Как выглядит сатурн на самом деле. Планета Сатурн — еще один полигон для спасения человечества. Общие характеристики планеты Сатурн

Физические характеристики Сжатие 0,097 96 ± 0,000 18 Экваториальный радиус 60 268 ± 4 км Полярный радиус 54 364 ± 10 км Площадь поверхности 4,27×10 10 км² Объём 8,2713×10 14 км³ Масса 5,6846×10 26 кг Средняя плотность 0,687 г/см³ Ускорение свободного падения на экваторе 10,44 м/с² Вторая космическая скорость 35,5 км/с Скорость вращения (на экваторе) 9,87 км/c Период вращения 10 часов 34 минуты 13 секунд плюс-минус 2 секунды Наклон оси вращения 26,73° Склонение на северном полюсе 83,537° Альбедо 0,342 (Бонд)
0,47 (геом.альбедо)
Температура поверхности мин сред макс
уровень 1 бара 134 K
0,1 бара 84 K
Атмосфера Состав атмосферы
~96 % Водород (H 2)
~3 % Гелий
~0,4 % Метан
~0,01 % Аммиак
~0,01 % Дейтерид водорода (HD)
0,000 7 % Этан
Льды :
Аммиачные
Водяные
Гидросульфид аммония(NH 4 SH)

Сатурн обладает заметной кольцевой системой, состоящей главным образом из частичек льда, меньшего количества горных пород и пыли. Вокруг планеты обращается 62 известных на данный момент спутника . Титан - самый крупный из них, а также второй по размерам спутник в Солнечной системе (после спутника Юпитера, Ганимеда), который превосходит по своим размерам планету Меркурий и обладает единственной среди множества спутников Солнечной системы плотной атмосферой.

Физические характеристики

Орбитальные характеристики

Среднее расстояние между Сатурном и Солнцем составляет 1 433 531 000 километров (9,58 а.е) . Двигаясь со средней скоростью 9,69 км/с, Сатурн обращается вокруг Солнца за 10 759 дней (примерно 29,5 лет). Сатурн и Юпитер находятся почти в точном резонансе 2:5. Поскольку эксцентриситет орбиты Сатурна 0,056, то разность расстояния до Солнца в перигелии и афелии составляет 162 миллиона километров.

Общие сведения

Атмосфера

Верхние слои атмосферы Сатурна состоят на 93 % из водорода (по объёму) и на 7 % - из гелия (по сравнению с 18 % в атмосфере Юпитера). Имеются примеси метана , водяного пара, аммиака и некоторых других газов. Аммиачные облака в верхней части атмосферы мощнее юпитерианских.

Исследования Сатурна

Сатурн - одна из пяти планет Солнечной системы, легко видимых невооружённым глазом с Земли. В максимуме блеск Сатурна превышает первую звёздную величину .

Вид Сатурна в современный телескоп (слева) и в телескоп времён Галилея (справа)

Впервые наблюдая Сатурн через телескоп в -1610 годах , Галилео Галилей заметил, что Сатурн выглядит не как единое небесное тело, а как три тела, почти касающихся друг друга, и высказал предположение, что это два крупных

Сравнение Сатурна и Земли

«компаньона» (спутника) Сатурна. Два года спустя Галилей повторил наблюдения и, к своему изумлению, не обнаружил спутников.

Спутники

По состоянию на февраль 2010 г. известно 62 спутника Сатурна. 12 из них открыты при помощи космических аппаратов: Вояджер-1 (1980), Вояджер-2 (1981), Кассини (2004-2007). Большинство спутников, кроме Гипериона и Фебы, имеет синхронное собственное вращение - они повёрнуты к Сатурну всегда одной стороной. Информации о вращении самых мелких спутников нет.

В течение 2006 г. команда учёных под руководством Дэвида Джуитта из Гавайского университета, работающих на японском телескопе Субару на Гавайях , объявляла об открытии 9 спутников Сатурна.

Все они относятся к так называемым нерегулярным спутникам , которые отличаются вытянутыми эллиптическими орбитами, и, как полагают, сформировались не вместе с планетами, а захвачены их гравитационным полем.

Всего с 2004 года команда Джуитта обнаружила 21 спутник Сатурна.

Крупнейший из спутников - Титан . Учёные предполагают, что условия на этом спутнике схожи с теми, которые существовали на нашей планете 4 миллиарда лет назад, когда на Земле только зарождалась жизнь.

Кольца

Сегодня известно, что у всех четырёх газообразных гигантов есть кольца, но у Сатурна они самые красивые и заметные. Кольца расположены под углом приблизительно 28° к плоскости эклиптики. Поэтому с Земли в зависимости от взаимного расположения планет они выглядят по-разному: их можно увидеть и в виде колец, и «с ребра».

Как предполагал ещё Гюйгенс, кольца не являются сплошным твёрдым телом, а состоят из миллиардов мельчайших частиц, находящихся на околопланетной орбите.

Существует три основных кольца и четвёртое - более тонкое. Все вместе они отражают больше света, чем диск самого Сатурна. Три основных кольца принято обозначать первыми буквами латинского алфавита. Кольцо В - центральное, самое широкое и яркое, оно отделяется от большего внешнего кольца А щелью Кассини шириной почти 4000 км, в которой находятся тончайшие, почти прозрачные кольца. Внутри кольца А есть тонкая щель, которая называется разделительной полосой Энке. Кольцо С, находящееся ещё ближе к планете, чем В, почти прозрачно.

Кольца Сатурна очень тонкие. При диаметре около 250 000 км их толщина не достигает и километра (хотя существуют на поверхности колец и своеобразные горы ). Несмотря на свой внушительный вид, количество вещества, составляющего кольца, крайне незначительно. Если его собрать в один монолит, его диаметр не превысил бы 100 км.

На изображениях, полученных зондами, видно, что на самом деле кольца образованы из тысяч колец, чередующихся со щелями; картина напоминает дорожки грампластинок. Частички, из которых состоят кольца, в большинстве своём имеют размер в несколько сантиметров, но изредка попадаются тела в несколько метров. Совсем редко - до 1-2 км. Похоже, что частицы почти полностью состоят изо льда или каменистого вещества, покрытого льдом.

Существует полная согласованность между кольцами и спутниками планеты. И действительно, некоторые из них, так называемые «спутники-пастухи», играют роль в удержании колец на их местах. Мимас , например, «отвечает» за отсутствие вещества в щели Кассини, а Пан находится внутри разделительной полосы Энке.

Происхождение колец Сатурна ещё не совсем ясно. Возможно, они сформировались одновременно с планетой. Тем не менее, это нестабильная система, а материал, из которого они состоят, периодически замещается, вероятно, из-за разрушения некоторых мелких спутников.

  • На Сатурне нет твёрдой поверхности. Средняя плотность планеты - самая низкая в Солнечной системе. Планета состоит, в основном, из водорода и гелия , 2-х самых лёгких элементов в мировом пространстве. Плотность планеты составляет всего лишь 0,69 плотности воды. Это означает, что если бы существовал океан соответствующих размеров, Сатурн бы плыл по его поверхности.
  • Автоматический космический аппарат Кассини , который в настоящее время (октябрь 2008 г.) обращается вокруг Сатурна, передал изображения северного полушария планеты. С 2004 года, когда Кассини подлетел к ней, произошли заметные изменения, и теперь оно окрашено в необычные цвета. Причины этого пока непонятны. Хотя пока неизвестно, почему возникла окраска Сатурна, предполагается, что недавнее изменение цветов связано со сменой времён года.


Гексагональное атмосферное образование на северном полюсе Сатурна

  • Облака на Сатурне образуют шестиугольник - гигантский гексагон . Впервые это обнаружено во время пролётов Вояджера около Сатурна в 1980-х годах, подобное явление никогда не наблюдалось ни в одном другом месте Солнечной системы . Если южный полюс Сатурна с его вращающимся ураганом не кажется странным, то северный полюс можно считать гораздо более необычным. Странная структура облаков показана на инфракрасном изображении, полученном обращающимся вокруг Сатурна космическим аппаратом Кассини в октябре 2006 года. Изображения показывают, что шестиугольник оставался стабильным за 20 лет после полёта Вояджера. Фильмы, показывающие северный полюс Сатурна, демонстрируют сохранение шестиугольной структуры облаков во время их вращения. Отдельные облака на Земле могут иметь форму шестиугольника, но, в отличие от них, у облачной системы на Сатурне есть шесть хорошо выраженных сторон почти равной длины. Внутри этого шестиугольника могут поместиться четыре Земли. Полного объяснения этого явления пока нет.


