) → SiF 4 + 2H 2 O

С кислотами-окислителями (только если оксид можно окислить):
SO 2 + HNO 3 + H 2 O → H 2 SO 4 + NO

Взаимодействие оксидов с основаниями

1. Основные оксиды с щелочами и нерастворимыми основаниями НЕ взаимодействуют.

2. Кислотные оксиды взаимодействуют с основаниями с образованием солей:


CO 2 + 2NaOH → Na 2 CO 3 + H 2 O
CO 2 + NaOH → NaHCO 3 (если CO 2 в избытке)

3. Амфотерные оксиды взаимодействуют с щелочами (т.е. только с растворимыми основаниями) с образованием солей или комплексных соединений:

а) Реакциях с растворами щелочей:

ZnO + 2NaOH + H 2 O → Na 2 (тетрагидроксоцинкат натрия)
BeO + 2NaOH + H 2 O → Na 2 (тетрагидроксобериллат натрия)
Al 2 O 3 + 2NaOH + 3H 2 O → 2Na (тетрагидроксоалюминат натрия)

б) Сплавление с твердыми щелочами:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O (цинкат натрия)
(кислота: H 2 ZnO 2)
BeO + 2NaOH → Na 2 BeO 2 + H 2 O (бериллат натрия)
(кислота: H 2 BeO 2)
Al 2 O 3 + 2NaOH → 2NaAlO 2 + H 2 O (алюминат натрия)
(кислота: HAlO 2)

Взаимодействие оксидов с солями

1. Кислотные и амфотерные оксиды взаимодействуют с солями при условии выделения более летучего оксида, например, с карбонатами или сульфитами все реакции протекают при нагревании:

SiO 2 + CaCO 3 → CaSiO 3 + CO 2 -
P 2 O 5 + 3CaCO 3 → Ca 3 (PO 4) 2 + 3CO 2 -
Al 2 O 3 + Na 2 CO 3 → 2NaAlO 2 + CO 2
Cr 2 O 3 + Na 2 CO 3 → 2NaCrO 2 + CO 2
ZnO + 2KHCO 3 → K 2 ZnO 2 + 2CO 2 + H 2 O

SiO 2 + K 2 SO 3 → K 2 SiO 3 + SO 2 -
ZnO + Na 2 SO 3 → Na 2 ZnO 2 + SO 2 -

Если оба оксида являются газообразными, то выделяется тот, который соответствует более слабой кислоте:
K 2 CO 3 + SO 2 → K 2 SO 3 + CO 2 - (H 2 CO 3 слабее и менее устойчива, чем H 2 SO 3)

2. Растворенный в воде CO 2 растворяет нерастворимые в воде карбонаты (с образованием растворимых в воде гидрокарбонатов):
CO 2 + H 2 O + CaCO 3 → Ca(HCO 3) 2
CO 2 + H 2 O + MgCO 3 → Mg(HCO 3) 2

В тестовых заданиях такие реакции могут быть записаны как:
MgCO 3 + CO 2 (р-р), т.е. используется раствор с углекислым газом и, следовательно, в реакцию необходимо добавить воду.

Это один из способов получения кислых солей.

Восстановление слабых металлов и металлов средней активности из их оксидов возможно с помощью водорода, углерода, угарного газа или более активного металла (все реакции проводятся при нагревании):

1. Реакции с CO, C и H 2:

CuO + C → Cu + CO-
CuO + CO → Cu + CO 2
CuO + H 2 → Cu + H 2 O-

ZnO + C → Zn + CO-
ZnO + CO → Zn + CO 2
ZnO + H 2 → Zn + H 2 O-

PbO + C → Pb + CO
PbO + CО → Pb + CO 2 -
PbO + H 2 → Pb + H 2 O

FeO + C → Fe + CO
FeO + CО → Fe + CO 2 -
FeO + H 2 → Fe + H 2 O

Fe 2 O 3 + 3C → 2Fe + 3CO
Fe 2 O 3 + 3CО → 2Fe + 3CO 2
Fe 2 O 3 + 3H 2 → 2Fe + 3H 2 O-

WO 3 + 3H 2 → W + 3H 2 O

2. Восстановление активных металлов (до Al включительно) приводит к образованию карбидов, а не свободного металла:

CaO + 3C → CaC 2 + 3CO
2Al 2 O 3 + 9C → Al 4 C 3 + 6CO

3. Восстановление более активным металлом:

3FeO + 2Al → 3Fe + Al 2 O 3
Cr 2 O 3 + 2Al → 2Cr + Al 2 O 3 .

