Характеристические параметры идеальных однослойных и многослойных нанотрубок. Углеродные нанотрубки, графен и т.п. Сведения об электродах, подлежащие регистрации

Вступление

Еще 15-20 лет назад многие даже и не задумывались над возможной заменой кремния. Мало кто мог предполагать, что уже в начале двадцать первого века между полупроводниковыми компаниями начнется настоящая «гонка нанометров». Постепенное сближение с наномиром заставляет задуматься, а что же будет дальше? Будет ли продолжен знаменитый закон Мура? Ведь с переходом на более тонкие производственные нормы перед разработчиками предстают все более сложные задачи. Многие специалисты вообще склонны считать, что через десяток-другой лет кремний приблизится к физически непреодолимой границе, когда создавать более тонкие кремниевые структуры уже будет невозможно.

Судя по последним исследованиям, одними из наиболее вероятных (но далеко не единственных) кандидатов на должность «кремниезаменителей» являются материалы на основе углерода - углеродные нанотрубки и графен - которые, предположительно, могут стать основой наноэлектроники будущего. О них мы и хотели поговорить в этой статье. Вернее, речь пойдет все-таки больше о нанотрубках, поскольку они были получены раньше и лучше изучены. Разработок, связанных с графеном пока гораздо меньше, но это ни чуть не умаляет его достоинства. Часть исследователей полагают, что графен является более перспективным материалом, чем углеродные нанотрубки, поэтому о нем мы сегодня также скажем пару слов. Тем более, некоторые достижения исследователей, которые произошли совсем недавно, придают немного оптимизма.

Вообще-то, охватить все достижения в этих активно развивающихся областях в рамках одной статьи весьма непросто, поэтому остановимся лишь на ключевых событиях последних месяцев. Цель статьи - вкратце познакомить читателей с важнейшими и наиболее интересными последними достижениями в области «углеродной» наноэлектроники и перспективными сферами её применения. Для тех, кто заинтересуется, найти множество более детальной информации по этой теме не должно составить труда (особенно, со знанием английского языка).

Углеродные нанотрубки

После того, как к традиционным трем аллотропным формам углерода (графиту, алмазу и карбину) добавилась еще одна (фуллерены), на протяжении нескольких последующих лет с исследовательских лабораторий шквалом посыпались сообщения об открытии и изучении разнообразных структур на основе углерода с интересными свойствами, таких как нанотрубки, нанокольца, ультрадисперсные материалы и пр.

В первую очередь нас интересуют углеродные нанотрубки - полые продолговатые цилиндрические структуры диаметром порядка от единиц до десятков нанометров (длина традиционных нанотрубок исчисляется микронами, хотя в лабораториях уже получают структуры длиной порядка миллиметров и даже сантиметров). Эти наноструктуры можно представить следующим образом: просто берем полоску графитовой плоскости и сворачиваем её в цилиндр. Конечно, это лишь образное представление. В действительности же непосредственно получить графитовую плоскость и скрутить её «в трубочку» не представляется возможным. Методы получения углеродных нанотрубок являются довольно сложной и объемной технической проблемой, и их рассмотрение выходит за рамки данной статьи.

Углеродные нанотрубки характеризуются большим разнообразием форм. К примеру, они могут быть одностенными или многостенными (однослойными или многослойными), прямыми или спиральными, длинными и короткими, и т. д. Что важно, нанотрубки оказались необыкновенно прочными на растяжение и на изгиб. Под действием больших механических напряжений нанотрубки не рвутся, не ломаются, а просто перестраивается их структура. Кстати, раз уж зашла речь о прочности нанотрубок, интересно отметить одно из последних исследований природы этого свойства.

Исследователи из Университета Райса (Rice University) под руководством Бориса Якобсона установили, что углеродные нанотрубки ведут себя как «умные самовосстанавливающиеся структуры» (исследование было опубликовано 16 февраля 2007 года в журнале Physical Review Letters). Так, при критическом механическом воздействии и деформациях, вызванных изменениями температуры или радиоактивным излучением, нанотрубки умеют сами себя «ремонтировать». Оказывается, кроме 6-углеродных ячеек в нанотрубках также присутствуют пяти- и семиатомные кластеры. Эти 5/7-атомные ячейки проявляют необычное поведение, циклически передвигаясь вдоль поверхности углеродной нанотрубки, как пароходы по морю. При возникновении повреждения в месте дефекта эти ячейки принимают участие в «заживлении раны», перераспределяя энергию.

Кроме того, нанотрубки демонстрируют множество неожиданных электрических, магнитных, оптических свойств, которые уже стали объектами ряда исследований. Особенностью углеродных нанотрубок является их электропроводность, которая оказалась выше, чем у всех известных проводников. Они также имеют прекрасную теплопроводность, стабильны химически и, что самое интересное, могут приобретать полупроводниковые свойства. По электронным свойствам углеродные нанотрубки могут вести себя как металлы, либо как полупроводники, что определяется ориентацией углеродных многоугольников относительно оси трубки.

Нанотрубки склонны крепко слипаться между собой, формируя наборы, состоящие из металлических и полупроводниковых нанотрубок. До сих пор трудной задачей является синтез массива из только полупроводниковых нанотрубок или сепарация (отделение) полупроводниковых от металлических. С новейшими способами решения этой проблемы мы познакомимся далее.

Графен

Графен, по сравнению с углеродными нанотрубками, был получен гораздо позже. Возможно, этим объясняется тот факт, что о графене в новостях мы слышим пока что гораздо реже, чем об углеродных нанотрубках, так как он слабее изучен. Но это отнюдь не умаляет его достоинств. Кстати, пару недель назад графен оказался в центре внимания в ученых кругах, благодаря новой разработке исследователей. Но об этом чуть позже, а сейчас немного истории.

В октябре 2004 года информационный ресурс BBC News сообщил о том, что профессор Андре Гейм (Andre Geim) со своими коллегами из Манчестерского Университета (Великобритания) совместно с группой доктора Новоселова (Черноголовка, Россия) сумели получить материал толщиной в один атом углерода. Названный графеном, он представляет собой двухмерную плоскую молекулу углерода толщиной в один атом. Впервые в мире удалось отделить атомарный слой от кристалла графита.

Тогда же Геймом и его командой был предложен так называемый баллистический транзистор на базе графена. Графен позволит создавать транзисторы и другие полупроводниковые приборы с очень малыми габаритами (порядка нескольких нанометров). Уменьшение длины канала транзистора приводит к изменению его свойств. В наномире усиливается роль квантовых эффектов. Электроны перемещаются по каналу как волна де Бройля, а это уменьшает количество столкновений и, соответственно, повышает энергоэффективность транзистора.

Графен можно представить в виде «развернутой» углеродной нанотрубки. Повышенная мобильность электронов переводит его в разряд наиболее перспективных материалов для наноэлектроники. Поскольку с момента получения графена не прошло и трех лет, его свойства пока изучены не очень хорошо. Но первые интересные результаты экспериментов уже есть.

Последние «углеродные» достижения

Так как мы вначале познакомились с углеродными нанотрубками (хронологически они были получены первыми), то в этой части статьи также начнем с них. Вероятно, у Вас может возникнуть вопрос следующего содержания: если углеродные нанотрубки настолько хороши и перспективны, так почему же до сих пор они не внедрены в массовое производство?

Одна из главных проблем уже упоминалась в начале статьи. Способ синтеза массива, состоящего только из нанотрубок с определенными свойствами, формой и габаритами, который смог бы быть внедрен в массовое производство, на данный момент пока не создан. Большее внимание уделяется сортировке «смешанного» массива, состоящего из нанотрубок с полупроводниковыми и металлическими свойствами (не менее важной является также сортировка по длине и диаметру). Тут уместно вспомнить одну из первых разработок в этой области, которая принадлежит компании IBM, после которой перейдем к последним достижениям.

В работе, датированной апрелем 2001 года, «Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown», сообщается, что исследователи компании IBM впервые построили транзистор на основе углеродных нанотрубок, имеющих диаметр в 1 нанометр, и длиной порядка единиц микрон. Внимание акцентировалось на том, что им удалось найти способ, позволяющий в перспективе сделать такое производство массовым.

Ученые из IBM разработали метод, который позволил им разрушать все металлические нанотрубки и при этом оставить неповрежденными полупроводниковые. На первом этапе массив нанотрубок помещают на подложку диоксида кремния. Далее поверх нанотрубок формируются электроды. Кремниевая подложка играет роль нижнего электрода и способствует запиранию полупроводниковых нанотрубок. Далее подается избыточное напряжение. В результате «незащищенные» нанотрубки с металлическими свойствами разрушаются, а полупроводниковые остаются целыми и невредимыми.

Но это все просто на словах, а в реальности сам процесс выглядит куда сложнее. Сообщалось о планах довести разработку до ума уже через 3-4 года (т. е. к 2004/2005 году), но, как видим, сообщений о внедрении данной технологии пока не поступало.

Теперь перейдем к современности, а именно - концу осени прошлого года. Тогда сайт Technology Review сообщил о новом методе сортировки углеродных нанотрубок, который разработали исследователи Северно-Западного Университета (Northwestern University). Помимо сепарации на основе проводящих свойств, этот метод также позволяет сортировать нанотрубки по их диаметру.

Любопытно, что первоначально ставилась цель проводить сортировку только по диаметру, а возможность сортировать и по электрической проводимости оказалась неожиданностью для самих исследователей. Профессор химии Монреальского Университета (Монреаль, Канада) Ричард Мартел (Richard Martel) отметил, что новый метод сортировки можно назвать крупным прорывом в этой области.

В основу нового метода сортировки легло ультрацентрифугирование (ultracentrifugation), которое предусматривает вращение материала с огромными скоростями до 64 тыс. оборотов в минуту. Перед этим на массив нанотрубок наносится поверхностно-активное вещество, которое после ультрацентрифугирования распределяется неравномерно в соответствии с диаметром и электропроводимостью нанотрубок. Один из тех, кто тесно ознакомился с новым методом, профессор университета Флориды (University of Florida at Gainesville) Эндрю Райнцлер (Andrew Rinzler) сообщил, что предложенный метод сортировки позволит получить массив с концентрацией полупроводниковых трубок 99% и выше.

Новая технология уже была задействована в экспериментальных целях. С помощью отсортированных полупроводниковых нанотрубок были созданы транзисторы с относительно простой структурой, которые могут использоваться для контроля пикселей в панелях мониторов и телевизоров.

Кстати, в отличие от метода IBM, когда металлические нанотрубки просто разрушались, исследователи Северно-Западного университета с помощью ультрацентрифугирования могут получать и металлические нанотрубки, которые также могут найти применение в электронных устройствах. К примеру, они могут использоваться как прозрачные электроды в некоторых типах дисплеев и органических ячейках солнечных батарей.

Не будем углубляться в другие проблемы, которые препятствуют внедрению нанотрубок, такие как технологические трудности интеграции в серийные электронные устройства, а также значительные потери энергии в местах соединения металла с нанотрубками, что обусловлено высоким сопротивлением контакта. Скорее всего, раскрытие этих серьезных тем покажется малоинтересным и слишком сложным для рядового читателя, к тому же может занять несколько страниц.

Что касается графена, рассмотрение достижений в этой области, пожалуй, начнем с весны прошлого года. В апреле 2006 в журнале Science Express появилась публикация фундаментального исследования свойств графена, проведенного группой ученых из Технологического Института Джорджии (Georgia Institute of Technology (GIT), США) и Национального центра научных исследований Франции (Centre National de la Recherche Scientifique).