Полярное сияние над северным полюсом Сатурна

  • 12 Ноября 2008 года камеры автоматического корабля Кассини получили изображения северного полюса Сатурна в инфракрасном диапазоне. На этих кадрах исследователи обнаружили полярные сияния, каких не наблюдали ещё ни разу в Солнечной системе. На изображении эти уникальные сияния окрашены в голубой цвет, а лежащие внизу облака - в красный. На изображении прямо под сияниями видно обнаруженное ранее шестиугольное облако. Полярные сияния на Сатурне могут покрывать весь полюс, тогда как на Земле и на Юпитере кольца полярных сияний, будучи управляемыми магнитным полем , только окружают магнитные полюса. На Сатурне наблюдали и привычные нам кольцевые полярные сияния. Недавно заснятые необычные полярные сияния над северным полюсом Сатурна значительно видоизменялись в течение нескольких минут. Изменчивая сущность этих сияний свидетельствует о том, что переменный поток заряженных частиц от Солнца испытывает на себе действие каких-то магнитных сил, о которых ранее и не подозревали.


Примечания

См. также

Ссылки

  • У спутников Сатурна обнаружены кольца - так же, как и у самой планеты
  • Фотографии Сатурна, сделанные зондом «Кассини» с 2004 по 2009 г.г.

Wikimedia Foundation . 2010 .

Смотреть что такое "Сатурн (планета)" в других словарях:

    САТУРН (астрономический знак H), планета, среднее расстояние от Солнца 9,54 а. е., период обращения 29,46 года, период вращения на экваторе (облачный слой) 10,2 ч, экваториальный диаметр 120 660 км, масса 5,68·1026 кг, имеет 30 спутников, в… … Энциклопедический словарь

    Сатурн, шестая по расстоянию от Солнца большая планета Солнечной системы; астрономический знак · С. относится к числу планет гигантов. Большая полуось орбиты С. (его среднее расстояние от Солнца) составляет 9,54 а. е., или 1,43 млрд. км.… … Большая советская энциклопедия

    Планета, видимая невооруженным глазом как звезда первой величины, тускло желтого цвета и известная в глубочайшей древности. До открытия Урана в 1781 г. С. считался самой удаленной планетой от Солнца. Среднее расстояние С. до солнца 1418 млн. км… …

    Планета, видимая невооруженным глазом как звезда первой величины, тускло желтого цвета и известная в глубочайшей древности. До открытия Урана в 1781 г. С. считался самой удаленной планетой от Солнца. Среднее расстояние С. до солнца 1418 милл. км… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Известный с древних времен – Сатурн – является шестой планетой нашей солнечной системы, знаменитой своими кольцами. Она входит в состав четырех газовых планет-гигантов, таких как Юпитер, Уран и Нептун. Своими размерами (диаметр = 120 536 км), она уступает только Юпитеру и является второй по величине во всей солнечной системе. Ее назвали в честь древнеримского бога Сатурна, который у греков, именовался Кронос (титан и отец самого Зевса).

Саму планету, вместе с кольцами, можно разглядеть с Земли, даже в обычный небольшой телескоп. Сутки на Сатурне, составляют 10 часов 15 минут, а период вращения вокруг Солнца составляет почти 30 лет!
Сатурн – это уникальная планета, т.к. его плотность 0,69 г/см³, а это меньше плотности воды 0,99 г/см³. Отсюда следует интересная закономерность: если бы, была возможность погрузить планету в огромный океан или бассейн, то Сатурн смог бы удержаться на воде и плавать в ней.

Строение Сатурна

Строение Сатурна и Юпитера имеют множество общих черт, как в составе, так и в основных характеристиках, но их внешний вид довольно заметно отличается. У Юпитера выделяются яркие тона, тогда как у Сатурна, они заметно приглушены. Из-за меньшего количества в нижних слоях облако образных образований полосы на Сатурне менее заметны. Еще одно сходство с пятой планетой: Сатурн выделяет большее количества тепла, чем получает от Солнца.
Атмосфера Сатурна, практически полностью состоит из водорода 96% (H2), на 3% из гелия (Не). Менее 1% составляют метан, аммиак этан и другие элементы. Процент метана хоть и является незначительным в атмосфере Сатурна, это не мешает ему принимать активное участие в поглощении солнечной радиации.
В верхних слоях, зафиксирована минимальная температура, –189 °C, но при погружении в атмосферу, она значительно увеличивается. На глубине около 30 тыс. км, водород меняется и становится металлическим. Именно жидкий металлический водород и создает магнитное поле огромной мощности. Ядро в центре планеты получается каменно-железным.
При изучении газообразных планет, ученые столкнулись с проблемой. Ведь там, нет четкой границы между атмосферой и поверхностью. Проблема была решена следующим образом: они берут за некую нулевую высоту «зеро» точку, на которой температура начинает отсчитываться в обратном направлении. Собственно говоря, так происходит и на Земле.

Представляя Сатурн, у любого человека сразу возникают в воображении его уникальные и удивительные кольца. Проводимые с помощью АМС (автоматические межпланетные станции) исследования, показали, что 4 газообразные планеты-гиганты, имеют свои кольца, но только у Сатурна они обладают настолько хорошей видимостью и эффектностью. Основных колец Сатурна насчитывается три, названных, довольно не замысловато: А, В, С. Четвертое кольцо гораздо тоньше и менее заметно. Как выяснилось, кольца Сатурна – это не одно твердое тело, а миллиарды маленьких небесных тел (кусочков льда), размером от пылинки до нескольких метров. Они двигаются примерно с одной скоростью (около 10км/с), вокруг экваториальной части планеты, иногда сталкиваясь друг с другом.

Фото с АМС показали, что все видимые кольца, состоят из тысяч маленьких колец, чередующихся с пустым не заполненным пространством. Для наглядности, можно представить себе обычную пластинку, советских времен.
Уникальная форма колец во все времена не давала покоя ни ученым, ни рядовым наблюдателям. Все они пытались узнать их строение и понять, как и вследствие чего они сформировались. В разные времена, выдвигались разные гипотезы и предположения, например, что они сформировались вместе с планетой. В настоящее время ученые склоняются к метеоритному происхождению колец. Эта теория получила и наблюдательное подтверждение, так как кольца Сатурна периодически обновляются и не являются, чем то стабильным.

Спутники Сатурна

Сейчас у Сатурна открыто около 63 спутника. Подавляющее большинство спутников, повернуты к планете одной и той же стороной и вращаются синхронно.

Христиан Гюйгенс, удостоился чести открыть второй по величине спутник, после Ганимера, во всей солнечной системе. По своим размерам он больше Меркурия, а его диаметр составляет 5155 км. Атмосфера Титана красно-оранжевая: 87% занимает азот, 11% – аргон, 2% – метан. Естественно, что там проходят метановые дожди, а на поверхности должны быть моря, в состав которых входит метан. Впрочем, аппарат «Вояджер — 1», который исследовал Титан, не смог разглядеть его поверхность, через такую плотную атмосферу.
Спутник Энцелад – это самое светлое солнечное тело во всей солнечной системе. Он отражает более 99% солнечного света, из-за своей, почти, белой поверхности, состоящей из водяного льда. Его альбедо (характеристика отражательно поверхности) более 1.
Так же из более известных и наиболее исследованных спутников, стоит отметить «Мимас», «Тефею» и «Диону».

Характеристики Сатурна

Масса: 5,69*1026 кг (в 95 раз больше Земли)
Диаметр на экваторе: 120536 км (в 9,5 раз больше Земли)
Диаметр на полюсе: 108728 км
Наклон оси: 26,7°
Плотность: 0,69 г/см³
Температура верхних слоев: около –189 °C
Период обращения вокруг собственной оси (длина суток): 10 часов 15 минут
Расстояние от Солнца (среднее): 9,5 а. е. или 1430 млн. км
Период обращения вокруг Солнца по орбите (год): 29,5 лет
Скорость вращения по орбите: 9,7 км/с
Эксцентриситет орбиты: e = 0,055
Наклон орбиты к эклиптике: i = 2,5°
Ускорение свободного падения: 10,5 м/с²
Спутники: есть 63 шт.

Сатурн — шестая планета от Солнца и вторая по величине планета Солнечной системы согласно параметрам диаметра и массы. Зачастую, Сатурн и называют братскими планетами. При сравнении, становится понятно, почему Сатурн и Юпитер были обозначены в качестве родственников. От состава атмосферы до особенностей вращения эти две планеты очень похожи. Именно в честь такой схожести, в римской мифологии Сатурн был назван в честь отца бога Юпитера.

Уникальной особенностью Сатурна является тот факт, что данная планета является наименее плотной в Солнечной системе. Не смотря на наличие у Сатурна плотной, твердой сердцевины, большой газообразный внешний слой планеты доводит средний показатель плотности планеты лишь до 687 кг/м3. В результате получается, что плотность Сатурна меньше, чем у воды и если бы он был размером со спичечный коробок, то легко бы поплыл по течению весеннего ручья.

