Построение разверток поверхностей геометрических тел

Сила Р приложена в точке с координатами – х р, у р.

В этом случае говорят, что нагрузка по отношению к продольной оси z приложена с эксцентриситетом е (рис.8.2).

Напряжения в произвольной точке поперечного сечения определяются по формуле (8.3):

(8.3)

(+) перед выражением (8.3) соответствует внецентренному растяжению,

(–) - сжатию.

х, y – координаты точки, в которой определяются нормальные напряжения.

Условие прочности при внецентренном приложении нагрузки записывается для опасных точек А и В , наиболее удаленных от нейтральной линии.

(8.4)

Здесь - квадраты радиусов инерции.

R – расчетное сопротивление материала растяжения или сжатия.

8.2.2. Уравнение нейтральной линии

На нейтральной линии нормальные напряжения равны нулю.

Приравняв нулю выражение (8.3) получим уравнения нейтральной линии

(8.5)

x N , y N – координаты точек, лежащих на нейтральной линии.

Решая полученное уравнение (8.5) в отрезках по осям координат, можно определить положение нейтральной линии.

(8.6)

8.2.3. Ядро сечения

Многие строительные материалы хорошо работают на сжатие и практически не воспринимают растягивающих деформаций: бетон, кирпичная кладка. Поэтому возникает задача определения такой области в поперечном сечении бруса, чтобы прикладываемая внутри нее нагрузка, вызывала по всему сечению напряжения одного знака. Такая область называется ядром сечения. Ядро сечения – область, расположенная вокруг центра тяжести сечения, приложенная внутри которой нагрузка, вызывает по всему поперечному сечению напряжения одного знака.

Для построения ядра сечения задаются положениями нейтральной линии, совпадающей со сторонами сечения N i (х N и у N ) и в соответствии с формулой (8.5) определяют две координаты точки приложения силы соответствующей этой линии

Проведя по всему контуру сечения нейтральные линии, получим n точек. На основании теоремы о вращении нейтральной линии, соединив последовательно полученные точки, получим ядро сечения (рис. 8.3). Для прямоугольного поперечного сечения ядром сечения является ромб.

Устойчивость сжатых стержней

Общие положения

Явление потери устойчивости сжатого стержня наблюдается в том случае, когда при известной форме и размерах поперечного сечения его длина превышает определенное значение.

При потере устойчивости элемента происходит нарушение первоначальной прямолинейной формы равновесия.

Различают устойчивое (а ), безразличное (b ) и не устойчивое (с ) состояние равновесия (рис. 9.1).




Продольный изгиб опасен тем, что происходит большое нарастание прогибов при малом росте сжимающей нагрузки.

Потеря устойчивости гибких стержней наступает при сравнительно небольших сжимающих напряжениях, которые с точки зрения прочности материала являются не опасными.

Внецентренным растяжением называется такой вид нагружения бруса, при котором внешние силы действуют вдоль продольной оси бруса, но не совпадают с ней (рис. 8.4). Определение напряжений производится с помощью принципа независимости действия сил. Внецентренное растяжение представляет сочетание осевого растяжения и косого (в частных случаях – плоского) изгиба. Формула для нормальных напряжений может быть получена как алгебраическая сумма нормальных напряжений, возникающих от каждого вида нагружения:

где ; ;

y F , z F – координаты точки приложения силы F .

Для определения опасных точек сечения необходимо найти положение нейтральной линии (н.л.) как геометрического места точек, в которых напряжения равны нулю.

.

Уравнение н.л. может быть записано как уравнение прямой в отрезках:

где и – отрезки, отсекаемые н.л. на осях координат,

, – главные радиусы инерции сечения.

Нейтральная линия разделяет поперечное сечение на зоны с растягивающими и сжимающими напряжениями. Эпюра нормальных напряжений представлена на рис. 8.4.

Если сечение симметрично относительно главных осей, то условие прочности записывается для пластичных материалов, у которых [s c ] = [s p ] = [s ], в виде

. (8.5)

Для хрупких материалов, у которых [s c ]¹[s p ], условие прочности следует записывать отдельно для опасной точки сечения в растянутой зоне:

и для опасной точки сечения в сжатой зоне:

,

где z 1 , y 1 и z 2 , y 2 – координаты наиболее удаленных от нейтральной линии точек сечения в растянутой 1 и сжатой 2зонах сечения (рис. 8.4).

Свойства нулевой линии

1. Нулевая линия делит все сечение на две зоны – растяжения и сжатия.

2. Нулевая линия прямая, так как координаты х и у в первой степени.

3. Нулевая линия не проходит через начало координат (рис. 8.4).

4. Если точка приложения силы лежит на главной центральной инерции сечения, то соответствующая ей нулевая линия перпендикулярна этой оси и проходит с другой стороны от начала координат (рис. 8.5).

5. Если точка приложения силы движется по лучу, выходящему из начала координат, то соответствующая ему нулевая линия движется за ним (рис. 8.6):

н.л

Рис. 8.5 Рис. 8.6

а) при движении точки приложения силы по лучу, исходящему из начала координат от нуля в бесконечность (y F ®∞, z F ®∞), а у ®0; а z ®0. Предельное состояние этого случая: нулевая линия пройдет через начало координат (изгиб);

б) при движении точки приложения силы (т. К) по лучу, исходящему из начала координат от бесконечности к нулю (y F ® 0 и z F ® 0), а у ®∞; а z ®∞. Предельное состояние этого случая: нулевая линия удаляется в бесконечность, а тело будет испытывать простое растяжение (сжатие).