Первый важный тезис работы: электронные схемы на основе графена можно производить традиционным оборудованием, которое используется в полупроводниковой промышленности. Профессор института GIT Вальт де Хир (Walt de Heer) вкратце обозначил успех исследования так: «Мы показали, что можем создавать графеновый материал, «вырезать» графеновые структуры, а также то, что графен имеет отличные электрические свойства. Этот материал характеризуется высокой подвижностью электронов».

Многие ученые и сами исследователи говорят о том, что они заложили фундамент (базу) графеновой электроники. Отмечается, что углеродные нанотрубки являются лишь первой ступенью к миру наноэлектроники. В будущем же электроники Вальт де Хир и его коллеги видят именно графен. Примечательно, что исследования поддерживаются компанией Intel, а денег на ветер она не бросает.

Теперь вкратце опишем метод получения графена и графеновых микросхем, предложенный Вальт де Хиром и его коллегами. Нагревая подложку карбида кремния в высоком вакууме, ученые заставляют атомы кремния покинуть подложку, в результате чего остается только тонкий слой атомов углерода (графен). На следующем этапе они наносят фоторезистивный материал (фоторезист) и применяют традиционную электронно-лучевую литографию для вытравливания требуемых «узоров», то есть используют повсеместно применяемые сейчас производственные технологии. Это и является существенным преимуществом графена перед нанотрубками.

В результате ученым удалось вытравливать 80-нм наноструктуры. Таким способом был создан графеновый полевой транзистор. Серьезным недостатком можно назвать большие токи утечки созданного прибора, хотя ученых тогда это нисколько не огорчило. Они полагали, что на начальном этапе это вполне нормальное явление. Кроме того, было создано вполне работоспособное устройство квантовой интерференции, которое можно применять для управления электронными волнами.

С весны прошлого года громких достижений подобно апрельской разработке не наблюдалось. По крайней мере, они не появлялись на страницах интернет-сайтов. А вот февраль этого года отметился сразу несколькими событиями и опять заставил задуматься о «графеновых перспективах».

В начале прошлого месяца свою разработку представила компания AMO (AMO nanoelectronics group) в рамках проекта ALEGRA. Инженерам AMO удалось создать графеновый транзистор с верхним затвором (top-gated transistor), что делает их структуру схожей с современными кремниевыми полевыми транзисторами (MOSFET). Что интересно, графеновый транзистор был создан при помощи традиционной производственной КМОП-технологии.

В отличие от полевых МОП-транзисторов (МОП - металл-оксид-полупроводник) графеновые транзисторы, созданные инженерами AMO, характеризуются более высокой подвижностью электронов и скоростью переключения. К сожалению, на данный момент детали разработки не разглашаются. Первые подробности будут опубликованы в апреле этого года в журнале IEEE Electron Device Letters.

Теперь переходим к еще одной «свежей» разработке - графеновому транзистору, работающему как одноэлектронный полупроводниковый прибор. Интересно, что создателями этого устройства являются уже известные нам профессор Гейм, русский ученый Константин Новоселов и другие.

Этот транзистор имеет области, в которых электрический заряд становится квантованным. При этом наблюдается эффект кулоновской блокады (при переходе электрона появляется напряжение, препятствующее движению следующих частиц, он своим зарядом отталкивает собратьев. Это явление и было названо кулоновской блокадой. Из-за блокады очередной электрон пройдет только тогда, когда предыдущий удалится от перехода. Таким образом, частицы смогут «перескакивать» только через определенные промежутки времени). В результате по каналу транзистора, имеющего ширину всего несколько нанометров, может проходить только один электрон. То есть появляется возможность управлять полупроводниковым приборам всего одним электроном.

Возможность управлять отдельно взятыми электронами открывает новые возможности перед создателями электронных схем. В результате можно существенно понизить напряжение затвора. Устройства на базе одноэлектронных графеновых транзисторов будут отличаться высокой чувствительностью и отличными скоростными показателями. Конечно, на порядок уменьшатся и габариты. Что важно, преодолена серьезная проблема, характерная для опытного образца графенового транзистора Вальта де Хира, - большие токи утечки.

Хочется отметить, что одноэлектронные приборы раньше уже создавали с использованием традиционного кремния. Но проблема в том, что большинство из них может работать только при очень низких температурах (хотя уже есть образцы, работающие и при комнатной температуре, но они гораздо крупнее графеновых транзисторов). Детище Гейма и его коллег спокойно может работать при комнатной температуре.

Перспективы применения углеродных наноматериалов

Скорее всего, эта часть статьи окажется наиболее интересной читателям. Ведь теория это одно, а воплощение достижений науки в реальных полезных человеку устройствах, пусть даже прототипах, должно заинтересовать потребителя. Вообще говоря, возможная сфера применения углеродных нанотрубок и графена достаточно разнообразна, но нас в первую очередь интересует мир электроники. Сразу хочется отметить, что графен является более «молодым» углеродным материалом и пока находится только в начале пути исследований, поэтому в этой части статьи основное внимание будет уделено устройствам и технологиям на базе углеродных нанотрубок.

Дисплеи

Применение углеродных нанотрубок в дисплеях тесно связано с технологией FED (Field Emission Display), которая была разработана французской компанией LETI и впервые представлена в далеком 1991 году. В отличие от ЭЛТ, где применяется до трех так называемых «горячих» катодов, в FED-дисплеях изначально применялась матрица из множества «холодных» катодов. Как оказалось, слишком высокий процент брака сделал FED-дисплеи неконкурентоспособными. К тому же в 1997-1998 годам наметилась тенденция к существенному удешевлению жидкокристаллических панелей, что, как тогда казалось, не оставляло никаких шансов технологии FED.

Детище компании LETI получило «второе дыхание» к концу прошлого века, когда появились первые исследования FED-дисплеев, в которых в качестве катодов было предложено использовать массивы углеродных нанотрубок. Ряд крупных производителей проявили интерес к дисплеям на базе углеродных нанотрубок, среди которых хорошо известные каждому компании Samsung, Motorola, Fujitsu, Canon, Toshiba, Philips, LG, Hitachi, Pioneer и другие. На иллюстрации вы видите один из вариантов реализации FED-дисплеев на углеродных нанотрубках SDNT (small diameter carbon nanotubes, углеродные нанотрубки малого диаметра).

Отмечается, что FED-дисплеи на углеродных нанотрубках могут соревноваться с современными панелями с большой диагональю и в будущем составят серьезную конкуренцию в первую очередь плазменным панелям (именно они сейчас господствуют в секторе со сверхбольшими диагоналями). Самое главное, что углеродные нанотрубки позволят существенно удешевить производство FED-дисплеев.

Из последних новостей мира нанотрубочных FED-дисплеев стоит вспомнить недавнее сообщение компании Motorola о том, что её разработки практически готовы покинуть стены исследовательских лабораторий и перейти в стадию серийного производства. Интересно, что Motorola не планирует строить собственные заводы для производства нанотрубочных дисплеев и в данный момент ведет лицензионные переговоры с несколькими производителями. Руководитель исследовательских и опытных подразделений компании Motorola Джеймс Джески (James Jaskie) отметил, что две азиатских компании уже строят заводы для производства дисплеев на базе углеродных нанотрубок. Так что нанотрубочные дисплеи не такое уж далекое будущее, и их пора уже воспринимать всерьез.

Одной из трудных задач, которые предстали перед инженерами Motorola, было создание низкотемпературного метода получения углеродных нанотрубок на подложке (чтобы не расплавить стеклянную подложку). И этот технологический барьер уже преодолен. Также сообщается об успешном завершении разработки методов сортировки нанотрубок, что для многих компаний, работающих в этой отрасли, стало «непреодолимой преградой».

Директор DiplaySearch Стив Юричич (Steve Jurichich) считает, что преждевременно радоваться компании Motorola пока рано. Ведь впереди еще завоевание рынка, где место «под солнцем» уже заняли производители жидкокристаллических и плазменных панелей. Не стоит забывать и о других перспективных технологиях, таких как OLED (дисплеи на органических светодиодах), QD-LED (quantum-dot LED, разновидность дисплеев на светодиодах с использованием так называемых квантовых точек, разработаны американской компанией QD Vision). К тому же в перспективе жесткую конкуренцию Motorola могут составить компания Samsung Electronics и совместный проект по внедрению нанотрубочных дисплеев Canon и Toshiba (кстати, они планируют начать поставки первых нанотрубочных дисплеев к концу текущего года).

Углеродные нанотрубки нашли применение не только в FED-дисплеях. Исследователи лаборатории Regroupement Quebecois sur les Materiaux de Pointe (провинция Квебек, Канада) предложили использовать в качестве электродов для OLED-дисплеев материал на основе одностенных углеродных нанотрубок. Как сообщает сайт Nano Technology World, новая технология позволит создавать очень тонкую электронную бумагу. Благодаря высокой прочности нанотрубок и чрезвычайно малой толщине матрицы электродов, OLED-дисплеи могут быть очень гибкими, а также иметь высокую степень прозрачности.


Память

Прежде чем начать рассказ о наиболее интересных «углеродных» разработках в области памяти хочется отметить, что исследования технологий хранения информации в целом являются одним из наиболее активно развивающихся направлений в настоящее время. Недавно прошедшие выставки Consumer Electronic Show (Лас-Вегас) и ганноверская CeBIT показали, что интерес к разнообразным накопителям, системам хранения данных со временем не утихает, а только возрастает. И это неудивительно. Только вдумайтесь: по данным аналитической организации IDC, в 2006 году было сгенерировано около 161 млрд. гигабайт информации (161 экзабайт), что в десятки раз превышает показатели прошлых лет!

За прошедший 2006 год оставалось только удивляться изобретательским идеям ученых. Чего мы только не видели: и память на золотых наночастицах, и память на базе сверхпроводников, и даже память... на вирусах и бактериях! Последнее время все чаще в новостях упоминаются такие технологии энергонезависимой памяти, как MRAM, FRAM, PRAM и другие, которые являются уже не только «бумажными» экспонатами или демонстрационными прототипами, а вполне работоспособными устройствами. Так что технологии памяти на основе углеродных нанотрубок являются лишь небольшой частицей исследований, посвященных хранению информации.

Пожалуй, начнем наше повествование о «нанотрубочной» памяти с разработок компании Nantero, уже ставшей довольно известной в своей области. Все началось с далекого 2001 года, когда в молодую компанию были привлечены большие инвестиции, позволившие начать активные разработки нового типа энергонезависимой памяти NRAM на базе углеродных нанотрубок. В прошлом году мы видели несколько серьезных разработок Nantero. В апреле 2006 компания сообщила о создании переключателя памяти типа NRAM, произведенного по 22-нм нормам. Помимо фирменных разработок Nantero, к созданию нового устройства были привлечены существующие производственные технологии. В мае того же года её технология создания устройств на базе углеродных нанотрубок была успешна интегрирована.в КМОП-производство на оборудовании компании LSI Logic Corporation (на фабрике компании ON Semiconductor).

В конце 2006 года произошло знаменательное событие. Компания Nantero сообщила о преодолении всех основных технологических барьеров, препятствующих массовому производству чипов на базе углеродных нанотрубок с использованием традиционного оборудования. Разработан способ нанесения нанотрубок на кремниевую подложку с использованием такого известного метода, как spin-coating, после чего применяются традиционные для полупроводникового производства литография и травление. Одним из достоинств NRAM-памяти называются высокие скорости чтения/записи.