Орбита и вращение Сатурна

Среднее орбитальное расстояние Сатурна составляет 1,43 х 109 км. Это означает, что Сатурн находится в 9,5 раз дальше от Солнца, чем общее расстояние от Земли до Солнца. Как результат солнечному свету требуется примерно час и двадцать минут, чтобы добраться до планеты. Кроме того, учитывая расстояние Сатурна от Солнца, продолжительность года на планете составляет 10,756 земных суток; то есть около 29,5 земных лет.

Эксцентриситет орбиты Сатурна является третьим по величине после и . В результате наличия такого большого эксцентриситета, расстояние между перигелием планеты (1,35 х 109 км) и афелием (1,50 х 109 км) является весьма существенным — около 1,54 X 108 км.

Наклон оси Сатурна, который составляет 26.73 градуса, очень похож на земной, и это объясняет наличие на планете таких же сезонов, как и на Земле. Однако из-за удаленности Сатурна от Солнца, он получает значительно меньше солнечного света в течение года и по этой причине сезоны на Сатурне являются гораздо более «смазанными» нежели на Земле.

Говорить о вращении Сатурна так же интересно как о вращении Юпитера. Обладая скоростью вращения примерно 10 часов 45 минут, Сатурн в этом показателе уступает только Юпитеру, который является самой быстро вращающейся планетой в Солнечной системе. Такие экстремальные темпы вращения без сомнения влияют на форму планеты, придавая ей форму сфероида, то есть сферу, которая несколько выпирает в районе экватора.

Второй удивительной особенностью вращения Сатурна являются различные скорости вращения между различными видимыми широтами. Данное явление образуется в результате того, что преобладающим веществом в составе Сатурна является газ, а не твердое тело.

Кольцевая система Сатурна является самой известной в Солнечной системе. Сами кольца состоят в основном из миллиардов крошечных частиц льда, а также пыли и другого комического мусора. Такой состав объясняет, почему кольца видны с Земли в телескопы – лед обладает очень высоким показателем отражения солнечного света.

Существует семь широких классификаций среди колец: А, В, С, D, Е, F, G. Каждое кольцо получило свое название согласно английскому алфавиту в порядке периодичности обнаружения. Самыми видимыми с Земли кольцами являются A, B и C. На самом деле каждое кольцо – это тысячи более мелких колец, буквально прижимающихся друг к другу. Но между основными кольцами есть пробелы. Пробел между кольцами А и В является самым крупным из этих пробелов и составляет 4700 км.

Основные кольца начинаются на расстоянии примерно 7000 км над экватором Сатурна и простираются еще на 73000 км. Интересно отметить, что, несмотря на то, что это очень существенный радиус, фактическая толщина колец не больше одного километра.

Наиболее распространенной теорией для объяснения образования колец является теория о том, что на орбите Сатурна, под воздействием приливных сил, распался среднего размера спутник, а произошло это в тот момент, когда его орбита стала слишком близкой к Сатурну.

  • Сатурн шестая планета от Солнца и последняя из планет, известных древним цивилизациям. Считается, что ее впервые наблюдали жители Вавилона.
    Сатурн является одной из пяти планет, которые можно увидеть невооруженным глазом. Также он является пятым по яркости объектом в Солнечной системе.
    В римской мифологии Сатурн был отцом Юпитера, царя богов. Подобное соотношение имеет в ракурсе схожести планет с одноименным названием, в частности по размеру и составу.
    Сатурн выделяет больше энергии, чем получает от Солнца. Считается, что такая особенность обусловлена гравитационным сжатием планеты и трением большого количества гелия находящегося в ее атмосфере.
    Сатурну требуется 29,4 земных лет для полного оборота по орбите вокруг Солнца. Столь медленное движение относительно звезд послужило поводом для древних ассирийцев обозначить планету как «Lubadsagush», что означает «самый старый из старых».
    На Сатурне дуют самые быстрые ветры в нашей Солнечной системе. Скорость этих ветров была измерена, максимальный показатель — около 1800 километров в час.
    Сатурн является наименее плотной планетой в Солнечной системе. Планета в основном состоит из водорода и имеет плотность меньше, чем у воды — что технически означает, что Сатурн будет плавать.
    У Сатурна более 150 спутников. Все эти спутники имеют ледяную поверхность. Самыми большими из являются Титан и Рея. Весьма интересным спутником является Энцелад, так как ученые уверены, что под его ледяной корой скрывается водяной океан.

  • Спутник Сатурна Титан является вторым по величине спутником в Солнечной системе, после спутника Юпитера под названием Ганимед. Титан имеет сложную и плотную атмосферу, состоящую в основном из азота, водяного льда и камня. Замороженная поверхность Титана имеет жидкие озера из метана и рельеф, покрытый жидким азотом. Из за этого исследователи считают, что если Титан и является гаванью для жизни, то эта жизнь будет в корне отличаться от земной.
    Сатурн является самой плоской из восьми планет. Его полярный диаметр составляет 90% от его экваториального диаметра. Это происходит из-за того, что планета с низкой плотностью обладает высокой скоростью вращения – оборот вокруг своей оси занимает у Сатурна 10 часов и 34 минуты.
    На Сатурне возникают бури овальной формы, которые по своей структуре подобны тем, что происходят на Юпитере. Ученые считают, что такой рисунок облаков вокруг северного полюса Сатурна может быть настоящим образцом существования атмосферных волн в верхних облаках. Также над южным полюсом Сатурна существует вихрь, который по своей форме очень похож на ураганные бури, происходящие на Земле.
    В объективы телескопов Сатурн, как правило, виден в бледно-желтом цвете. Это происходит потому, что его верхние слои атмосферы содержит кристаллы аммиака. Ниже этого верхнего слоя находятся облака, которые в основном состоят из водяного льда. Еще ниже, слои ледяной серы и холодные смеси водорода.

Одним из прекрасных астрономических объектов для наблюдения бесспорно считается планета с кольцами – Сатурн. С этим утверждением трудно не согласиться, если хотя бы раз на окольцованного гиганта удалось взглянуть через объектив телескопа. Однако этот объект Солнечной системы интересен не только с точки зрения эстетики.

Почему шестая планета от Солнца имеет систему колец, и почему такой яркий атрибут достался именно ей? На эти и многие вопросы ученые-астрофизики и астрономы до сих пор пытаются получить ответ.

Краткая характеристика планеты Сатурн

Как и другие газовые гиганты нашего ближнего космоса, Сатурн представляет интерес для научного сообщества. Расстояние от Земли до него варьируется в диапазоне 1,20-1,66 млрд. километров. Для того чтобы преодолеть этот огромный и длинный путь космическим аппаратам, стартовавшим с нашей планеты, потребуется чуть более двух лет. Новейший автоматический зонд «Новые горизонты» добирался до шестой планеты два года и четыре месяца. При этом следует учитывать, что движение планеты вокруг Солнца подобно орбитальному движению Земли. Другим словами, орбита Сатурна имеет форму идеального эллипса. У него третий по величине эксцентриситет орбиты, после Меркурия и Марса. Расстояние от Солнца в перигелии составляет 1 353 572 956 км, тогда как в афелии газовый гигант немного отдаляется, находясь на расстоянии 1 513 325 783 км.

Даже на таком значительном удалении от центральной звезды шестая по счету планета ведет себя довольно резво, вращаясь вокруг собственной оси с громадной скоростью 9,69 км/с. Период вращения Сатурна составляет 10 часов и 39 минут. По этому показателю он уступает только Юпитеру . Столь высокая скорость вращения приводит к тому, что планета выглядит приплюснутой с полюсов. Визуально Сатурн напоминает волчок, вращающийся с ошеломляющей скоростью, который несется в просторах космоса со скоростью 9,89 км/с, совершая полный оборот вокруг Солнца почти за 30 земных лет. С того момента как Сатурн в 1610 году был открыт Галилеем, небесное тело только 13 раз обернулось вокруг главной звезды Солнечной системы.

Выглядит планета на ночном небосклоне, как достаточно яркая точка, видимая звездная величина которой варьируется в диапазоне от +1,47 до −0,24. Особенно хорошо видны кольца Сатурна, которые обладают высоким альбедо.

Любопытно и расположение Сатурна в космосе. Ось вращения этой планеты имеет почти такое же наклонение к оси эклиптике, как и у Земли. В связи с этим на газовом гиганте присутствуют времена года.

Сатурн — это не самая большая планета Солнечной системы,а всего лишь второй по величине небесный объект в нашем ближайшем космосе после Юпитера Средний радиус планеты составляет 58,232 км., против 69 911 км. у Юпитера. При этом полярный диаметр планеты меньше экваториального значения. Масса планеты составляет 5,6846·10²⁶ кг, что в 96 раз больше массы Земли.