4. Некоторые оксиды неметаллов также возможно восстановить до свободного неметалла:

2P 2 O 5 + 5C → 4P + 5CO 2
SO 2 + C → S + CO 2
2NO + C → N 2 + CO 2
2N 2 O + C → 2N 2 + CO 2
SiO 2 + 2C → Si + 2CO

Только оксиды азота и углерода реагируют с водородом:

2NO + 2H 2 → N 2 + 2H 2 O
N 2 O + H 2 → N 2 + H 2 O

SiO 2 + H 2 → реакция не идет.

В случае углерода восстановления до простого вещества не происходит:
CO + 2H 2 <=> CH 3 OH (t, p, kt)

Особенности свойств оксидов CO 2 и SO 2

1. Не реагируют с амфотерными гидроксидами:

CO 2 + Al(OH) 3 → реакция не идет

2. Реагируют с углеродом:

CO 2 + C → 2CO-
SO 2 + C → S + CO 2 -

3. С сильными восстановителями SO 2 проявляет свойства окислителя:

SO 2 + 2H 2 S → 3S + 2H 2 O
SO 2 + 4HI → S + 2I 2 + 2H 2 O
SO 2 + 2C → S + CO 2
SO 2 + 2CO → S + 2CO 2 (Al 2 O 3 , 500°C)

4. Сильные окислители окисляют SO 2:

SO 2 + Cl 2 <=> SO 2 Cl 2
SO 2 + Br 2 <=> SO 2 Br 2
SO 2 + NO 2 → SO 3 + NO
SO 2 + H 2 O 2 → H 2 SO 4

5SO 2 + 2KMnO 4 +2H 2 O → 2MnSO 4 + K 2 SO 4 + 2H 2 SO 4
SO 2 + 2KMnO 4 + 4KOH → 2K 2 MnO 4 +K 2 SO 4 + 2H 2 O

SO 2 + HNO 3 + H 2 O → H 2 SO 4 + NO

6. Оксид углерода (IV) CO 2 проявляет менее выраженные окислительные свойства, реагируя только с активными металлами, например:

CO 2 + 2Mg → 2MgO + C (t)

Особенности свойств оксидов азота (N 2 O 5 , NO 2 , NO, N 2 O)

1. Необходимо помнить, что все оксиды азота являются сильными окислителями. Совсем необязательно помнить какие продукты образуются в подобных реакциях, так как подобные вопросы возникают только в тестах. Нужно лишь знать основные восстановители, такие как C, CO, H 2 , HI и йодиды, H 2 S и сульфиды, металлы (и т.д.) и знать, что оксиды азота их с большой вероятностью окислят.

2NO 2 + 4CO  → N 2 + 4CO 2
2NO 2 + 2S → N 2 + 2SO 2
2NO 2 + 4Cu → N 2 + 4CuO

N 2 O 5 + 5Cu → N 2 + 5CuO
2N 2 O 5 + 2KI → I 2 + 2NO 2 + 2KNO 3
N 2 O 5 + H 2 S → 2NO 2 + S + H 2 O

2NO + 2H 2 → N 2 + 2H 2 O
2NO + C → N 2 + CO 2
2NO + Cu → N 2 + 2Cu 2 O
2NO + Zn → N 2 + ZnO
2NO + 2H 2 S → N 2 + 2S + 2H 2 O

N 2 O + H 2 → N 2 + H 2 O
2N 2 O + C → 2N 2 + CO 2
N 2 O + Mg → N 2 + MgO

2. Могут окисляться сильными окислителями (кроме N 2 O 5 , так как степень окисления уже максимальная):
2NO + 3KClO + 2KOH → 2KNO 3 + 3KCl + H 2 O
8NO + 3HClO 4 + 4H 2 O → 8HNO 3 + 3HCl
14NO + 6HBrO 4 + 4H 2 O → 14HNO 3 + 3Br 2
NO + KMnO 4 + H 2 SO 4 → HNO 3 + K 2 SO 4 + MnSO 4 + H 2 O
5N 2 O + 2KMnO 4 + 3H 2 SO 4 → 10NO + 2MnSO 4 + K 2 SO 4 + 3H 2 O.