Впрочем, углубляться в технологические тонкости не будем. Отмечу лишь, что подобного рода достижения дают все основания Nantero рассчитывать на успех. Если инженерам компании удастся довести разработку до логического конца и производство чипов NRAM будет не очень дорогим (а возможность применения существующего оборудования дает право надеяться на это), то мы станем свидетелями появления нового грозного оружия на рынке памяти, которое может серьезно потеснить существующие типы памяти, включая SRAM, DRAM, NAND, NOR и т.д.

Как и во многих других областях науки и техники, исследованиями памяти на углеродных нанотрубках занимаются не только коммерческие компании, такие как Nantero, а и лаборатории ведущих учебных заведений мира. Среди интересных работ, посвященных «углеродной» памяти, хочется отметить разработку сотрудников гонконгского политехнического университета (Hong- Kong Polytechnic University), опубликованную в апреле прошлого года на страницах онлайн-издания Applied Physics Letters.

В отличие от многих подобных разработок, функционирующих лишь при очень низких температурах, устройство, созданное физиками Джайеном Даем (Jiyan Dai) и Лу (X. B. Lu), может работать и при комнатной температуре. Энергонезависимая память, созданная гонконгскими исследователями, не такая быстрая, как NRAM компании Nantero, поэтому перспектива сдвинуть с трона DRAM ей, скорее всего, не удастся. А вот как потенциальную замену традиционной флэш-памяти её рассматривать можно.

Для того, чтобы понять в общих чертах принцип функционирования этой памяти, достаточно взглянуть на нижеприведенную иллюстрацию (b). Углеродные нанотрубки (CNT, carbon nanotubes) играют роль слоя для хранения (запоминания) заряда. Они как бы зажаты между двумя слоями HfAlO (состоящими из гафния, алюминия и кислорода), которые играют роль управляющего затвора и слоя окиси. Вся эта структура размещается на кремниевой подложке.

Довольно оригинальное решение предложили корейские ученые Йон Вон Кан (Jeong Won Kang) и Кин Янь (Qing Jiang). Им удалось разработать память на базе так называемых телескопических нанотрубок. Принцип, положенный в основу новой разработки, был открыт еще в 2002 году и был описан в работе «Multiwalled Carbon Nanotubes as Gigahertz Oscillators». Её авторам удалось установить, что нанотрубка с вложенной в неё другой нанотрубкой меньшего диаметра образуют осциллятор, достигающий частоты колебаний порядка гигагерц.

Высокая скорость скольжения нанотрубок, вложенных в другие нанотрубки, обуславливает быстродействие нового типа памяти. Йон Вон Кан и Кин Янь утверждают, что их разработка может применяться не только как флэш-память, а и в роли быстродействующего ОЗУ. Принцип работы памяти легко понять исходя из рисунка.

Как видите, пара вложенных одна в другую нанотрубок помещаются между двумя электродами. При подаче заряда на один из электродов внутренняя нанотрубка перемещается в ту или иную сторону под действием сил Ван-дер-Ваальса. Этой разработке присущ один существенный недостаток: образец такой памяти может работать только при очень низких температурах. Впрочем, ученые уверены, что эти проблемы временные и их можно будет преодолеть на следующих этапах исследований.

Вполне естественно, многие разработки так и останутся мертворожденными. Ведь одно дело прототип, работающий в лабораторных условиях, а на пути к коммерциализации технологии всегда лежит множество трудностей, и не только чисто технических, а и материальных. В любом случае, существующие работы внушают определенный оптимизм и довольно познавательны.

Процессоры

Теперь помечтаем о том, какое углеродное будущее может ждать процессоры. Гиганты процессорной индустрии активно ищут новые способы продления закона Гордона Мура, и с каждым годом им становится все труднее. Уменьшение размеров полупроводниковых элементов и огромная плотность размещения их на кристалле каждый раз ставит очень сложную задачу уменьшения токов утечки. Основными направлениями решения подобных проблем являются поиск новых материалов для использования в полупроводниковых приборах и изменение самой их структуры.

Как Вы, наверное, знаете, недавно компании IBM и Intel почти одновременно сообщили о применении новых материалов для создания транзисторов, которые будут использоваться в процессорах следующего поколения. В качестве подзатворного диэлектрика вместо диоксида кремния были предложены материалы с высоким значением диэлектрической постоянной (high-k) на базе гафния. При создании электрода затвора кремний будет вытеснен металлическими сплавами.

Как видим, уже сегодня наблюдается постепенное замещение кремния и материалов на его основе более перспективными соединениями. Многие компании уже давно задумываются над заменой кремния. Одними из крупнейших спонсоров исследовательских проектов в области углеродных нанотрубок и графена являются компании IBM и Intel.

В конце марта прошлого года группа исследователей компании IBM и двух университетов Флориды и Нью-Йорка сообщили о создании первой законченной электронной интегральной схемы на базе всего одной углеродной нанотрубки. Эта схема имеет толщину в пять раз меньшую диаметра человеческого волоса и может наблюдаться только через мощный электронный микроскоп.

Исследователи IBM сумели достичь скоростей, почти в миллион раз превышающих полученные ранее на схемах с множеством нанотрубок. Хотя эти скорости все еще ниже тех, на которых работают современные кремниевые чипы, ученые IBM уверены, что новые нанотехнологические процессы в конечном счете позволят раскрыть колоссальные потенциальные возможности электроники углеродных нанотрубок.

Как отметил профессор Жорж Аппенцеллер (Joerg Appenzeller), созданный исследователями кольцевой генератор на основе нанотрубки является прекрасным средством для изучения характеристик углеродных электронных элементов. К ольцевой генератор - схема, на которой изготовители микросхем обычно проверяют возможности новых производственных процессов или материалов. Эта схема помогает предсказывать, как новые технологии поведут себя в законченных изделиях.

Сравнительно давно ведет свои исследования относительно возможного применения углеродных нанотрубок в процессорах и компания Intel . Вспомнить о том, что Intel не равнодушна к нанотрубкам, заставило недавнее мероприятие Symposium for the American Vacuum Society, на котором активно обсуждались последние достижения компании в этой области.

Кстати, уже разработан прототип чипа, где в качестве межсоединений используются углеродные нанотрубки. Как известно. переход на более прецизионные нормы влечет за собой увеличение электрических сопротивлений соединительных проводников В конце 90-х годов производители микросхем перешли на использование медных проводников вместо алюминиевых. Но уже в последние годы даже медь перестает удовлетворять производителей процессоров, и постепенно они готовят ей замену.

Одним из перспективных направлений видится применение именно углеродных нанотрубок. Кстати, как мы уже упоминали в начале статьи, углеродные нанотрубки не только имеют лучшую по сравнению с металлами проводимость, но и могут играть роль полупроводников. Таким образом, реальной видится возможность в будущем полностью вытеснить кремний в процессорах и других микросхемах и создавать чипы, сделанные целиком из углеродных нанотрубок.

С другой стороны, «хоронить» кремний тоже пока рано. Во-первых, полное вытеснение кремния углеродными нанотрубками в микросхемах вряд ли произойдет в ближайшее десятилетие. И это отмечают сами авторы успешных разработок. Во-вторых, перспективы у кремния также имеются. Помимо углеродных нанотрубок, кремний также имеет шансы обеспечить себе будущее в наноэлектронике - в виде кремниевых нанопроволок, нанотрубок, наноточек и других структур, которые также являются предметом изучения во многих исследовательских лабораториях.

Послесловие

В заключение хочется добавить, что этой статьей удалось охватить лишь очень малую часть того, что сейчас творится в области углеродной наноэлектроники. Светлые головы продолжают изобретать изощренные технологии, часть из которых, возможно, станет фундаментом электроники будущего. Некоторые склонны полагать, что нанороботы, прозрачные дисплеи, телевизоры, которые можно скрутить в тонкую трубочку, и другие удивительные устройства остаются фантастикой и воплотятся в реальность только в очень далеком будущем. Но ряд поразительных исследований уже сегодня заставляют задуматься о том, что всё это не такие уж далекие перспективы.

К тому же, кроме рассмотренных в данной статье углеродных нанотрубок и графена удивительные открытия происходят в молекулярной электронике. Любопытные исследования ведутся в области связи биологического и кремниевого миров. Перспектив развития компьютерной индустрии много. И предсказать, что будет через 10-15 лет, наверное, не возьмется никто. Очевидно одно: впереди нас ждет еще множество увлекательных открытий и поразительных устройств.

Источники информации, использовавшиеся при написании статьи

  • [email protected] ()
  • PhysOrg.com ()))
  • IBM Research ()
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. «Electric Field Effect in Atomically Thin Carbon Films»
  • K. S. Novoselov, D. Jiang, F. Schedin, V. V. Khotkevich, S. V. Morozov, and A.K. Geim «Two-dimensional atomic crystals»
  • Quanshui Zheng, Qing Jiang. «Multiwalled Carbon Nanotubes as Gigahertz Oscillators»

Физический факультет

Кафедра физики полупроводников и оптоэлектроники

С. М. Планкина

«Углеродные нанотрубки»

Описание лабораторной работы по курсу

«Материалы и методы нанотехнологии»

Нижний Новгород 2006 г.

Цель данной работы: ознакомиться со свойствами, структурой и технологией получения углеродных нанотрубок и изучить их структуру методом просвечивающей электронной микроскопии.

1. Введение

До 1985 года об углероде было известно, что он может существовать в природе в двух аллотропных состояниях: 3D форме (структура алмаза) и слоистой 2D форме (структура графита). В графите каждый слой сформирован из сетки гексагонов с расстоянием между ближайшими соседями d c - c =0.142 нм. Слои располагаются в АВАВ... последовательности (рис. 1), где атомы I - лежат непосредственно над атомами в смежных плоскостях, а атомы II - над центрами гексагонов в смежных областях. Результирующая кристаллографическая структура показана на рис 1а, где a 1 и a 2 – единичные вектора в графитовой плоскости, с - единичный вектор, перпендикулярный гексагональной плоскости. Расстояние между плоскостями в решетке равно 0.337 нм.

Рис. 1. (а) Кристаллографическая структура графита. Решетка определяется единичными векторами a 1 , a 2 и с. (б) Соответствующая зона Бриллюэна.

Из-за того, что расстояние между слоями больше, чем расстояние в гексагонах, графит может быть аппроксимирован как 2D материал. Расчет зонной структуры показывает вырождение зон в точке К в зоне Бриллюэна (см. рис. 1б). Это вызывает особенный интерес, в связи с тем, что уровень Ферми пересекает эту точку вырождения, что характеризует этот материал как полупроводник с исчезающей энергетической щелью при Т→0. Если при расчетах учитывать межплоскостные взаимодействия, то в зонной структуре происходит переход от полупроводника к полуметаллу из-за перекрытия энергетических зон.

В 1985 г. Харольдом Крото и Ричардом Смоли были открыты фуллерены – 0D форма, состоящая из 60 атомов углерода. Это открытие было удостоено в 1996 г. Нобелевской премии по химии. В 1991 г. Иижима обнаружил новую 1D форму углерода - продолговатые трубчатые углеродные образования, названные «нанотрубками». Разработка Кретчмером и Хаффманом технологии их получения в макроскопических количествах положила начало систематическим исследованиям поверхностных структур углерода. Основным элементом таких структур является графитовый слой – поверхность, выложенная правильными пяти-шести- и семиугольниками (пентагонами, гексагонами и гептагонами) с атомами углерода, расположенными в вершинах. В случае фуллеренов такая поверхность имеет замкнутую сферическую или сфероидальную форму (рис.2), каждый атом связан с 3 соседями и связь – sp 2 . Наиболее распространенная молекула фуллерена С 60 состоит из 20 гексагонов и 12 пентагонов. Ее поперечный размер – 0.714нм. При определенных условиях молекулы С 60 могут упорядочиваться и образовывать молекулярный кристалл. При определенных условиях при комнатной температуре молекулы С 60 могут упорядочиваться и образовывать молекулярные кристаллы красноватого цвета с гранецентрированной кубической решеткой, параметр которой равен 1,41 нм.