Ближайшие планеты к Сатурну – это его братья по планетарной группе — Юпитер и Уран. Первый относится к газовым гигантам, тогда как Уран причислен к ледяным гигантам. Для двух газовых гигантов Юпитера и Сатурна характерна огромная масса в сочетании с невысокой плотностью. Это связано с тем, что обе планеты представляют собой гигантские шарообразные сгустки сжиженного газа. Плотность Сатурна составляет 0,687 г/см³, уступая по этому показателю всем планетам Солнечной системы.

Для сравнения плотность у планет земной группы Марса , Земли, Венеры и у Меркурия составляет 3.94 г/см³, 5.515 г/см³, 5.25 г/см³ и 5.42 г/см³ соответственно.

Описание и состав атмосферы Сатурна

Поверхность планеты — понятие условное, у шестой планеты нет земной тверди. Вероятно, что поверхность — это дно водородно-гелиевого океана, где под воздействием чудовищного давления газовая смесь переходит в полужидкое и жидкое состояние. На сегодняшний момент нет технических средств, позволяющих исследовать поверхность планеты, поэтому все предположения о строении газового гиганта выглядят чисто теоретическими. Объектом изучения является атмосфера Сатурна, которая плотным одеялом окутывает планету.

Воздушная оболочка планеты в основном состоит из водорода. Именно водород и гелий являются теми химическими элементами, благодаря которым атмосфера находится в постоянном движении. Об этом свидетельствуют значительные по площади облачные образования, состоящие из аммиака. Ввиду того, что в составе воздушно-газовой смеси присутствует мельчайшие частицы серы, Сатурн со стороны имеет оранжевый окрас. Зона сплошной облачности начинается на нижней границе тропосферы — на высоте 100 км. от мнимой поверхности планеты. Температура в этой области варьируется в диапазоне 200-250⁰ Цельсия ниже нуля.

Более точные данные о составе атмосферы выглядят следующим образом:

  • водород 96%;
  • гелий 3%;
  • метан составляет всего 0,4%;
  • на аммиак приходится 0,01%;
  • молекулярный водород 0,01%;
  • 0,0007% приходится на этан.

По своей плотности и массивности облачность на Сатурне выглядит мощнее, чем на Юпитере. В нижней части атмосферы основными компонентами сатурнианской облачности являются гидросульфит аммония или вода, в различных вариациях. Наличие водяных паров в нижних частях атмосферы Сатурна, на высотах менее 100 км, допускает и температура, которая в данной области находится в пределах абсолютного нуля. Атмосферное давление в нижних частях атмосферы составляет 140 Кпа. По мере приближения к поверхности небесного тела температура и давление начинают расти. Газообразные соединения трансформируются, образуя новые формы. Из-за высокого давления водород принимает полужидкое состояние. Ориентировочно средняя температура на поверхности водородно-гелиевого океана составляет 143К.

Такое состояние воздушно-газовой оболочки стало причиной того, что Сатурн является единственной из планет Солнечной системы, которая отдает в окружающее космическое пространство больше тепла, чем получает его от нашего Светила.

Сатурн, находясь от Солнца на расстоянии в полтора миллиарда километров, получает в 100 раз меньше солнечного тепла, чем Земля.

Печка Сатурна объясняется работой механизма Кельвина-Гельмгольца. При падении температуры, снижается и давление в слоях атмосферы планеты. Небесное тело непроизвольно начинает сжиматься, превращая потенциальную энергию сжатия в тепло. Другое предположение, объясняющее интенсивное выделение Сатурном тепла, заключается в химической реакции. В результате конвекции в слоях атмосферы, происходит конденсация молекул гелия в слоях водорода, сопровождаемая выделением тепла.

Плотные облачные массы, разница температур в слоях атмосферы, способствуют тому, что Сатурн является одним из самых ветреных районов Солнечной системы. Бури и ураганы здесь на порядок сильнее и мощнее чем на Юпитере. Скорость воздушного потока в некоторых случаях достигает колоссальных значений 1800 км/ч. Тем более, сатурнианские штормы формируются стремительно. Зарождение урагана на поверхности планеты можно проследить визуально, в течение нескольких часов наблюдая за Сатурном в телескоп. Однако, вслед за быстрым зарождением, начинается длительный период буйства космической стихии.

Строение планеты и описание ядра

С ростом температуры и давления водород постепенно трансформируется в жидкое состояние. Примерно на глубине 20-30 тыс. км давление составляет 300ГПа. В таких условиях водород начинается металлизироваться. По мере углубления в недра планеты начинает увеличиваться доля соединений оксидов с водородом. Металлический водород составляет внешнюю оболочку ядра. Такое состояние водорода способствует возникновению электрических токов высокой интенсивности, образуя сильнейшее магнитное поле.

В отличие от внешних слоев Сатурна, внутренняя часть ядра представляет собой массивное образование диаметром 25 тыс. километров, состоящее из соединений кремния и металлов. Предположительно в этой области температуры достигают отметки в 11 тыс. градусов Цельсия. Масса ядра варьируется в диапазоне 9-22 масс нашей планеты.

Система спутников и кольца Сатурна

У Сатурна 62 спутника, причем большая часть из них имеет твердую поверхность и даже обладает собственной атмосферой. По своим размерам некоторые из них могут претендовать на звание планеты. Чего только стоят размеры Титана, который является одним из самых крупных спутников Солнечной системы и больше чем планета Меркурий . Это небесное тело, вращающееся вокруг Сатурна, имеет диаметр 5150 км. Спутник обладает собственной атмосферой, которая по своему составу сильно напоминает воздушную оболочку нашей планеты на ранней стадии формирования.

Ученые считают, что во всей Солнечной системе у Сатурна самая развитая система спутников. По информации, полученной с борта автоматической межпланетной станции «Кассини», Сатурн представляет собой едва ли не единственное в Солнечной системе место, где на его спутниках может быть существовать вода в жидком состоянии. На сегодняшний день исследованы только некоторые из спутников окольцованного гиганта, однако даже та информация, которая имеется, дает все основания считать эту наиболее отдаленную часть ближнего космоса пригодной для существования определенных форм жизни. В этом плане очень большой интерес для ученых-астрофизиков представляет пятый спутник — Энцелад

Главным украшением планеты, безусловно, являются его кольца. В системе принято выделять четыре главных кольца, имеющие соответствующие названия А, В, С и D. Ширина самого большого кольца В составляет 25500 км. Кольца разделяются щелями, среди которых самая большая — это деление Кассини, разграничивающая кольца А и В. По своему составу сатурнианские кольца представляют собой скопления мелких и крупных частиц водяного льда. Благодаря ледяной структуре нимбы Сатурна имеют высокое альбедо, и поэтому хорошо видны в телескоп.

В заключение

Достижения науки и техники в последние 30 лет позволили ученым более интенсивно проводить исследования далекой планеты с помощью технических средств. Вслед за первой информацией, полученной в результате полета американского космического аппарата «Pioneer 11», впервые пролетевшего вблизи газового гиганта в 1979 году, Сатурном занялись вплотную.

Миссию «Пионера» в начале 80-х годов продолжили два «Вояджера», первый и второй. Акцент в исследованиях был сделан на спутники Сатурна. В 1997 году земляне впервые получили достаточный объем информации о Сатурне и системе этой планеты благодаря миссии АМС «Кассини-Гюйгенс». В программе полета была запланирована посадка зонда «Гюйгенс» на поверхность Титана, которая была успешно осуществлена 14 января 2005 года.

Сатурн

Общие сведения о Сатурне

Сатурн, шестая от Солнца и вторая по размерам после Юпитера планета- гигант Солнечной системы. Назван в честь одного из самых почитаемых римских богов – покровителя земли и посевов, который был низвергнут со своего трона Юпитером.

Наблюдения Сатурна с Земли

Людям Сатурн известен с самых древних времён. Ведь на ночном небе он – один из самых ярких объектов, видимый как желтоватая звезда, блеск которой меняется от нулевой до первой звёздной величины (в зависимости от расстояния до Земли).

К тому же только у Сатурна при наблюдении с Земли в телескоп (причём даже в самый простой) видны кольца, хотя обнаружены они у всех планет- гигантов...

История исследования Сатурна

орбитальное движение и вращение Сатурна

Вокруг Солнца Сатурн обращается по чуть наклонённой к плоскости эклиптики орбите, с эксцентриситетом 0,0541 и скоростью 9,672 км./с, делая полный оборот за 29,46 земных лет. Среднее расстояние планеты от Солнца – 9,537 а.е., при максимальном 10 а.е. и минимальном – 9 а.е..

Угол между плоскостями экватора и орбиты достигает 26°73". Период вращения вокруг оси – звёздные сутки – 10 часов 14 минут (на широтах до 30°). На полюсах период вращения на 26 минут дольше – 10 часов 40 минут. Это связано с тем, что Сатурн – не твёрдое тело, как Земля, например, а огромный газовый шар. В связи с такими особенностями своего строения, которое, кстати не является уникальным, планета не имеет твёрдой поверхности, поэтому радиус Сатурна определяется по положению наиболее высоких облаков в его атмосфере. Исходя из измерения этого положения выяснилось, что экваториальный радиус Сатурна, равный 60268 км. на 5904 км. больше полярного, т.е. полярное сжатие планетного диска составляет 1/10.