3. Несолеобразующие оксиды N 2 O и NO не реагируют ни с водой, ни с щелочами, ни с обычными кислотами (кислотами-неокислителями).

Химические свойства CO как сильного восстановителя

1. Реагирует с некоторыми неметаллами:

2CO + O 2 → 2CO 2
CO + 2H 2 <=> CH 3 OH (t, p, kt)
CO + Cl 2 <=> COCl 2 (фосген)

2. Реагирует с некоторыми сложными соединениями:

CO + KOH → HCOOK
CO + Na 2 O 2 → Na 2 CO 3
CO + Mg → MgO + C (t)

3. Восстанавливает некоторые металлы (средней и малой активности) и неметаллы из их оксидов:

CO + CuO → Cu + CO 2
3CO + Fe 2 O 3 → 2Fe + 3CO 2
3CO + Cr 2 O 3 → 2Cr + 3CO 2

2CO + SO 2 → S + 2CO 2 - (Al 2 O 3 , 500°C)
5CO + I 2 O 5 → I 2 + 5CO 2 -
4CO + 2NO 2 → N 2 + 4CO 2

3. С обычными кислотами и водой CO (также как и другие несолеобразующие оксиды) не реагирует.

Химические свойства SiO 2

1. Взаимодействует с активными металлами:

SiO 2 + 2Mg → 2MgO + Si
SiO 2 + 2Ca → 2CaO + Si
SiO 2 + 2Ba → 2BaO + Si

2. Взаимодействует с углеродом:

SiO 2 + 2C → Si + 2CO
(Согласно пособию "Курс самоподготовки" Каверина, SiO 2 + CO → реакция не идет)

3 С водородом SiO 2 не взаимодействует.

4. Реакции с растворами или расплавами щелочей, с оксидами и карбонатами активных металлов:

SiO 2 + 2NaOH → Na 2 SiO 3 +H 2 O
SiO 2 + CaO → CaSiO 3
SiO 2 + BaO → BaSiO 3
SiO 2 + Na 2 CO 3 → Na 2 SiO 3 + CO 2
SiO 2 + CaCO 3 → CaSiO 3 + CO 2

SiO 2 + Cu(OH) 2 → реакция не идет (из оснований оксид кремния реагирует только с щелочами).

5. Из кислот SiO 2 взаимодействует только с плавиковой кислотой:

SiO 2 + 4HF → SiF 4 + 2H 2 O.

Свойства оксида P 2 O 5 как сильного водоотнимающего средства

HCOOH + P 2 O 5 → CO + H 3 PO 4
2HNO 3 + P 2 O 5 → N 2 O 5 + 2HPO 3
2HClO 4 + P 2 O 5 → Cl 2 O 7 + 2HPO 3 .

Термическое разложение некоторых оксидов

В вариантах экзамена такое свойство оксидов не встречается, но рассмотрим его для полноты картины:
Основные:
4CuO → 2Cu 2 O + O 2 (t)
2HgO → 2Hg + O 2 (t)

Кислотные:
2SO 3 → 2SO 2 + O 2 (t)
2N 2 O → 2N 2 + O 2 (t)
2N 2 O 5 → 4NO 2 + O 2 (t)

Амфотерные:
4MnO 2 → 2Mn 2 O 3 + O 2 (t)
6Fe 2 O 3 → 4Fe 3 O 4 + O 2 (t).

Особенности оксидов NO 2 , ClO 2 и Fe 3 O 4

1. Диспропорционирование: оксидам NO 2 и ClO 2 соответствуют две кислоты, поэтому при взаимодействии с щелочами или карбонатами щелочных металлов образуются две соли: нитрат и нитрит соответствующего металла в случае NO 2 и хлорат и хлорит в случае ClO 2:

2N +4 O 2 + 2NaOH → NaN +3 O 2 + NaN +5 O 3 + H 2 O

4NO 2 + 2Ba(OH) 2 → Ba(NO 2) 2 + Ba(NO 3) 2 + 2H 2 O

2NO 2 + Na 2 CO 3 → NaNO 3 + NaNO 2 + CO 2

В аналогичных реакциях с кислородом образуются только соединения с N +5 , так как он окисляет нитрит до нитрата:

4NO 2 + O 2 + 4NaOH → 4NaNO 3 + 2H 2 O

4NO 2 + O 2 + 2H 2 O → 4HNO 3 (растворение в избытке кислорода)

2Cl +4 O 2 + H 2 O → HCl +3 O 2 + HCl +5 O 3
2ClO2 + 2NaOH → NaClO 2 + NaClO 3 + H 2 O

2. Оксид железа (II,III) Fe 3 O 4 (FeO·Fe 2 O 3) содержит железо в двух степенях окисления: +2 и +3, поэтому в реакциях с кислотами образуются две соли:

Fe 3 O 4 + 8HCl → FeCl 2 + 2FeCl 3 4H 2 O.

Оксиды – сложные вещества, состоящие из двух элементов, одним из которых является кислород. Оксиды могут быть солеобразующими и несолеобразующими: одним из видов солеобразующих оксидов являются основные оксиды. Чем они отличаются от других видов, и каковы их химические свойства?

Солеобразующие оксиды подразделяются на основные, кислотные и амфотерные оксиды. Если основным оксидам соответствуют основания, то кислотным – кислоты, а амфотерным оксидам соответствуют амфотерные образования. Амфотерными оксидами называют такие соединения, которые в зависимости от условий могут проявлять либо основные, либо кислотные свойства.

Рис. 1. Классификация оксидов.

Физические свойства оксидов очень разнообразны. Они могут быть как газами (CO 2), так и твердыми (Fe 2 O 3) или жидкими веществами (H 2 O).

При этом большинство основных оксидов является твердыми веществами различных цветов.

оксиды, в которых элементы проявляют свою высшую активность называются высшими оксидами. Порядок возрастания кислотных свойств высших оксидов соответствующих элементов в периодах слева направо объясняется постепенным возрастанием положительного заряда ионов этих элементов.

Химические свойства основных оксидов

Основными оксидами называются оксиды, которым соответствуют основания. Например, основным оксидам K 2 O, СaO соответствуют основания KOH, Ca(OH) 2 .

Рис. 2. Основные оксиды и соответствующие им основания.

Основные оксиды образуются типичными металлами, а также металлами переменной валентности в низшей степени окисления (например, CaO, FeO), реагируют с кислотами и кислотными оксидами, образуя при этом соли:

CaO (основной оксид)+CO 2 (кислотный оксид)=СaCO 3 (соль)

FeO (основной оксид)+H 2 SO 4 (кислота)=FeSO 4 (соль)+2H 2 O (вода)

Основные оксиды также взаимодействуют с амфотерными оксидами, в результате чего происходит образование соли, например:

С водой реагируют только оксиды щелочных и щелочно-земельных металлов:

BaO (основной оксид)+H 2 O (вода)=Ba(OH) 2 (основание щелочнозем. металла)

Многие основные оксиды имеют характер восстанавливаться до веществ, состоящих из атомов одного химического элемента:

3CuO+2NH 3 =3Cu+3H 2 O+N 2

При нагревании разлагаются только оксиды ртути и благородных металлов:

Рис. 3. Оксид ртути.

Список основных оксидов:

Название оксида Химическая формула Свойства
Оксид кальция CaO негашенная известь, белое кристаллическое вещество
Оксид магния MgO белое вещество, малорастворимое в воде
Оксид бария BaO бесцветные кристаллы с кубической решеткой
Оксид меди II CuO вещество черного цвета практически нерастворимое в воде
HgO твердое вещество красного или желто-оранжевого цвета
Оксид калия K 2 O бесцветное или бледно-желтое вещество
Оксид натрия Na 2 O вещество, состоящее из бесцветных кристаллов
Оксид лития Li 2 O вещество, состоящее из бесцветных кристаллов, которые имеют строение кубической решетки

В главных подгруппах периодической системы при переходе от одного элемента к другому сверху вниз наблюдается усиление основных свойств оксидов

Что мы узнали?

При образовании основных оксидов одним из обязательных элементов является кислород.Основные оксиды обладают рядом физических и химических свойств, таких как взаимодействие с водой, кислотами и другими оксидами.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 734.