Рис.2. Молекула С 60 .

2. Структура углеродных нанотрубок

2.1 Угол хиральности и диаметр нанотрубок

Углеродные нанотрубки представляют собой протяженные структуры, состоящие из свернутых в однослойную (ОСНТ) или многослойную (МСНТ) трубку графитовых слоев. Известный наименьший диаметр нанотрубки - 0.714 нм, что является диаметром молекулы фуллерена С 60 . Расстояние между слоями практически всегда составляет 0,34 нм, что соответствует расстоянию между слоями в графите. Длина таких образований достигает десятков микрон и на несколько порядков превышает их диаметр (рис. 3). Нанотрубки могут быть открытыми или заканчиваться полусферами, напоминающими половину молекулы фуллерена.

Свойства нанотрубки определяются углом ориентации графитовой плоскости относительно оси трубки. На рис.3 приведены две возможные высокосимметричные структуры нанотруб – зигзальные (zigzag) и кресельные (armchair). Но на практике большинство нанотруб не обладает такими высокосимметричными формами, т.е. в них гексагоны закручиваются по спирали вокруг оси трубы. Эти структуры называют хиральными.

Рис.3. Идеализированные модели однослойных нанотрубок с зигзагной (а) и кресельной (б) ориентациями.

Рис. 4. Углеродные нанотрубки образуются при скручивании графитовых плоскостей в цилиндр, соединяя точку А с А". Угол хиральности определяется как q - (а). Трубка типа «кресло», с h = (4,4) - (б). Шаг Р зависит от угла q - (с).

Существует ограниченное число схем, с помощью которых из графитового слоя можно выстроить нанотрубку. Рассмотрим точки А и А" на рис. 4а. Вектор, соединяющий А и А" определяется, как c h =na 1 +ma 2 , где n, m - действительные числа, a 1 , а 2 - единичные вектора в графитовой плоскости. Трубка образуется при сворачивании графитового слоя и соединении точек А и А". Тогда она определяется единственным образом вектором c h . На рис. 5 дана схема индексирования вектора решетки c h .

Индексы хиральности однослойной трубки однозначным образом определяют ее диаметр:

где - постоянная решетки. Связь между индексами и углом хиральности дается соотношением:

Рис.5. Схема индексирования вектора решетки c h .

Нанотрубки типа зигзаг определяются углом Q =0° , что соответствует вектору (n, m)= (n, 0). В них связи С-С идут параллельно оси трубки (рис.3, а).

Структура типа «кресло» характеризуется углом Q = ± 30° , соответствующим вектору (n, m) = (2n, -n) или (n, n). Эта группа трубок будет иметь С-С связи, перпендикулярные оси трубки (рис. 3б и 4б). Остальные комбинации формируют трубки хирального типа, с углами 0°<<Q <30 о. Как видно из рис. 4с, шаг спирали Р зависит от угла Q .

2.2 Структура многослойных нанотрубок

Многослойные нанотрубки отличаются от однослойных значительно более широким разнообразием форм и конфигураций. Разнообразие структур проявляется как в продольном, так и в поперечном направлении. Возмож­ные разновидности поперечной структуры многослой­ных нанотрубок представлены на рис. 6 . Структура типа "русской матрешки" (рис. 6а) пред­ставляет собой совокупность коаксиально вложенных друг в друга однослойных цилиндрических нанотрубок. Другая разновидность этой структуры, показанная на рис. 6б, представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведенных структур (рис. 6в) напоминает свиток. Для всех приведенных структур характерно значение расстояния между соседними графитовыми слоями, близкое к величине 0,34 нм, присущей расстоя­нию между соседними плоскостями кристаллического графита. Реализация той или иной структуры в конкрет­ной экспериментальной ситуации зависит от условий синтеза нанотрубок.

Исследования многослойных нанотрубок показали, что расстояния между слоями могут меняться от стандартной величины 0,34 нм до удвоенного значения 0,68 нм. Это указывает на наличие дефектов в нанотрубках, когда один из слоев частично отсутствует.

Значительная часть многослойных нанотрубок может иметь в сечении форму многоугольника, так что участки плоской поверхности соседствуют с участками поверхно­сти высокой кривизны, которые содержат края с высокой степенью sр 3 -гибридизованного углерода. Эти края ограничивают поверхности, составленные из sр 2 -гибридизованного углерода, и определяют многие свойства нанотрубок.

Рис 6. Модели поперечных структур многослойных нанотрубок (а) - «русская матрешка»; (б) – шестигранная призма; (в) – свиток .

Другой тип дефектов, нередко отмечаемых на графи­товой поверхности многослойных нанотрубок, связан с внедрением в поверхность, состоящую преиму­щественно из гексагонов, некоторого количества пентагонов или гептагонов. Нали­чие таких дефектов в структуре нанотрубок приводит к нарушению их цилиндрической формы, причем внедре­ние пентагона вызывает выпуклый изгиб, в то время как внедрение гептагона способствует появлению крутого локтеобразного изгиба. Таким образом, подобные дефекты вызывают появление изогнутых и спиралевидных нано­трубок, причем наличие спиралей с постоянным шагом свидетельствует о более или менее регулярном располо­жении дефектов на поверхности нанотрубки. Было установлено, что кресельные трубы могут соединяться с трубами зигзаг при помощи локтевого соединения, включающего пентагон с внешней стороны локтя и гептагон с его внутренней стороны. В качестве примера на рис. 7 при­ведено соединение (5,5) кресельной трубы и (9,0) зигзагной трубы.

Рис. 7. Иллюстрация «локтевого соединения» между (5,5) кресельной и (9,0) зигзагной трубой. (а) Перспективный рисунок с пентагональным и гексагональным заштрихованными кольцами, (б) структура, спроектированная на плоскость симметрии локтя.

3. Методы получения углеродных нанотрубок

3.1 Получение графита в дуговом разряде

Метод основан на образовании углеродных нанотрубок при термическом распылении графитового электрода в плазме дугового разряда, горящего в атмосфере гелия. Этот метод позволяет получать нанотрубки в количестве, достаточном для детального исследования их физико-химических свойств.

Трубка может быть получена из протяженных фрагментов графита, которые далее скручиваются в цилиндр. Для образования протяженных фрагментов необходимы специальные условия нагрева графита. Оптимальные условия получения нанотрубок реализуются в дуговом разряде при использовании электролизного графита в качестве электродов. На рис. 8 показана упрощенная схема установки для получения фуллеренов и нанотрубок.

Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц, величина тока от 100 до 200 А, напряжение 10-20 В. Регулируя натяжение пружины, можно добиться, чтобы основная часть подводимой мощности выделялась в дуге, а не в графитовом стержне. Камера заполняется гелием с давлением от 100 до 500 торр. Скорость испарения графита в этой установке может достигать 10 г/В. При этом поверхность медного кожуха, охлаждаемого водой, покрывается продуктом испарения графита, т.е. графитовой сажей. Если получаемый порошок соскоблить и выдержать в течение нескольких часов в кипящем толуоле, то получается темно-бурая жидкость. При выпаривании ее во вращающемся испарителе получается мелкодисперсный порошок, вес его составляет не более 10% от веса исходной графитовой сажи, в нем содержится до 10% фуллеренов и нанотрубок.

В описанном способе получения нанотрубок гелий играет роль буферного газа. Атомы гелия уносят энергию, выделяющуюся при объединении углеродных фрагментов. Опыт показывает, что оптимальное давление гелия для получения фуллеренов находится в диапазоне 100 торр, для получения нанотрубок – в диапазоне 500 торр.

Рис. 8. Схема установки для получения фуллеренов и нанотрубок. 1 - графитовые электроды; 2 - охлаждаемая медная шина; 3 - медный кожух, 4 – пружины.

Среди различных продуктов термического распыления графита (фуллерены, наночастицы, частицы сажи) небольшая часть (несколько процентов) приходится и на многослойные нанотрубки, которые частично прикрепляются к холодным поверхностям установки, частично осаждаются на поверхности вместе с сажей.

Однослойные нанотрубки образуются при добавлении в анод небольшой примеси Fe, Co, Ni, Cd (т.е. добавлением катализаторов). Кроме того, ОСНТ получаются при окислении многослойных нанотрубок. С целью окисления многослойные нанотрубки обрабатываются кислородом при умеренном нагреве, либо кипящей азотной кислотой, причем в последнем случае происходит удаление пятичленных графитовых колец, приводящее к открытию концов трубок. Окисление позволяет снять верхние слои с многослойной трубки и открыть ее концы. Так как реакционная способность наночастиц выше, чем у нанотрубок, то при значительном разрушении углеродного продукта в результате окисления доля нанотрубок в оставшейся ее части увеличивается.

3.2 Метод лазерного испарения

Альтернативой выращивания нанотрубок в дуговом разряде является метод лазерного испарения. В данном методе синтезируются в основном ОСНТ при испарении смеси углерода и переходных металлов лазерным лучом из мишени, состоящей из сплава металла с графитом. По сравнению с методом дугового разряда, прямое испарение позволяет обеспечить более детальный контроль условий роста, проводить длительные операции и производить нанотрубки с большим выходом годных и лучшего качества. Фундаментальные же принципы, лежащие в основе производства ОСНТ методом лазерного испарения такие же, как и в методе дугового разряда: атомы углерода начинают скапливаться и образовывать соединение в месте нахождения частиц металлического катализатора. В установке (рис. 9) сканирующий лазерный луч фокусировался в 6-7 мм пятно на мишень, содержащую металл-графит. Мишень помещалась в наполненную (при повышенном давлении) аргоном и нагретую до 1200 °С трубу. Сажа, которая образовывалась при лазерном испарении, уносилась потоком аргона из зоны высокой температуры и осаждалась на охлаждаемый водой медный коллектор, находящийся на выходе из трубы.

Рис. 9. Схема установки лазерной абляции.

3.3 Химическое осаждение из газовой фазы

Метод плазмохимического осаждения из газовой фазы (ПХО) основан на том, что газообразный источник углерода (чаще всего метан, ацетилен или моноксид углерода) подвергают воздействию какого-либо высокоэнергетического источника (плазмы или резистивно-нагреваемой катушки) для того чтобы расщепить молекулу на реакционно-активный атомарный углерод. Далее происходит его распыление над разогретой подложкой, покрытой катализатором (обычно это переходные металлы первого периода Fe, Co, Ni и др.), на котором осаждается углерод. Нанотрубки образуются только при строго соблюдаемых параметрах. Точное воспроизведение направления роста нанотрубок и их позиционирование на нанометровом уровне может быть достигнуто только при получении их методом каталитического ПХО. Возможен точный контроль за диаметром нанотрубок и их скоростью роста. В зависимости от диаметра частиц катализатора могут расти исключительно ОСНТ либо МСНТ. На практике данное свойство широко используется в технологии создания зондов для сканирующей зондовой микроскопии. Задавая положение катализатора на конце кремниевой иглы кантилевера, можно вырастить нанотрубку, которая значительно улучшит воспроизводимость характеристик и разрешающую способность микроскопа, как при сканировании, так и при проведении литографических операций.