Строение и физические условия на Сатурне

Облака на Сатурне, в основном, аммиачные, белого цвета, и более мощные чем на Юпитере, поэтому и « полосатость» Сатурна меньше. Под аммиачными облаками лежат менее мощные, и не заметные из космоса облака из аммония (NH 4 +).

Облачный слой Сатурна не постоянен, а, наоборот, очень изменчив. Это связано с его вращением, которое, в основном, происходит с запада на восток (как и вращение планеты вокруг своей оси). Вращение это довольно сильное, ведь и ветры на Сатурне не слабые – со скоростями до 500 м/с. Направление ветров – восточное.

Скорость ветра, а соответственно и скорость вращения облачного слоя, уменьшается при движении от экватора к полюсам, причём на широтах больших чем 35° направления ветров чередуются, т.е. наряду с ветрами восточных направлений присутствуют ветры западных направлений.

Преобладание восточных потоков указывает на то, что ветры не ограничены слоем верхних облаков, они должны распространяться внутрь, по крайней мере, на 2000 километров. Кроме того, измерения «Вояджера- 2» показали, что ветра в южном и северном полушариях симметричны относительно экватора! Есть предположение, что симметричные потоки как- то связаны под слоем видимой атмосферы.

Кстати, при изучении снимков атмосферы Сатурна, было выяснено, что здесь, также как на Юпитере, могут образовываться мощные атмосферные вихри, размеры которых правда не такие гигантские, как у Большого Красного Пятна, которое видно даже с Земли, но всё же достигают в диаметре тысяч километров. Формируются столь мощные вихри, похожие на земные циклоны, в областях подъёма тёплого воздуха.

Было также выявлено различие между северным и южным полушариями Сатурна.

Заключается это различие в более чистой атмосфере над северным полушарием, вызванной почти полным отсутствием высоких облаков. Почему верхние слои атмосферы в северном полушарии настолько свободны от облаков, не известно, но предполагается что это может быть связано с более низкими температурами (~82 К)...

Масса Сатурна огромна – 5,68 10 26 кг, что в 95,1 раз превосходит массу Земли. Однако, средняя плотность, равная всего 0,68 г./см. 3 , почти на порядок меньше, чем плотность Земли и меньше плотности воды, что является уникальным случаем среди планет Солнечной системы.

Объясняется это составом газовой оболочки планеты, который в целом не отличается от солнечного, ибо абсолютно доминирующим химическим элементом на Сатурне является водород, правда в различных агрегатных состояниях.

Так, атмосфера Сатурна почти полностью состоит из молекулярного водорода (~95%), с небольшим количеством гелия (не более 5%), примесей метана (CH 4), аммиака (NH 3), дейтерия (тяжёлый водород) и этана (СН 3 СН 3). Обнаружены следы присутствия аммиачного и водного льда.

Ниже слоя атмосферы, при давлении ~100000 баров, простирается океан жидкого молекулярного водорода.

Ещё ниже – в 30 тыс. км. от поверхности, где давление достигает одного миллиона бар, водород переход в металлическое состояние. Именно в этом слое, при движении металла, создаётся мощное магнитное поле Сатурна, о котором будет рассказано ниже.

Ниже слоя металлического водорода находится жидкая смесь воды, метана и аммиака, при высоком давлении и температуре. Наконец в самом центре Сатурна лежит небольшое по размерам, но массивное каменное или леденисто- каменное ядро, температура которого ~20000 К.

Магнитосфера Сатурна

Вокруг Сатурна существует обширное магнитное поле с магнитной индукцией на уровне видимых облаков на экваторе 0,2 Гс, создаваемое движением вещества в слое металлического водорода. Отсутствие же у Сатурна наблюдаемого с Земли магнитно- тормозного радиоизлучения астрономы объяснили влиянием колец. Эти предположения подтвердились при пролёте мимо планеты АМС « Пионер- 11» . Приборы, установленные на межпланетной станции, зарегистрировали в околопланетном пространстве Сатурна образования, типичные для планеты, обладающей ярко выраженным магнитным полем: головную ударную волну, границу магнитосферы (магнитопаузу), радиационные пояса. Внешний радиус магнитосферы Сатурна в подсолнечной точке составляет 23 экваториальных радиуса планеты, а расстояние до ударной волны – 26 радиусов.

Радиационные пояса Сатурна настолько обширны, что охватывают не только кольца, но и орбиты некоторых внутренних спутников планеты. Как и ожидалось, во внутренней части радиационных поясов, которая "перегорожена" кольцами Сатурна, концентрация заряженных частиц очень мала. Это происходит оттого, что заряженные частицы, двигаясь от полюса к полюсу, проходят через систему колец и поглощаются там льдом и пылью. В результате внутренняя часть радиационных поясов, которая в отсутствие колец была бы в системе Сатурна наиболее интенсивным источником радиоизлучения, оказывается ослабленной.

Но всё же концентрация заряженных частиц во внутренних областях радиационных поясов позволяет образовываться в полярных областях Сатурна полярным сияниям, которые похожи на те, что мы можем видеть и на Земле. Причина их образования та же – бомбардировка заряженными частицами атмосферы.

В результате этой бомбардировки происходит свечение атмосферных газов в ультрафиолетовом диапазоне (110- 160 нанометров). Электромагнитные волны такой длины поглощаются атмосферой Земли, и могут наблюдаться только космическими телескопами.

Кольца Сатурна

Ну а теперь перейдём к одной из наиболее характерных деталей строения Сатурна – его огромному плоскому кольцу.

Кольцо вокруг Сатурна впервые наблюдал Г. Галилей в 1610 г, но из- за низкого качества телескопа он принял видимые по краям планеты части кольца за спутники планеты.

Правильное описание кольца Сатурна дал нидерландский учёный Х. Гюйгенс в 1659 году, а французский астроном Джованни Доменико Кассини в 1675 году показал, что оно состоит из двух концентрических составляющих – колец A и B, разделённых тёмным промежутком (так называемым «делением Кассини»).

Много позже (в 1850 г.) американский астроном У. Бонд открыл внутреннее слабо светящееся кольцо C, которое из- за тёмного цвета иногда называют « креповым» , а в 1969 г. было обнаружено ещё более слабое и близкое к планете кольцо D, яркость которого не превышает 1/20 яркости самого яркого среднего кольца.

Помимо вышеперечисленных у Сатурна обнаружено ещё 3 кольца – E, F и G; все они слабые и плохо различимы с Земли, поэтому и открыты были во время полётов космических кораблей « Вояджёр- 1» и « Вояджёр- 2» .

Кольца чуть белее желтоватого диска Сатурна. Расположены они в плоскости экватора планеты в следующем порядке от верхнего облачного слоя: D, C, B, A, F, G, E. Порядок обозначения колец объясняется историческими причинами, поэтому он не совпадает с алфавитным...

Если внимательно рассматривать кольца Сатурна, то окажется, что их, на самом деле, гораздо больше. Разделены наблюдаемые кольца тёмными кольцевыми промежутками – щелями (или делениями), где вещества очень мало. Та из щелей, которую можно увидеть в средний телескоп с Земли (между кольцами А и В), названа щелью Кассини. В ясные ночи можно увидеть и менее заметные щели.

Так чем же объясняется такая структура колец Сатурна? И почему они вообще есть у Сатурна? Что ж, попытаемся ответить на эти вопросы. И начнём с рассмотрения второго, т.к. без ответа на него нельзя ответить на первый вопрос.

Причина, по которой Сатурн на расстоянии около 10 5 км имеет именно кольца, а не спутник, состоит в приливной силе. Было показано, что если бы спутник и образовался на таком расстоянии, то он был бы разорван под действием приливной силы на мелкие осколки. В эпоху формирования планет-гигантов вокруг них на некотором этапе возникли уплощённые облака протопланетной материи, из которой потом образовались спутники. В зоне колец приливная сила воспрепятствовала образованию спутника. Таким образом, кольца Сатурна, вероятно, являются остатками допланетной материи, и состоят из образований, размеры которых могут быть от мелких песчинок до фрагментов порядка нескольких метров.

Есть и иная теория образования колец, по которой они – остатки разрушенных кометами и метеоритами неких больших спутников Сатурна, образовавшихся несколько миллиардов лет назад. Хотя не исключено, что и в настоящее время имеются источники пополнения колец веществом. Так, плотность вещества в кольце E возрастает по направлению к орбите спутника Сатурна Энцелада. Вполне возможно, что Энцелад и является источником вещества для этого кольца.

Природа структуры колец, по- видимому, резонансная. Так, деление Кассини – это область орбит, в которой период обращения каждой частицы вокруг Сатурна ровно вдвое меньше, чем у ближайшего крупного спутника Сатурна – Мимаса. Из- за такого совпадения Мимас своим притяжением как бы раскачивает частицы, движущиеся внутри деления, и в конце концов выбрасывает их оттуда. Однако, как мы уже рассказывали выше, кольца Сатурна скорее похожи на « граммофонную пластинку» и объяснить такую их структуру резонансами с периодами обращения спутников Сатурна уже невозможно.

Поэтому, вероятно, подобная структура – результат механически неустойчивого распределения частиц по плоскости колец, вследствие чего возникают круговые волны плотности – наблюдаемая тонкая структура.

Первым высказал подобное предположение знаменитый немецкий философ Иммануил Кант, который объяснял тонкую структуру колец Сатурна столкновением частиц, вращающихся дифференциально вокруг планеты согласно законам Кеплера. Именно дифференциальное вращение, согласно Канту, является причиной расслоения диска на серию тонких колечек.

Позднее французский астроном Симон Лаплас доказал высказанную Кантом неустойчивость 2- ух видимых с Земли колец Сатурна.

Также, вычислив условия равновесия колец Сатурна, Лаплас доказал, что их существование возможно лишь при быстром вращении планеты вокруг оси, что впоследствии и было доказано наблюдениями В. Гершеля, обратившего внимание на заметное полярное сжатие Сатурна.

В 1857- 59 гг. кольца Сатурна описал в своих работах англичанин Максвелл Джеймс Клерк, показавший, что устойчивым существование кольца вокруг планеты может быть только в том случае, если оно состоит из совокупности отдельных не связанных между собой малых тел: сплошное твёрдое или жидкое кольцо было бы разорвано силой притяжения планеты.

Несколько позже – в 1885 году форму колец Сатурна описала русский математик С. В. Ковалевская, подтвердившая вывод Максвелла о том, что кольца Сатурна представляют собой не единое целое, а состоят из отдельных, небольших по размерам тел.

В конце 19 в. этот теоретический вывод Максвелла и Ковалевской был эмпирически подтверждён независимо друг от друга А. А. Белопольским (Россия), Дж. Килером (США) и А. Деландром (Франция), которые сфотографировали спектр Сатурна с помощью щелевого спектрографа и на основе эффекта Доплера- Физо обнаружили, что внешние части кольца Сатурна вращаются медленнее, чем внутренние.

Измеренные скорости оказались равными тем, которые имели бы спутники Сатурна, если бы они находились на тех же расстояниях от планеты. Отсюда ясно: кольца Сатурна по существу представляют собой колоссальное скопление мелких твёрдых частиц, самостоятельно обращающихся вокруг планеты. Размеры частиц столь малы, что их не видно не только в земные телескопы, но и с борта космических аппаратов. Лишь с помощью сканирования радиолучом на волне 3,6 см. колец A, C и деления Кассини, во время прохода мимо Сатурна « Вояджёра- 1» , удалось установить их размеры. Оказалось, что средний поперечник частиц кольца А равен 10 метрам, частиц деления Кассини – восьми, а кольца С – всего 2 метрам.

В остальных кольцах Сатурна, за исключением кольца B, частицы намного меньше по размерам, и их число незначительно. По сути кольца эти состоят из пылинок с поперечником около десятитысячных долей мм.

Надо сказать, что частицы в кольце B образуют странные радиальные образования – « спицы» , расположенные над плоскостью кольца. Не исключено, что « спицы» удерживаются силами электростатического отталкивания. Любопытно отметить, что изображения таинственных « спиц» были найдены на некоторых зарисовках Сатурна, сделанных ещё в прошлом веке. Но тогда никто не придал им значения.

Кроме спиц космические « Вояджёры» обнаружили неожиданным эффект, а именно многочисленные кратковременные всплески радиоизлучения, поступающего от колец. Это было не что иное, как сигналы от электростатических разрядов – своего рода молний. Источник электризации частиц, по- видимому, столкновения между ними. Была открыта и окутывающая кольца газообразная атмосфера из нейтрального атомарного водорода.

По интенсивности линии Лайсан- альфа (1216 А) в ультрафиолетовой части спектра « Вояджёрами» было подсчитано число атомов водорода в кубическом сантиметре атмосферы. Их оказалось примерно 600...

В результате исследования спектра колец выяснилось также, что частицы их составляющие по- видимому либо покрыты льдом (или инеем), либо состоят из льда, причём водяного. В последнем случае массу всех колец можно оценить в 10 23 г, т.е. на 6 порядков меньше массы самой планеты. Однако, анализ траектории космического корабля « Пионер- 11» показал, что масса колец ещё меньше и не достигает даже 1,7 миллионной массы Сатурна.

Температура колец очень низкая – порядка 80 К (-193° C). Частицы во всех кольцах двигаются с практически одинаковыми скоростями (около 10 км/с), иногда сталкиваясь друг с другом...

В течение 29,5 лет с Земли кольца Сатурна дважды видны в максимальном раскрытии и дважды наступают периоды, когда Солнце и Земля находятся в плоскости колец, и тогда кольца освещаются Солнцем «с ребра». В этот период кольца почти совсем не видны, что свидетельствует об их очень малой толщине: порядка 1- 4 (до 20) км. Сквозь кольца можно даже увидеть звёзды, хотя свет их при этом заметно ослабевает.

Спутники Сатурна

Наряду с системой колец у Сатурна есть ещё и целая система спутников, которых в настоящее время известно 60.

Первый спутник обнаружил ещё в 1655 году Христиан Гюйгенс, и это был огромный Титан – единственный спутник Сатурна, имеющий плотную атмосферу, а своими размерами превосходящий Меркурий.

Несколько позже – в 1671 году, Жан- Доминик Кассини открывает ещё один спутник – Япет. Спустя год он же открывает Рею, а в 1684 году – Диону и Тефию. После этих открытий, в течении более сотни лет, сведений о новых спутниках Сатурна не поступало. И казалось что так будет вечно. Но, в 1789 году сразу два спутника Сатурна были обнаружены Уильямом Гершелем. Это были Мимас и Энцелад.

Спустя ещё шестьдесят лет, а именно в 1848 г., был открыт Гиперион, в 1898- ом – Феба. Следом за ними – в 1966 году, были открыты Эпитемий и Джуна. После этого число открытых спутников Сатурна, в связи с увеличившейся разрешающей способностью наземных телескопов, стало стремительно возрастать, и к 1997 году, в котором состоялся запуск космического корабля « Cassini» , достигло 18. К этому числу « Cassini» добавил ещё четыре новых спутника, обнаруженных после его прибытия к Сатурну.

Всего к настоящему времени у Сатурна известно 52 официально подтверждённых спутника, каждый из которых имеет своё название. Наряду с ними имеются и другие, пока неподтверждённые спутники, которые имеют небольшие размеры и более одного раза не наблюдались. Одни из них лежат в пределах орбиты Дионы, другие – между орбитами Дионы и Тефии, третьи – между орбитами Дионы и Реи.

Все спутники, кроме огромного Титана, сложены в основном из водяного льда, с небольшой примесью скальных пород, на что указывает их невысокая плотность (порядка 1400- 2000 кг/м 3). У наиболее крупных из них, таких как Мимас, Диона, Рея, формируется каменистое ядро, занимающее по массе до 40% от массы всего спутника. Строение же Титана походит на строение больших спутников Юпитера: тоже твёрдое каменистое ядро и ледяная оболочка.

Спутники Сатурна, как впрочем и спутники других планет- гигантов, можно разделить на две группы – регулярные и иррегулярные. Регулярные спутники движутся по почти круговым орбитам, лежащим недалеко от планеты вблизи её экваториальной плоскости. Все регулярные спутники обращаются в одном направлении – в направлении вращения самой планеты. Это указывает на то, что сформировались эти спутники в газопылевом облаке, окружавшем планету в период её формирования. Правда из этого правила есть два исключения – Япет и Феба.

В отличие от них, иррегулярные спутники обращаются далеко от планеты по хаотическим орбитам, ясно указывающим, что эти тела были захвачены планетой из числа пролетавших мимо неё астероидов или ядер комет.

Регулярные спутники Сатурна, которых всего известно 18, имеют синхронное вращение (циклический сдвиг), и поэтому всегда повёрнуты к планете одной стороной. Исключением из этого правила является Гиперион, имеющий хаотическое собственное вращение, и Феба, вращающаяся в противоположную сторону.