Обычно синтез нанотрубок по ПХО методу происходит в два этапа: приготовление катализатора и собственно рост нанотрубок. Нанесение катализатора осуществляется распылением переходного металла на поверхность подложки, а затем, используя химическое травление или отжиг, инициализируют формирование частиц катализатора, на которых в дальнейшем происходит рост нанотрубок (рис. 10). Температура при синтезе нанотрубок варьируется от 600 до 900 °С.

Среди множества методов ПХО следует отметить метод каталитического пиролиза углеводородов (рис. 10), в котором возможно реализовать гибкое и раздельное управление условиями образования нанотрубок.

В качестве катализатора обычно используется железо, которое образуется в восстановительной среде из различных соединений железа (хлорид железа (III), салицилат железа (III) или пентакарбонил железа). Смесь солей железа с углеводородом (бензолом) распыляется в реакционную камеру либо направленным потоком аргона, либо с использованием ультразвукового распылителя. Полученный аэрозоль с потоком аргона поступает в кварцевый реактор. В зоне печи предварительного нагрева аэрозольный поток прогревается до температуры ~250 °С, происходит испарение углеводорода и начинается процесс разложения металлсодержащей соли. Далее аэрозоль попадает в зону печи пиролиза, температура в котором составляет 900 °С. При этой температуре происходит процесс образования микро- и наноразмерных частиц катализатора, пиролиз углеводорода, образование на частицах металла и стенках реактора различных углеродных структур, в том числе нанотрубок. Затем газовый поток, двигаясь по реакционной трубе, поступает в зону охлаждения. Продукты пиролиза осаждаются в конце зоны пиролиза на охлаждаемом водой медном стержне.

Рис. 10. Схема установки каталитического пиролиза углеводородов.

4. Свойства углеродных нанотрубок

Углеродные нанотрубки сочетают в себе свойства молекул и твердого тела и рассматриваются некоторыми исследователями как промежуточное состояние вещества. Результаты уже первых исследований углеродных нанотрубок указывают на их необычные свойства. Некоторые свойства однослойных нанотрубок приведены в табл. 1.

Электрические свойства ОСНТ в значительной степени определяются их хиральностью. Многочисленные теоретические расчеты дают общее правило для определения типа проводимости ОСНТ:

трубки с (n, n) всегда металлические;

трубки с n – m= 3j, где j не нулевое целое число, являются полупроводниками с малой шириной запрещенной зоны; а все остальные являются полупроводниками с большой шириной запрещенной зоны.

В действительности зонная теория для n – m = 3j трубок дает металлический тип проводимости, но при искривлении плоскости открывается небольшая щель в случае ненулевого j. Нанотрубки типа кресло (n, n) в одноэлектронном представлении остаются металлическими вне зависимости от искривления поверхности, что обусловлено их симметрией. С увеличением радиуса трубки R ширина запрещенной зоны для полупроводников с большой и малой шириной уменьшается по закону 1/R и 1/R 2 соответственно. Таким образом, для большинства экспериментально наблюдаемых нанотрубок, щель с малой шириной, которая определяется эффектом искривления, будет настолько мала, что в условиях практического применения все трубки с n – m= 3j при комнатной температуре считаются металлическими.

Таблица 1

Свойства

Однослойные нанотрубки

Сравнение с известными данными

Характерный размер

Диаметр от 0,6 до 1,8 нм

Предел электронной литографии 7 нм

Плотность

1.33-1.4 г/см 3

Плотность алюминия

Прочность на разрыв

Самый прочный сплав стали разламывается при 2 ГПа

Упругость

Упруго изгибается под любым углом

Металлы и волокна из углерода ломаются по границам зерен

Плотность тока

Оценки дают до 1Г А/см 2

Медные провода выгорают при

Автоэмиссия

Активируются при 1-3 В при расстоянии 1 мкм

Молибденовые иглы требуют 50 - 100 В, и недолговечны

Теплопроводность

Предсказывают до 6000 Вт/мК

Чистый алмаз имеет 3320 Вт/мК

Стабильность по температуре

До 2800°С в вакууме и 750°С на воздухе

Металлизация в схемах плавится при 600 - 1000°С

Золото 10$/г

Высокая механическая прочность углеродных нано­трубок в сочетании с их электропроводностью дают возможность использовать их в качестве зонда в сканирующих зондовых микроскопах, что на несколько порядков повышает разрешающую способность приборов подобного рода и ставит их в один ряд с таким уникальным устройством, как полевой ионный микроскоп.

Нанотрубки обла­дают высокими эмиссионными характеристиками; плот­ность тока автоэлектронной эмиссии при напряжении около 500 В достигает при комнатной температуре значения порядка 0,1 А. см -2 . Это открывает возможность создания на их основе дисплеев нового поколения.

Нанотрубки с открытым концом проявляют капиллярный эффект и способны втягивать в себя расплавленные металлы и другие жидкие вещества. Реализация этого свойства нанотрубок открывает перспективу создания проводящих нитей диаметром около нанометра.

Весьма перспективными представляется использование нанотрубок в химической технологии, что связано, с одной стороны, с их высокой удельной поверхностью и химической стабильностью, а с другой стороны - с возможностью присоединения к поверхности нанотрубок разнообразных радикалов, которые могут служить в дальнейшем либо каталитическими центрами, либо зародышами для осуществления разнообразных химических превращений. Образование нанотрубками многократно скрученных между собой случайным образом ориентиро­ванных спиралевидных структур приводит к возникнове­нию внутри материала нанотрубок значительного количе­ства полостей нанометрового размера, доступных для проникновения извне жидкостей или газов. В результате удельная поверхность материала, составленного из нано­трубок, оказывается близкой к соответствующей величине для индивидуальной нанотрубки. Это значение в случае однослойной нанотрубки составляет около 600 м 2. г -1 . Столь высокое значение удельной поверхности нанотрубок открывает возможность их использования в качестве пори­стого материала в фильтрах, в аппаратах химической технологии и др.

В настоящее время предложены различные варианты применения углеродных нанотрубок в газо­вых датчиках, которые активно используются в экологии, энергетике, медици­не и сельском хозяйстве. Созданы газовые датчи­ки, основанные на изменении термоэдс или сопротивления при адсорбции молекул различных газов на поверхности нанотрубок.

5. Применение нанотрубок в электронике

Хотя технологические применения нанотрубок, основанные на их высокой удельной поверхности, представляют значи­тельный прикладной интерес, наиболее привлекательными представляются те направления использования нанотру­бок, которые связаны с разработками в различных обла­стях современной электроники. Такие свойства нанотрубки, как ее малые размеры, меняющаяся в значительных преде­лах, в зависимости от условий синтеза, электропровод­ность, механическая прочность и химическая стабильность, позволяют рассматривать нанотрубку в качестве основы будущих элементов микроэлектроники.

Внедрение в идеальную структуру однослой­ной нанотрубки в качестве дефекта пары пятиугольник - семиугольник (как на рис. 7) изменяет ее хиральность и, как следствие, ее электронные свойства. Если рассмотреть структуру (8,0)/(7,1), то из расчетов следует, что трубка с хиральностью (8,0) представляет собой полупроводник с шириной запрещенной зоны 1,2 эВ, в то время как трубка с хиральностью (7,1) является полуметаллом. Таким образом, эта изогнутая нанотрубка должна представлять собой молекулярный переход металл-полупроводник и может быть использована для создания выпрямляющего диода - одного из основных элементов электронных схем.

Аналогичным образом в результате внедрения дефекта могут быть получены гетеропереходы полупроводник - полупроводник с различными значениями ширины запрещенной зоны. Тем самым нанотрубки с внедренными в них дефектами могут составить основу полу­проводникового элемента рекордно малых размеров. Задача внедрения дефекта в идеальную структуру одно­слойной нанотрубки представляет определенные техниче­ские трудности, однако можно рассчитывать, что в резуль­тате развития созданной недавно технологии получения однослойных нанотрубок с определенной хиральностью эта задача найдет успешное решение .

На основе углеродных нанотрубок удалось создать транзистор , , по своим свойст­вам превышающий аналогичные схемы из кремния, который в настоящее время является главным компонентом при изготовлении полупроводниковых микросхем. На поверхность кремниевой подложки р- или n-типа, предварительно по­крытой 120-нм слоем SiO 2 , формировали платиновые электроды истока и стока и из раствора осаждали однослойные нанотрубы (рис. 11).

Рис.11. Полевой транзистор на полупроводниковой нанотрубке. Нанотрубка лежит на непроводящей (кварцевой) подложке в контакте с двумя сверхтонкими проводами, в качестве третьего электрода (затвора) используется кремниевый слой (а); зависимость проводимости в цепи от потенциала затвора (б) 3 .

Задание

1. Ознакомиться со свойствами, структурой и технологией получения углеродных нанотрубок.

2. Подготовить содержащий углеродные нанотрубки материал для исследования методом просвечивающей электронной микроскопии.

3. Получить сфокусированное изображение нанотрубок при различных увеличениях. При максимально возможном разрешении оценить размер (длину и диаметр) предложенных нанотрубок. Сделать вывод о характере нанотрубок (однослойные или многослойные) и наблюдаемых дефектах.

Контрольные вопросы

1. Электронная структура углеродных материалов. Структура одноcлойных нанотрубок. Структура многоcлойных нанотрубок.

2. Свойства углеродных нанотрубок.

3. Основные параметры, определяющие электрические свойства нанотрубок. Общее правило для определения типа проводимости однослойной нанотрубки.

5. Области применения углеродных нанотрубок.

6. Методы получения нанотрубок: метод термического разложения графита в дуговом разряде, метод лазерного испарения графита, метод химического осаждения из газовой фазы.

Литература

1. Харрис, П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века. /П.Харрис- М.: Техносфера, 2003.-336 с.

2. Елецкий, А. В. Углеродные нанотрубки / А. В. Елецкий //Успехи физических наук. – 1997.- Т 167, № 9 – С. 945 - 972

3. Бобринецкий, И. И. Формирование и исcледование электрофизических свойств планарных структур на основе углеродных нанотрубок. Диссертация на соискание ученой степени кандидата технических наук// И.И.Бобринецкий. – Москва, 2004.-145 с.


Bernaerts D. et al./ in Physics and Chemistry of fullerenes and Derivaties (Eds H.Kusmany et al.) – Singapore, World Scientific. – 1995. – P.551

Thes A. et al. / Science. - 1996. - 273 – P. 483

Wind, S. J. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes / S. J.Wind, Appenzeller J., Martel R., Derycke and Avouris P. // Appl. Phys. Lett. - 2002.- 80. P.3817.

Tans S.J., Devoret M.H., Dai H. // Nature.1997. V.386. P.474-477.

Углеродные нанотрубки создают новую отрасль промышленности и материаловедения

Вещества категории «нано», то есть с частицами менее 100 нм, сегодня представлены техническим углеродом (сажа) и кремнегелем («белая сажа»). Объемы производства других наноматериалов несопоставимо ниже. Но сейчас ситуация меняется, на рынок вышли углеродные нанотрубки. Углеродные нанотрубки - это протяженные цилиндрические структуры, состоящие из одной или нескольких свернутых в трубку гексагональных (геометрически похожих на пчелиные соты) графитовых плоскостей

Углеродные микротрубки были запатентованы в конце XIX века, а нанотрубки впервые получены в московском Институте физической химии в 1950-х годах, затем в Японии в 1970-х и, наконец, «открыты» в Японии в 1991 году. С тех пор интерес к трубкам неуклонно рос.