Вообще же можно сказать, что каждый спутник Сатурна уникален, и каждый из них заслуживает внимания. Взять вот, например, Титан – огромный спутник, чей диаметр – 5150 километров, позволяет ему считаться вторым по величине спутником в Солнечной системе. К тому же только у Титана имеется плотная красно- оранжевая атмосфера, толщиной почти 600 км.. Причём атмосфера эта, по своему составу, напоминает атмосферу древней Земли, т.к. на 95% состоит из азота. Имеются следы присутствия в ней аргона, метана, кислорода, водорода, этана, пропана и других газов. Метан, кстати, на Титане может находиться во всех 3- х агрегатных состояниях, поэтому, неудивительно существование на спутнике метанового океана, озёр и рек. Да и обычный, водный океан на Титане тоже существует, правда, не на поверхности, а на глубине в несколько километров. На это указывает большая изменчивость деталей поверхности Титана, которые в разное время наблюдаются в разных местах.

Такое возможно только если предположить, что под поверхностью находится мощный слой жидкой воды. Таким образом, Титан – пятый космический объект в пределах Солнечной системы на котором найдена жидкая вода...

Не менее интересен чем Титан и другой спутник Сатурна – Япет. Его передняя (по ходу движения) полусфера сильно отличается по отражательной способности от задней. Одна из них столь же яркая как снег, другая – такая же тёмная как чёрный бархат. Это связано с тем, что передняя часть Япета сильно загрязнена пылью, которая падая на его поверхность при движении другого спутника – Фебы, вызывает сильное её почернение.

Феба же спутник тоже уникальный, т.к. единственный вращается вокруг планеты в противоположную сторону. К тому же её поверхность очень тёмная – самая тёмная среди всех спутников Сатурна.

А вот самая яркая поверхность у Энцелада, который по этому показателю – первый в Солнечной системе (его альбедо близко к 1, как у свежевыпавшего снега). У Энцелада также наибольшая тектоническая и вулканическая активность, причём вулканы Энцелада не простые, а ледяные. Из- за них его поверхность покрыта слоем инея, и потому такая яркая.

Очень интересен и ещё один спутник Сатурна – Гиперион, единственный из больших спутников имеющий неправильную форму, вызванную столкновением с неким массивным космическим телом. Возможно, а скорее даже вероятно, именно этим столкновением вызвано хаотическое вращение Гипериона вокруг своей оси, скорость которого меняется в течение месяца на десятки процентов.

От столкновения с каким- то большим космическим телом образовался и 130 километровый кратер Гершель на поверхности другого спутника Сатурна – Мимаса. Вал, окружающий этот кратер так высок, что явственно заметен даже на фотографиях. Надо сказать, что подобные гигантские кратеры на спутниках Сатурна не редкость. Так на поверхности Дионы обнаружен кратер с диаметром около 100 км., а на поверхности Реи – второго по размерам спутника Сатурна, есть кратеры диаметром вплоть до 300 км. Рея, кстати, интересна ещё и тем, что единственная из всех спутников, причём не только Сатурна, имеет кольца. Обнаружено это было 7 марта этого года, во время полёта космического корабля « Cassini» . Кольцо у Реи, по- видимому, всего одно, и состоит из раздробленных осколков столкнувшегося с Реей в далёком прошлом астероида или кометы. Диаметр этого кольца до нескольких тысяч километров и расположено оно почти вплотную к спутнику. Дополнительное облако пыли может расширяться до 5900 км. от центра спутника.

Да, Рея спутник конечно интересный, но вернёмся к разговору о кратерах. Как уже было сказано 100- 200 километровые кратеры на спутниках Сатурна – не редкость, но даже они – ничто по сравнению с кратером Одиссей, диаметром 400 км., который лежит на поверхности Тефии. На этом спутнике, кстати, обнаружен и гигантский каньон Итака, протянувшийся на 3 тысячи километров, что больше чем диаметр спутника (~2000 км.).

Но не только этим интересна Тефия. Она ещё и как бы «пасёт» два других спутника – Телесто и Калипсо, расположенных на 60° впереди и позади Тефии. Спутником- пастухом является и Диона, « пасущая» Елену и Полидевка. Места в пространстве, которые занимают эти « пасущиеся» спутники называют лагранжевые. Подобным образом, кстати, двигаются астероиды Троянцы вместе с Юпитером.

Некоторые же из спутников оказывают своё влияние на кольца Сатурна – это т.н. спутники- пастухи. Таковы, например, Прометей и Пандора, взаимодействующие с кольцевым материалом кольца F, и не позволяющие этому материалу выйти за пределы кольца, или Атлас, движущийся у внешнего края кольца А; он не даёт частицам кольца выходить за пределы этого края. Кольцо F кстати очень необычное. Так, бортовые камеры « Вояджёра- 1» показали, что кольцо состоит из нескольких колечек общей шириной 60 км., причем два из них перевиты друг с другом, как шнурок. Вызвана столь необычная конфигурация взаимодействием колечек с двумя спутниками, движущихся непосредственно вблизи кольца F, – один у внутреннего края, другой – у внешнего. Притяжение этих спутников не дает крайним частицам уходить далеко от его середины – спутники как бы « пасут» частицы. Они же, как показали расчёты, вызывают движение частиц по волнистой линии, что и создает наблюдаемые переплетения компонентов кольца. Но « Вояджёр- 2» , прошедший близ Сатурна девятью месяцами позже, не обнаружил в кольце F ни переплетений, ни каких- либо других искажений формы, в частности, и в непосредственной близости от пастухов. Таким образом, форма кольца оказалась изменчивой. Чем вызвано такое странное поведение колечек – не известно...

Общие сведения о Сатурне

Эта планета более других планет-гигантов похожа на Юпитер. Ее масса в 95 раз и экваториальный радиус (60370 км) в 9,5 раза превышают земные, а сжатие составляет 1:10, т. е. полярный радиус в 8,5 раза больше земного. Ускорение силы тяжести на Сатурне в 1,15 раза превышает земное, а критическая скорость равна 37 км/с. Ось вращения планеты наклонена под углом в 26°45", и если бы она по своей природе походила на Землю и находилась значительно ближе к Солнцу, то на ней сменялись бы сезоны года. Но структура Сатурна такая же, как у Юпитера, и он тоже вращается зонально с периодами в 10ч 14м (экваториальный пояс) и в 10ч 39м (умеренные пояса). О газообразной структуре планеты свидетельствует и ее небольшая средняя плотность, равная 0,69 г/см3, т. е., образно говоря, если бы Сатурн оказался в воде, то он плавал бы на ее поверхности. Из-за меньшей (в сравнении с Юпитером) массы давление в недрах Сатурна нарастает медленнее, и, по-видимому, слой жидкого водорода в смеси с гелием начинается на глубине, равной половине радиуса планеты, где температура достигает 10000°С, а давление - 3-109 гПа (3-106 атм.). Ниже, на глубине 0,7-0,8 радиуса, имеется, слой металлической фазы водорода, электрические токи в котором порождают магнитное поле планеты, а под этим слоем находится расплавленное силикатно-металлическое ядро, масса которого в 9 раз больше массы Земли, или почти 0,1 массы Сатурна.

Сатурн получает от Солнца в 92 раза меньше энергии, чем Земля, кроме того, 45% этой энергии он отражает. Поэтому температура его верхних слоев должна быть около -190°С, но она близка к -170°С. Объясняется это тем, что из горячих недр планеты поступает тепла в два раза больше, чем от Солнца. Радиоизлучение Сатурна сравнительно небольшое, что свидетельствует о наличии у него магнитного поля и радиационного пояса, более слабых, чем у Юпитера. Это подтверждено автоматической станцией «Пионер-11», которая 1 сентября 1979 г. пролетела на расстоянии 21 400 км от поверхности Сатурна и обнаружила его магнитное поле, ось которого почти совпадает с осью вращения планеты. Радиационный пояс состоит из нескольких зон, разделенных широкими полостями, не содержащих электрически заряженных частиц. У Сатурна есть еще две луны - их сфотографировал зонд «Кассини». Факт, что такие мелкие планеты (3 и 4 км в диаметре) уцелели до сих пор, означает, что мелкие кометы, которые обычно угрожают им, встречаются в Солнечной системе не так уж часто. Всего спутников у шестой планеты теперь 33 с поперечниками от 34 до 5150 км. Как и у Юпитера, эти спутники занумерованы в порядке последовательности их открытия.

На фотографиях, полученных автоматическими станциями, видно, что поверхности крупных спутников покрыты множеством кратеров самых различных размеров.

Все спутники Сатурна обращаются вокруг него в прямом направлении, и только самый далекий, девятый спутник Феба, отстоящий от планеты почти на 13 млн. км, имеет обратное движение и завершает один оборот по орбите за 550 суток.
Кольца Сатурна

У Сатурна имеется кольцо, открытое еще в 1656 г. голландским физиком X. Гюйгенсом (1629-1695), а точнее, семь тонких плоских концентрических колец, которые отделены друг от друга темными промежутками и обращаются вокруг планеты в плоскости ее экватора. Внешнее кольцо, обозначаемое буквой А, менее ярко, чем отделенное от него щелью Кассини кольцо B, внутри которого находится третье кольцо С, из-за своей малой яркости называемое креповым и видимое только в сильные телескопы; оно отделено от кольца В делением Максвелла. Внешние и внутренние радиусы этих колец соответственно равны 138000 и 120000 км (А), 116000 и 90000 км (В), 89000 и 72000 км (С).

Сохраняя свое направление в пространстве, кольца через каждые 14,7 года (половина периода обращения Сатурна вокруг Солнца) бывают повернуты к Земле ребром и не видны; только их тень узкой темной полоской падает на диск планеты. Это явление называется исчезновением колец. Последнее их исчезновение было в 1994 г.

Сатурн, шестая по расстоянию от Солнца большая планета Солнечной системы; астрономический знак ћ С. относится к числу планет-гигантов. Большая полуось орбиты С. (его среднее расстояние от Солнца) составляет 9,54 а. е., или 1,43 млрд. км. Эксцентриситет орбиты С. 0,056 (наибольший среди планет-гигантов). Угол наклона плоскости орбиты С. к плоскости эклиптики равен 2°29’. Полный оборот вокруг Солнца (сидерический период обращения) С. совершает за 29,458 лет со средней скоростью 9,64 км/сек. Синодический период обращения равен 378,09 сут. На небе С. выглядит как желтоватая звезда, блеск которой меняется от нулевой до первой звёздной величины (в среднем противостоянии). Большая изменчивость блеска связана с существованием вокруг С. колец; угол между плоскостью колец и направлением на Землю меняется в пределах от 0 до 28°, и земной наблюдатель видит кольца под разным углом, что и определяет изменение блеска С. Видимый диск С. имеет форму эллипса с осями 20,7” и 14,7” (в среднем противостоянии). В верхнем соединении с Солнцем видимые размеры С. на 25% меньше, а блеск на 0,48 звёздной величины слабее. Визуальное альбедо С. равно 0,69.

Эллиптичность диска С. отражает его сфероидальную форму, которая является следствием быстрого вращения С.: период его вращения вокруг своей оси равен 10 ч 14 мин на экваторе, 10 ч 38 мин на умеренных широтах и 10 ч 40 мин на широте около 60°. Ось вращения С. наклонена к плоскости его орбиты на 63°36’. В линейной мере экваториальный радиус С. составляет 60 100 км, полярный - 54 600 км (точность около 1%), а сжатие равно 1:10,2. Объём С. превышает объём Земли в 770 раз, а масса С. в 95,28 раз больше земной (5,68·10226 кг), так что средняя плотность С. составляет 0,7 г/см3 - вдвое меньше плотности Солнца. По отношению к Солнцу масса С. составляет 1:3499. Ускорение силы тяжести на поверхности С. на экваторе равно 9,54 м/сек2. Параболическая скорость (скорость убегания) на поверхности С. достигает 37 км/сек.

На диске С. видно мало деталей, даже при рассматривании его в наилучших условиях. Видны лишь параллельные экватору светлые и тёмные полосы, на которые изредка накладываются тёмные или светлые пятна, с помощью которых и определяется вращение С.

Температура поверхности С. по измерениям теплового потока, исходящего из планеты в инфракрасной области спектра, определяется от - 190 до - 150 °С (что выше равновесной температуры - 193 °С), соответствующей получаемому от Солнца потоку тепла. Это свидетельствует о том, что в тепловом излучении С. есть доля собственного глубинного тепла, что подтверждается и измерениями радиоизлучения.

Различие угловых скоростей вращения С. на разных широтах свидетельствует о том, что наблюдаемая с Земли его поверхность есть лишь верхний облачный слой атмосферы. О внутреннем строении С. можно составить некоторое представление на основании теоретических исследований. Наблюдаемые возмущения в движении спутников С., будучи сопоставлены со сжатием его фигуры и средней плотностью, позволяют определить приблизительный ход давления и плотности в недрах С. (см. Планеты). Очень малая средняя плотность С. говорит за то, что он, как и другие планеты-гиганты, состоит преимущественно из лёгких газов - водорода и гелия, которые преобладают и на Солнце. Предположительно в состав С. входят водород (80%), гелий (18%), более тяжёлых элементов, сконцентрированных в ядре планеты, всего лишь 2%. Водород до глубин около половины радиуса находится в молекулярной фазе, а глубже под влиянием колоссальных давлений переходит в фазу металлическую. В центре С. температура близка к 20 000 К.

Химический состав атмосферы, находящейся над облачным слоем С., определяется по линиям поглощения в спектре планеты. Главную её часть составляет молекулярный водород (40 км-атм), безусловно присутствует метан CH4 (0,35 км-атм), предполагается существование аммиака (NH3), хотя возможно, что в форме аэрозолей он присутствует в облаках. Имеются основания предполагать, что и в атмосфере С. есть гелий, спектроскопически не проявляющий себя в доступной нам области спектра. Магнитное поле у С. не обнаружено.

Примечательной особенностью планеты являются кольца Сатурна - концентрические образования различной яркости, как бы вложенные друг в друга, и образующие единую плоскую систему небольшой толщины, располагающуюся в экваториальной плоскости С. Кольцо вокруг С. впервые наблюдал Г. Галилей в 1610, но из-за низкого качества телескопа он принял видимые по краям планеты части кольца за спутники С. Правильное описание кольца С. дал Х. Гюйгенс (1659), а Дж. Кассини вскоре показал, что оно состоит из двух концентрических составляющих - колец А и В, разделённых тёмным промежутком (так называемым «делением Кассини»). Много позже (в 1850) американский астроном У. Бонд открыл внутреннее слабо светящееся кольцо (С), а в 1969 было обнаружено ещё более слабое и близкое к планете кольцо D. Яркость кольца D не превышает 1/20 яркости самого яркого кольца - кольца В. Кольца расположены на следующих расстояниях от планеты: А - от 138 до 120 тыс. км, В - от 116 до 90 тыс. км, С - от 89 до 75 тыс. км и D - от 71 тыс. км почти до поверхности С.

Природа колец С. стала ясной после того, как английский физик Дж. Максвелл (в 1859) и русский математик С. В. Ковалевская (в 1885) разными методами доказали, что устойчивым существование кольца вокруг планеты может быть только в том случае, если оно состоит из совокупности отдельных малых тел: сплошное твёрдое или жидкое кольцо было бы разорвано силой притяжения планеты.

Этот теоретический вывод в конце 19 в. был эмпирически подтвержден независимо друг от друга А. А. Белопольским (Россия), Дж. Килером (США) и А. Деландром (Франция), которые сфотографировали спектр С. с помощью щелевого спектрографа и на основе эффекта Доплера - Физо обнаружили, что внешние части кольца С. вращаются медленнее, чем внутренние. Измеренные скорости оказались равными тем, которые имели бы спутники С., если бы они находились на тех же расстояниях от планеты.

В течение 29,5 лет с Земли кольца С. дважды видны в максимальном раскрытии и дважды наступают периоды, когда Солнце и Земля находятся в плоскости колец, и тогда кольца либо освещаются Солнцем «с ребра», либо оно для земного наблюдателя видно «с ребра». В этот период кольца почти совсем не видны, что свидетельствует об их очень малой толщине. Разные исследователи, основываясь на визуальных и фотометрических наблюдениях и их теоретической обработке, приходят к заключению, что средняя толщина колец составляет от 10 см до 10 км. Конечно, кольцо такой толщины увидеть с Земли «с ребра» невозможно. Размеры твёрдых тел в кольцах оцениваются от 10-1 до 103 см с преобладанием глыб диаметром около 1 м, что подтверждается и наблюдаемым отражением радиоволн от колец С.

Химический состав вещества колец, по-видимому, одинаков у всех четырёх составляющих, различна в них только степень заполнения пространства глыбами. Спектр колец С. существенно отличен от спектра самого С. и освещающего их Солнца; спектр указывает на повышенную отражательную способность колец в ближней инфракрасной области (2,1 и 1,5 мкм), что соответствует отражению от льда H2O. Можно считать, что тела, образующие кольца С., либо покрыты льдом или инеем, либо состоят из льда. В последнем случае массу всех колец можно оценить в 1024 г, т. е. на 5 порядков меньше массы самой планеты. Температура колец С., по-видимому, близка к равновесной, т. е. к 80 К.

С. имеет десять спутников. Один из них - Титан - имеет размеры, сравнимые с размерами планет; его диаметр равен 5000 км, масса 2,4×10-4 массы С., он обладает атмосферой, имеющей в своём составе метан. Самый близкий к планете спутник - Янус, открытый в 1966: он обращается вокруг планеты за 18 ч, на среднем расстоянии 160 тыс. км; его диаметр около 220 км. Самый далёкий спутник - Феба; обращается вокруг С. в обратном направлении на расстоянии около 13 млн. км (см. Спутники планет).