По набору нужных свойств у нанотрубок нет аналогов

  • Связь атомов углерода друг с другом в нанотрубках имеет рекордную прочность. Модуль Юнга (величина размерности давления, характеризующая сопротивление вещества растяжению или сжатию) нанотрубок более 1 ТПа (около 1 млн атмосфер - выше, чем у алмаза). Теплопроводность нанотрубок в восемь раз выше, чем у меди, а электропроводность не подчиняется закону Ома. Плотность тока в трубках может в тысячу раз превышать плотность, при которой медный провод взрывается.

Мировое производство нанотрубок превысило 1 000 тонн в год. Использование материалов из углеродных нанотрубок или содержащих углеродные нанотрубки стало новым сектором экономики, который не был затронут мировым финансовым кризисом.

  • Общемировая потребность в нанотрубках в 2010 году оценена в 10 тысяч тонн. Их производит более 40 компаний. Немецкая Bayer планирует к 2012 году расширить производственные мощности до 3 000 т/г, французская Arkema имеет завод с годовой производительностью 400 т, китайская CNano - 500 т/г, а бельгийская Nanocyl - 400 т/г. До 500 т/г увеличивает производство углеродных нановолокон японская Showa Denko .
  • Наноструктурированные материалы делятся на две большие группы. Материалы одной на 95–100% состоят из нанотрубок. Материалы второй - нанокомпозиты - наоборот, нанотрубок содержат немного, до 5%.

Материалы из нанотрубок

Форма нанотрубок позволяет укладывать их двояко: хаотично или упорядоченно, - что влияет на свойства материалов. Нанотрубки можно модифицировать, присоединять к ним различные химические группы и наночастицы. Это также меняет свойства самих нанотрубок и материалов их них.

  • К материалам первой группы относятся «монолитные» структуры из нанотрубок; покрытия, пленки и нанобумага из трубок; волокна из трубок; «лес» - нанотрубки, расположенные параллельно друг другу и перпендикулярно подложке. «Монолитные» материалы не получили широкого распространения.

Из спутанных длинных нанотрубок выделена «резина», устойчивая к разрушению при циклических нагрузках и температурах от –140 до +900 оС. Ее показатели далеко превосходят силиконовую резину, которую считают лучшим вязкоэластичным материалом.

  • Покрытия, пленки и нанобумагу получают либо в ходе синтеза трубок, либо из их дисперсий (коллоидных растворов). Первая группа методов - высокотемпературная, вторая нагревания не требует. Простейший макроматериал из трубок - нанобумага - имеет толщину 10–30 нм и производится фильтрацией дисперсий.

.

Компания Nanocomp Technologies (США) продает листы нанобумаги площадью около 3 м2 и планирует создать производство мощностью 4–6 т/г. Реализованы методы получения рулонов нанобумаги.

  • Из нанобумаги делают фильтры (в том числе для удаления вирусов или обессоливания воды), защиту от электромагнитного излучения, детали нагревателей, сенсоры, актюаторы, полевые эмиттеры, электроды электрохимических устройств, носители катализаторов и др.

Прозрачные электропроводные пленки и покрытия конкурируют с твердым раствором оксидов индия и олова и способны заменять этот дорогой и хрупкий материал в приборах электроники, сенсорики и фотовольтаики.

  • Американская компания Eikos разработала и с 2005 года поставляет состав Invisicon ink для нанесения на подложки тонких пленок из нанотрубок.

Волокна из углеродных нанотрубок казались идеальным материалом троса «космического лифта» для экономичного подъема грузов на околоземную орбиту. Однако перенос свойств нанотрубок на макроматериалы оказался далеко не простой задачей.

  • Волокна получают разными способами. «Сухие» способы включают формирование из аэрогеля, образующегося в процессе пиролиза углеводородов, и прядение из «леса».

Технология вытягивания и скручивания волокон из аэрогеля - «мягкого дыма» - разработана в Кембриджском университете . В реакционную зону с высокой температурой подают углеводород, из которого образуется аэрогель (т.е. гель, в котором жидкая фаза полностью заменена газообразной). Из него, как в старину из кудели, прядут волокно. В Израиле в 2010 году создана компания для изготовления бронежилетов и защитных покрытий из гибридных композитов, содержащих кембриджские нанотрубки.

  • Прядение из «леса» напоминает получение шелковых нитей из коконов шелкопряда.

.

Растворные способы получения волокон - экструзия дисперсий в поток жидкости или вытягивание из коллоидных растворов в суперкислотах (кислотах сильнее серной).

  • Компания Nanocomp Technologies объявила о поставках прочных волокон длиной до 10 км, для изготовления которых используют длинные нанотрубки. Крученые нити имеют прочность 3 ГПа и по некоторым показателям уже превосходят кевлар.

«Лес» по набору свойств не имеет аналогов - это упругий, электро- и теплопроводный материал, способный принимать разные формы и подвергаться модифицированию. В 2004 году был описан высокопроизводительный процесс суперроста «леса»: получение очень чистых углеродных нанотрубок длиной до 15–18 мм, - который значительно снижает их себестоимость.

  • В Японии готовится пуск производства, основанного на процессе суперроста. Мощность его всего 600 г/ч однослойных нанотрубок, но вскоре ее планируют довести до 10 т/г.

«Лес» можно использовать для создания электродов суперконденсаторов, полевых эмиттеров и солнечных батарей, как компонент композитов на основе полимеров. Укладкой «леса» на поверхность подложки получены плотные ленты. По удельной электропроводности они могут превзойти металлы и найдут применение в авиакосмической отрасли.

  • Ленты для искусственных мускулов из параллельно расположенных нанотрубок действуют при температурах от 80 до 1900 К и при приложении электрического потенциала обеспечивают очень высокое удлинение. Такие преобразователи электричества в механическую энергию значительно эффективнее пьезокристаллов.

Материалы с примесью нанотрубок

Резко растет производство материалов второй группы - нанокомпозитов, главным образом полимерных

  • Введение даже небольших количеств углеродных нанотрубок заметно меняет свойства полимеров, придает электропроводность, повышает теплопроводность, улучшает механические характеристики, химическую и термическую устойчивость. Созданы нанокомпозиты на основе десятков различных полимеров, разработано много способов их получения.

Широкое применение могут найти созданные на основе полимеров с нанотрубками композитные волокна.

  • Практически все производимые компанией Bayer нанотрубки используют для композитов из полимеров. Компания Arkema поставляет свои нанотрубки для композитов из термопластов, а Nanocyl - для термоусадочных полимеров и препрегов с углеродными волокнами (препреги - композитные материалы-полуфабрикаты для дальнейшей обработки).

Американская компания Hyperion Catalysis Int. , пионер промышленного производства нанотрубок, выпускает концентраты для введения в эпоксидную смолу и полимеры.

Типы нанотрубок

  • Керамические композиты созданы на основе многих тугоплавких веществ, однако по промышленному освоению заметно уступают нанокомпозитам на основе полимеров. Как и в случае полимеров, добавки небольших количеств нанотрубок увеличивают электро- и теплопроводность, придают способность защищать от электромагнитного излучения, а главное - увеличивают трещиностойкость керамик.

Введение очень малых количеств нанотрубок в бетон повышает его марку, трещиностойкость, прочность и уменьшает усадку.

  • Металлические композиты созданы с распространенными цветными металлами и сплавами. Наибольшее внимание уделяется медным композитам, механические свойства которых в два-три раза выше, чем у меди. Многие составы имеют повышенную прочность и твердость, меньшие коэффициенты термического расширения и трения.

Гибридные композиты обычно содержат три компонента: полимерные или неорганические волокна (ткани), нанотрубки и связующее. К этому классу относятся препреги .

  • На производстве препрегов с нанотрубками специализируется американская компания Zyvex Performace Materials . Нанотрубки повышают прочность и жесткость препрегов на 30–50%. Препреги использованы для создания беспилотных морских разведывательных катеров «Пиранья» .

В США в 2009 году полетел первый самолет для воздушной акробатики с обтекателем двигателя из композита с нанотрубками. Некоторые элементы планера самолета F-35 компании Martin Lockheed изготовлены из таких композитов, примерно 100 деталей планера пассажирского Boeing 787 предполагается делать с применением нанотрубок.

  • Компания Nanocyl производит эпоксидную смолу с трубками Epocyl и препреги Pregcyl на основе стекловолокон, углеродных или арамидных волокон. Добавки повышают трещиностойкость на 100%, межслоевую прочность на сдвиг на 15% и уменьшают коэффициент термического расширения. Предполагается использовать композиты в автомобильной и авиационной промышленности, для бронежилетов. Они снижают массу 49-метровых лопастей ветроустановок с 7,3 до 5,8 т.

Финская компания Amroy Europe Oy , используя нанотрубки производства Bayer , выпускает эпоксидный концентрат Hybtonite для морских судов, ветрогенераторов, спортивного инвентаря и др.

  • Для препрегов канадская Nanoledge использует трубки компании Bayer , а Nanocomp Technologies выпускает большие по площади листы и рулоны нанобумаги.

Гибридные композиты могут проявлять свойства сенсора повреждений.

  • С различными матрицами созданы также биокомпозиты. Исследуются материалы для костных имплантатов, пленки для выращивания мышечных и костных тканей, сетчатки и эпителиальных клеток глаза, сетей нейронов, а также биофункциональные композиты и биосенсоры.

Примеры не исчерпывают всего разнообразия и свойств материалов с нанотрубками. Их области применения расширяются, они начинают определять уровень развития наноструктурного материаловедения, общее состояние науки и техники отдельных стран.

Эдуард Раков, доктор химических наук, заведующий кафедрой нанотехнологии и наноматериалов РХТУ им. Д.И. Менделеева

Идеальная нанотрубка представляет собой свёрнутую в цилиндр графеновую плоскость, то есть поверхность, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода. Результат такой операции зависит от угла ориентации графеновой плоскости относительно оси нанотрубки. Угол ориентации, в свою очередь, задаёт хиральность нанотрубки, которая определяет, в частности, её электрические характеристики .

Индексы хиральности однослойной нанотрубки (m, n) однозначным образом определяют её диаметр D. Указанная связь имеет следующий вид:

D = 3 d 0 π ⋅ m 2 + n 2 + m n {\displaystyle D={\frac {{\sqrt {3}}d_{0}}{\pi }}\cdot {\sqrt {m^{2}+n^{2}+mn}}} ,

где d 0 {\displaystyle d_{0}} = 0,142 нм - расстояние между соседними атомами углерода в графитовой плоскости. Связь между индексами хиральности (m, n) и углом α даётся соотношением:

sin ⁡ α = m 3 2 m 2 + n 2 + m n {\displaystyle \sin {\alpha }={\frac {m{\sqrt {3}}}{2{\sqrt {m^{2}+n^{2}+mn}}}}} .

Среди различных возможных направлений сворачивания нанотрубок выделяются те, для которых совмещение шестиугольника (m, n) с началом координат не требует искажения его структуры. Этим направлениям соответствуют, в частности, углы α = 30° (armchair конфигурация) и α = 0° (zigzag конфигурация). Указанные конфигурации отвечают хиральностям (n, n) и (0, n) соответственно.

Одностенные нанотрубки

Структура одностенных (single-walled) нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы .

Особое место среди одностенных нанотрубок занимают так называемые armchair-нанотрубки или нанотрубки с хиральностью (10, 10). В нанотрубках такого типа две из С-С-связей, входящих в состав каждого шестичленного кольца, ориентированы параллельно продольной оси трубки. Нанотрубки с подобной структурой должны обладать чисто металлической структурой .

Одностенные нанотрубки применяются в литий-ионных аккумуляторах, углепластиковых материалах, автомобильной промышленности. В кислотно-свинцовых аккумуляторах добавление одностенных нанотрубок значительно увеличивает число циклов перезарядки. У одностенных углеродных нанотрубок коэффициент прочности 50 {\displaystyle 50} ГПа, а у стали 1 {\displaystyle 1} ГПа .

Многостенные нанотрубки

Реализация той или иной структуры многостенных нанотрубок в конкретной экспериментальной ситуации зависит от условий синтеза. Анализ имеющихся экспериментальных данных указывает, что наиболее типичной структурой многостенных нанотрубок является структура с попеременно расположенными по длине участками типа «русской матрёшки» и «папье-маше». При этом «трубки» меньшего размера последовательно вложены в трубки большего размера . В пользу такой модели говорят, например, факты по интеркалированию калия или хлорида железа в «межтрубочное» пространство и образование структур типа «бусы».

История открытия

Существует множество теоретических работ по предсказанию данной аллотропной формы углерода . В работе химик Джонс (Дедалус) размышлял о свёрнутых трубах графита. В работе Л. А. Чернозатонского и др. , вышедшую в тот же год, что и работа Ииджимы, были получены и описаны углеродные нанотрубы, а М. Ю. Корнилов, профессор кафедры органической химии Киевского национального университета, не только предсказал существования одностенных углеродных нанотруб в г., но и высказал предположение об их большой упругости .

Впервые возможность образования наночастиц в виде трубок была обнаружена для углерода. В настоящее время подобные структуры получены из нитрида бора , карбида кремния , оксидов переходных металлов и некоторых других соединений. Диаметр нанотрубок варьируется от одного до нескольких десятков нанометров, а длина достигает нескольких микрон.

Структурные свойства

  • упругие свойства; дефекты при превышении критической нагрузки:
    • в большинстве случаев представляют собой разрушенную ячейку-гексагон решётки - с образованием пентагона или септагона на её месте. Из специфических особенностей графена следует, что дефектные нанотрубки будут искажаться аналогичным образом, то есть с возникновением выпуклостей (при 5-и) и седловидных поверхностей (при 7-и). Наибольший же интерес в данном случае представляет комбинация данных искажений, особенно расположенных друг напротив друга (дефект Стоуна - Уэйлса) - это уменьшает прочность нанотрубки, но формирует в её структуре устойчивое искажение, меняющее свойства последней: иными словами, в нанотрубке образуется постоянный изгиб.
  • открытые и закрытые нанотрубки

Электронные свойства нанотрубок

Электронные свойства графитовой плоскости

  • Обратная решётка, первая зона Бриллюэна

Все точки K первой зоны Бриллюэна отстоят друг от друга на вектор трансляции обратной решётки, поэтому все они на самом деле эквивалентны. Аналогично, эквивалентны все точки K".

  • Спектр в приближении сильной связи (См. более подробно Графен)
  • Дираковские точки (См. подробнее Графен)
  • Поведение спектра при приложении продольного магнитного поля

Учёт взаимодействия электронов

  • Бозонизация
  • Латтинжеровская жидкость
  • Экспериментальный статус

Сверхпроводимость в нанотрубках

Экситоны и биэкситоны в нанотрубках

Эксито́н (лат. excito - «возбуждаю»)- водородоподобная квазичастица, представляющая собой электронное возбуждение в диэлектрике или полупроводнике, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы.

Хотя экситон состоит из электрона и дырки, его следует считать самостоятельной элементарной (не сводимой) частицей в случаях, когда энергия взаимодействия электрона и дырки имеет тот же порядок, что и энергия их движения, а энергия взаимодействия между двумя экситонами мала по сравнению с энергией каждого из них. Экситон можно считать элементарной квазичастицей в тех явлениях, в которых он выступает как целое образование, не подвергающееся воздействиям, способным его разрушить.

Биэкситон- связаное состояние двух экситонов. Представляет собой, фактически, экситонную молекулу.

Впервые идея о возможности образования экситонной молекулы и некоторые её свойства были описаны независимо С. А. Москаленко и М. А. Лампертом.

Образование биэкситона проявляется в оптических спектрах поглощения в виде дискретных полос, сходящихся в коротковолновую сторону по водородоподобному закону. Из такого строения спектров следует, что возможно образование не только основного, но и возбуждённых состояний биэкситонов.

Стабильность биэкситона должна зависеть от энергии связи самого экситона, отношения эффективных масс электронов и дырок и их анизотропии.

Энергия образования биэкситона меньше удвоенной энергии экситона на величину энергии связи биэкситона.

Оптические свойства нанотрубок

Мемристорные свойства нанотрубок

Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта (по 0.5 ат.%) позволило увеличить выход УНТ до 70-90% . С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом - методом каталитического пиролиза углеводородов (CVD), где в качестве катализатора использовались частицы металла группы железа. Один из вариантов установки по получению нанотрубок и нановолокон CVD методом представляет собой реактор, в который подается инертный газ-носитель, уносящий катализатор и углеводород в зону высоких температур.

Упрощенно механизм роста УНТ заключается в следующем. Углерод, образующийся при термическом разложении углеводорода, растворяется в наночастице металла. При достижении высокой концентрации углерода в частице на одной из граней частицы-катализатора происходит энергетически выгодное «выделение» избыточного углерода в виде искаженной полуфуллереновой шапочки. Так зарождается нанотрубка. Разложившийся углерод продолжает поступать в частицу катализатора, и для сброса избытка его концентрации в расплаве нужно постоянно избавляться от него. Поднимающаяся полусфера (полуфуллерен) с поверхности расплава увлекает за собой растворенный избыточный углерод, атомы которого вне расплава образуют связь С-С, представляющую собой цилиндрический каркас-нанотрубку.

Температура плавления частицы в наноразмерном состоянии зависит от её радиуса. Чем меньше радиус, тем ниже температура плавления, вследствие эффекта Гиббса-Томпсона . Поэтому, наночастицы железа, с размером порядка 10 нм находятся в расплавленном состоянии ниже 600°С. На данный момент осуществлен низкотемпературный синтез УНТ методом каталитического пиролиза ацетилена в присутствии частиц Fe при 550°С. Снижение температуры синтеза имеет и негативные последствия. При более низких температурах получаются УНТ с большим диаметром (около 100 нм) и сильно дефектной структурой типа «бамбук» или «вложенные наноконусы». Полученные материалы состоят только из углерода, но к экстраординарным характеристикам (например, модуль Юнга) наблюдаемым у одностенных углеродных нанотрубок, получаемых методом лазерной абляции или электродуговым синтезом, они даже близко не приближаются.

CVD является более управляемым методом, позволяющим контролировать местоположение роста и геометрические параметры углеродных трубок на любых видах подложек. Для того чтобы получить массив УНТ на поверхности подложки, прежде на поверхности формируют частицы катализатора за счет конденсации чрезвычайно небольшого его количества. Формирование катализатора возможно с помощью методов химического осаждения из раствора, содержащих катализатор, термическим испарением, распылением ионным пучком или магнетронным распылением. Незначительные вариации количества конденсируемого вещества на единицу площади поверхности вызывают значительного изменения размера и количества каталитических наночастиц и, следовательно, приводит к образованию УНТ, отличающихся по диаметру и высоте на различных участках подложки. Управляемый рост УНТ возможен в том случае, если использовать в качестве катализатор в виде сплава Ct-Me-N, где Сt (катализатор) выбирается из группы Ni, Co, Fe, Pd; Me (связующий металл) - выбирается из группы Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Re; N (азот). Привлекательность данного процесса роста УНТ на пленках сплавов каталитического металла с металлами V-VII групп Периодической таблицы элементов состоит в широком наборе факторов для управления процессом, что позволяет управлять параметрами массивов УНТ, такими как высота, плотность, диаметр. При использовании пленок сплавов рост УНТ возможен на тонких пленках различной толщины и проводимости. Всё это делает возможность встраивания данного процесса в интегрированные технологии .

Волокна из углеродных трубок

Для практического применения УНТ в настоящее время ищется способ создания на их основе протяжённых волокон, которые в свою очередь можно будет сплести в многожильный провод. Уже удалось создать из углеродных нанотрубок протяженные волокна, которые обладают высокой электропроводностью и превосходящей сталь прочностью .

Токсичность нанотрубок

Результаты экспериментов, проведённых в последние годы, показали, что длинные многостенные углеродные нанотрубки (МНТ) могут вызвать отклик, аналогичный асбестовым волокнам. У людей, занятых на добыче и переработке асбеста , вероятность возникновения опухолей и рака лёгких в несколько раз больше, чем у основного населения. Канцерогенность волокон разных видов асбеста весьма различна и зависит от диаметра и типа волокон. Благодаря своему малому весу и размерам, углеродные нанотрубки проникают в дыхательные пути вместе с воздухом. В итоге они концентрируются в плевре. Мелкие частицы и короткие нанотрубки выходят через поры в грудной стенке (диаметр 3-8 мкм), а длинные нанотрубки могут задерживаться и со временем вызвать патологические изменения.

Сравнительные эксперименты по добавке одностенных углеродных нанотрубок (ОНТ) в пищу мышей показали отсутствие заметной реакции последних в случае нанотрубок с длиной порядка микрон. Тогда как использование укороченных ОНТ с длиной 200-500 нм приводило к «впиванию» нанотрубок-игл в стенки желудка.

Очистка от катализаторов

Наноразмерные металлические катализаторы являются важными компонентами многих эффективных методов синтеза УНТ и в особенности для CVD -процессов. Они также позволяют в некоторой степени контролировать структуру и хиральность получаемых УНТ. Во время синтеза катализаторы могут конвертировать углеродсодержащие соединения в трубчатый углерод, при этом они сами как правило становятся частично закапсулированны графитизированными слоями углерода. Таким образом, они могут стать частью результируемого УНТ-продукта. Такие металлические примеси могут быть проблематичными для многих применений УНТ. Катализаторы как Никель , Кобальт или Иттрий могут вызвать к примеру, токсикологические проблемы. В то время как незакапсулированные катализаторы сравнительно легко вымываются минеральными кислотами , закапсулированные катализаторы требуют предварительной окислительной обработки для вскрытия покрывающей оболочки катализаторов. Эффективное удаление катализаторов, особенно закапсулированных, с сохранением структуры УНТ представляет собой сложную и трудоёмкую процедуру. Многие варианты очистки УНТ уже были изучены и индивидуально оптимизированы с учётом качества используемых УНТ. Новый подход к очистке УНТ, дающий возможность одновременно вскрывать и выпаривать закапсулированные металлические катализаторы является чрезвычайно быстрый нагрев УНТ и его примесей в термической плазме.

Примечания

  1. Laboratory Grows World Record Length Carbon Nanotube
  2. Spinning nanotube fibers at Rice University - YouTube (неопр.) . Дата обращения 27 января 2013.
  3. УФН, Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, апрель 2002 г., т. 172, № 4, ст. 401
  4. Углеродные нанотрубки, А. В. Елецкий, УФН, сентябрь 1997г, т. 167, № 9, ст. 954
  5. Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, УФН, апрель 2002 г., т. 172, № 4, ст. 403
  6. Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, УФН, апрель 2002 г., т. 172, № 4, ст. 404
  7. Углеродные нанотрубки, А. В. Елецкий, УФН, сентябрь 1997 г., т. 167, № 9, ст. 955
  8. Александр Грек Огонь, вода и нанотрубки // Популярная механика . - 2017. - № 1. - С. 39-47.
  9. Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, УФН, апрель 2002 г., т. 172, № 4, ст. 408
  10. H.W. Kroto, J.R.Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature 318 162 (1985)
  11. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 56 (1991)
  12. A. Oberlin, M. Endo, and T. Koyama. High resolution electron microscope observations of graphitized carbon fibers Carbon, 14, 133 (1976)
  13. Буянов Р. А., Чесноков В. В., Афанасьев А. Д., Бабенко В. С. Карбидный механизм образования углеродистых отложений и их свойства на железохромовых катализаторах дегидрирования//Кинетика и катализ 1977. Т. 18. С. 1021.
  14. J.A.E. Gibson. Early nanotubes? Nature, 359, 369 (1992)
  15. Л. В. Радушкевич и В. М. Лукьянович. О структуре углерода, образующегося при термическом разложении окиси углерода на железном контакте. ЖФХ, 26, 88 (1952)
  16. Углеродные нанотрубки в дамасской стали
  17. D. E. H. Jones (Daedalus). New Scientist 110 80 (1986)
  18. З. Я. Косаковская, Л. А. Чернозатонский, Е. А. Фёдоров. Нановолоконная углеродная структура. Письма в ЖЭТФ 56 26 (1992)
  19. М. Ю. Корнилов. Нужен трубчатый углерод. Химия и жизнь 8 (1985)
  20. Чернозатонский Л. А. Сорокин П. Б. Углеродные нанотрубки: от фундаментальных исследований к нанотехнологиям / Под. ред. Ю.Н. Бубнова. - М. : Наука, 2007. - С. 154-174. - ISBN 978-5-02-035594-1 .
  21. Science (Frank с сотр., Science, т. 280, с. 1744); 1998
  22. Yao, Jun; Jin, Zhong; Zhong, Lin; Natelson, Douglas; Tour, James M. (22 December 2009). “Two-Terminal Nonvolatile Memories Based on Single-Walled Carbon Nanotubes”. ACS Nano . 3 (12): 4122-4126. DOI :10.1021/nn901263e .
  23. Vasu, K.S.; Sampath, S.; Sood, A.K. (August 2011). “Nonvolatile unipolar resistive switching in ultrathin films of graphene and carbon nanotubes”. Solid State Communications . 151 (16): 1084-1087. DOI :10.1016/j.ssc.2011.05.018 .
  24. Ageev, O. A.; Blinov, Yu F.; Il’in, O. I.; Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Fedotov, A. A. (11 December 2013). “Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy” . Technical Physics [

Другие формы углерода: графен, усиленный – арматурный графен , карбин, алмаз, фуллерен, углеродные нанотрубки, “вискерсы” .


Описание углеродных нанотрубок:

Углеродные нанотрубки – это углеродная модификация углерода, представляющая собой полые цилиндрические структуры диаметром от десятых до нескольких десятков нанометров и длиной от одного микрометра до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку графеновых плоскостей.

Углеродные нанотрубки являются одной из аллотропных форм углерода наряду с алмазом , графитом, графеном , фуллереном , карбином и пр.

Если смотреть на углеродную нанотрубку в микроскоп с увеличением в миллион раз, то можно наблюдать полый цилиндр, поверхность которого формируется множеством шестиугольных многоугольников. На самой вершине равностороннего многоугольника располагается атом углерода. Углеродная нанотрубка визуально напоминает лист бумаги свернутый в трубку, только вместо бумажной поверхности следует рассматривать графитовую (точнее – графеновую) плоскость. В научной среде цилиндрическую плоскость трубки принято называть графеновой. Толщина графеновой плоскости не превышает один атом углерода .

Длина углеродной нанотрубки может достигать до нескольких сантиметров. Некоторым ученым удалось синтезировать углеродные нанотрубки длиной 20 см. Для получения более длинных структур их можно сплести в нити неограниченной длины.

Физические свойства нанотрубок пребывают в прямой зависимости от хиральности (особенность мельчайших частиц вещества не накладываться полностью на свое зеркальное отображение). Степень хиральности определяется зависимостью, существующей между специальными индексами хиральности (n, m) и неким углом сворачивания трубки (α).

Индексы хиральности (n, m) при этом являются координатами радиус-вектора R в заданной на графеновой плоскости косоугольной системе координат, определяющего ориентацию оси трубки относительно графеновой плоскости и ее диаметр. Индексы (n, m) указывают местонахождение того шестиугольника сетки, который в результате свертывания трубки должен совпасть с шестиугольником в начале координат.


Виды и классификация углеродных нанотрубок:

В зависимости от индексов хиральности различают: прямые, зубчатые, зигзагообразные и спиральные углеродные нанотрубки.

По количеству графеновых слоев углеродные нанотрубки делятся на однослойные (одностенные ) и многослойные (многостенные).

Наиболее простой вид нанотрубок содержит один слой. Диаметр однослойных нанотрубок может составлять один нанометр, длина – превышать предыдущий вариант в тысячи раз. Однослойную нанотрубку нередко отождествляют с «выкройкой» графена, имеющей сеточную структуру и состоящую из бесчисленного множества правильных многоугольников.

Многослойные нанотрубки содержат несколько слоев графена. Они характеризуются широким разнообразием форм и конфигураций. Причем разнообразие структур проявляется как в продольном, так и в поперечном направлении. Здесь выделяются следующие типы:

– нанотрубки в виде совокупности коаксиально вложенных друг в друга цилиндрических трубок, т.н. тип «русская матрёшка» (russian dolls),

– нанотрубки в виде совокупности вложенных друг в друга коаксиальных (шестигранных) призм,

– нанотрубки в виде свитка (scroll).

Расстояние между соседними графеновыми слоями составляет 0,34 нм, как в обычном графите.

По типу торцов углеродные нанотрубки бывают:

– открытые,

– закрытые (заканчивающиеся полусферой, которая может рассматриваться как половина молекулы фуллерена).

По электронным свойствам углеродные нанотрубки делятся на:

– металлические. Разность индексов хиральности (n – m) делится на 3 либо индексы равны между собой,

– полупроводниковые. Прочие значения индексов хиральности (n и m).

Тип проводимости нанотрубок зависит от их хиральности, т.е. от группы симметрии, к которым принадлежит конкретная нанотрубка, причем он подчиняется простому правилу: если индексы нанотрубки равны между собой или же их разность делится на три, нанотрубка является полуметаллом, в любом другом случае они проявляют полупроводниковые свойства.

Свойства и преимущества углеродных нанотрубок:

– обладают адсорбционными свойствами. Могут хранить в себе различные газы, например, водород . Попав внутрь атомы и молекулы уже не могут выйти наружу, т.к. концы трубки запаиваются, а пройти через графеновые плоскости цилиндра они не могут, т.к. углеродные решетки слишком узки для большинства атомов,

– обладают капиллярным эффектом. Углеродные нанотрубки открытым концом втягивают в себя жидкие вещества и расплавленные металлы,

– улучшение эксплуатационных характеристик других материалов при добавлении в их структуру,

– высокая прочность. Углеродные нанотрубки прочнее лучших марок стали в 50-100 раз,

– имеют в шесть раз меньшую плотность, чем обыкновенная сталь. Это означает, что материалы на основе углеродных нанотрубок при одинаковом объеме будут в десятки раз прочнее. Нанокабель длиной от Земли до Луны, состоящий из одной углеродной нанотрубки, можно намотать на катушку размером с маковое зернышко,

– модуль Юнга у углеродных нанотрубок вдвое выше, чем у обычных углеродных волокон ,

– небольшая нить из углеродных нанотрубок диаметром 1 мм выдерживает груз весом 20 тонн, что в сотни миллиардов раз больше ее собственной массы,

– высокая огнестойкость,

– рекордно высокая удельная поверхность – до 2 600 м 2 /г,

– высокая гибкость. Их можно растягивать, сжимать, скручивать и пр., не опасаясь при этом повредить их каким-либо образом. Они напоминают жесткие резиновые трубки, которые не рвутся и не ломаются при различных механических нагрузках. Однако под действием механических напряжений, превышающих критические, нанотрубки не только не рвутся и не ломаются, а просто перестраиваются, сохраняя при этом высокую прочность, гибкость, прочие механические и электрические свойства,

– высокая устойчивость к изнашиваемости. Многоразовая деформация (тысячи и десятки тысяч циклов скручивания/раскручивания, сжатия/растяжения в минуту) нанотрубок никаким образом не влияет на их прочность, на их электро- и теплопроводность. Какие-либо признаки деформации либо износа при этом отсутствуют,

– повышенная электро- и теплопроводность. Проводимость меди, как лучшего металлического проводника таблицы Д.И. Менделеева , в 1000 раз хуже, чем у углеродных нанотрубок. При этом, электропроводность трубок зависит от индекса хиральности. В одних случаях нанотрубки могут быть полупроводниками, в других проявлять свойства практически идеальных проводников. В последнем случае через нанотрубки можно пропускать электрический ток величиной 10 7 А/см 2 и при этом они не будут выделять тепло (в то время как обычный проводник из меди сразу бы испарился),

– взаимная связь между электрическими и механическими свойствами,

– токсичность и канцерогенность, аналогичная асбестовым волокнам. Вместе с тем токчичность и канцерогенность нанотрубок (как и волокон асбеста) весьма различна и зависит от диаметра и типа волокон. На сегодняшний день продолжаются исследования по вопросу биологической совместимости нанотрубок с живыми организмами. Во всяком случае при работе с нанотрубками следует соблюдать меры безопасности, и в первую очередь обеспечить защиты органов дыхания и органов пищеварения,

– проявляют мемристорный эффект,

– занимают промежуточное положение между кристаллами и отдельными атомами. Поэтому применение углеродных нанотрубок будет способствовать миниатюризации устройств,

– с помощью углеродных нанотрубок можно создавать полупроводниковые гетероструктуры , т.е. структуры типа «металл/полупроводник» или стык двух разных полупроводников,

– обладая повышенной теплопроводностью, эффективно рассеивают тепло,

– ловят радиоволны частотой от 40 до 400 МГц (обычные АМ и FМ волны), а затем усиливают и передают их,

– гидрофобны. Отталкивают воду.

Физические свойства углеродных нанотрубок:

Получение углеродных нанотрубок:

К наиболее эффективным методам синтеза нанотрубок относятся:

– лазерная абляция,

– химическое осаждение подложки из газовой среды под действием катализатора при температуре 700°С (CVD).

– термическое распыление графитового электрода в плазме дугового разряда в атмосфере гелия .

Однако в результате данных методов получается смесь самых различных углеродных нанотрубок: многостенных и одностенных, с различными диаметрами, с различными индексами хиральности и соответственно с различными свойствами. Поэтому возникает серьезная техническая проблема выделения нанотрубок с заданными параметрами.

Применение углеродных нанотрубок:

– микроэлектроника,

– ионисторы (ультраконденсаторы, суперконденсаторы ),

– технический текстиль,

– радиопоглощающие покрытия,

– автомобильные детали,

– зонды для атомно-силового микроскопа,

– элементы питания длительного срока эксплуатации,

– структурные композитные материалы с улучшенными эксплуатационными характеристиками,

– противообрастающие краски (для защиты подводных частей суден),

– проводящие пластмассы,

– плоские дисплеи,

– искусственные мышцы. Искусственная мышца из скрученных нитей углеродных нанотрубок с добавлением парафина в 85 раз сильнее человеческой,


получение реакции замещения производители типы открытие механические свойства и применение плотность изучение свойств размеры функционализация производство структура методы способы получения углеродных нанотрубок
многослойные многостенные углеродные нанотрубки
как сделать углеродную нанотрубку

Коэффициент востребованности 2 374