6. Если точка приложения силы (т. К) движется по прямой, пересекающей координатные оси, то в этом случае нулевая линия будет вращаться вокруг некоторого центра, расположенного в противоположном от точки К квадранте.

8.2.3. Ядро сечения

Некоторые материалы (бетон, кирпичная кладка) могут воспринимать весьма незначительные растягивающие напряжения, а другие (например, грунт) не могут вовсе сопротивляться растяжению. Такие материалы используются для изготовления элементов конструкций, в которых не возникают растягивающие напряжения, и не применяются для изготовления элементов инструкций, испытывающих изгиб, кручение, центральное и внецентренное растяжения.

Из указанных материалов можно изготавливать только центрально сжатые элементы, в которых растягивающие напряжения не возникают, а также внецентренно сжатые элементы, если в них не образуются растягивающие напряжения. Это происходит в том случае, когда точка приложения сжимающей силы расположена внутри или на границе некоторой центральной области поперечного сечения, называемой ядром сечения.

Ядром сечения бруса называется его некоторая центральная область, обладающая тем свойством, что сила, приложенная в любой ее точке, вызывает во всех точках поперечного сечения бруса напряжения одного знака, т.е. нулевая линия не проходит через сечение бруса.

Если точка приложения сжимающей силы расположена за пределами ядра сечения, то в поперечном сечении возникают сжимающие и растягивающие напряжения. В этом случае нулевая линия пересекает поперечное сечение бруса.

Если сила приложена на границе ядра сечения, то нулевая линия касается контура сечения (в точке или по линии); в месте касания нормальные напряжения равны нулю.

При расчете внецентренно сжатых стержней, изготовляемых из материала, плохо воспринимающего растягивающие напряжения, важно знать форму и размеры ядра сечения. Это позволяет, не вычисляя напряжений, установить, возникают ли в поперечном сечении бруса растягивающие напряжения (рис. 8.7).

Из определения следует, что ядро сечения есть некоторая область, которая находится внутри самого сечения.

Для хрупких материалов сжимающую нагрузку следует прикладывать в ядре сечения, чтобы исключить в сечении зоны растяжения (рис. 8.7).

Для построения ядра сечения необходимо последовательно совмещать нулевую линию с контуром поперечного сечения так, чтобы нулевая линия не пе-ресекала сечение, и одновременно рассчитывать соответствующую ей точку

приложения сжимающей силы К с коор-

Рис. 8.7 динатами y F и z F по формулам:

; .

Полученные точки приложения силы с координатами y F , z F необходимо соединить отрезками прямых. Область, ограниченная полученной ломаной линией, и будет являться ядром сечения.

Последовательность построения ядра сечения

1. Определить положение центра тяжести поперечного сечения и главных центральных осей инерции у и z , а также значения квадратов радиусов инерции i y , i z .

2. Показать все возможные положения н.л., касающиеся контура сечения.

3. Для каждого положения н.л. определить отрезки a y и a z , отсекаемые ею от главных центральных осей инерции у и z.

4. Для каждого положения н.л. установить координаты центра давления y F , и z F .

5. Полученные центры давлений соединить отрезками прямых, внутри которых будет расположено ядро сечения.

Кручение с изгибом

Вид нагружения, при котором брус подвергается одновременно действию скручивающих и изгибающих моментов, называется изгибом с кручением.

При расчете воспользуемся принципом независимости действия сил. Определим напряжения по отдельности при изгибе и кручении (рис. 8.8).

При изгибе в поперечном сечении возникают нормальные напряжения, достигающие максимального значения в крайних волокнах

.

При кручении в поперечном сечении возникают касательные напряжения, достигающие наибольшего значения в точках сечения у поверхности вала

.

s
t
C
B
x
y
z
Рис. 8.9
s
s
t
t
Рис. 8.10
C
x
z
y
M
T
Рис. 8.8

Нормальные и касательные напряжения одновременно достигают наибольшего значения в точках С и В сечения вала (рис. 8.9). Рассмотрим напряженное состояние в точке С (рис. 8.10). Видно, что элементарный параллелепипед, выделенный вокруг точки С , находится при плоском напряженном состоянии.

Поэтому для проверки прочности применим одну из гипотез прочности.

Условие прочности по третьей гипотезе прочности (гипотезе наибольших касательных напряжений)

.

Учитывая, что , , получим условие прочности вала

. (8.6)

Если изгиб вала происходит в двух плоскостях, то условие прочности будет

.

Используя четвертую (энергетическую) гипотезу прочности

,

после подстановки s и t получим

. (8.7)

Вопросы для самопроверки

1. Какой изгиб называется косым?

2. Сочетанием каких видов изгиба является косой изгиб?

3. По каким формулам определяются нормальные напряжения в поперечных сечениях балки при косом изгибе?

4. Как находится положение нейтральной оси при косом изгибе?

5. Как определяются опасные точки в сечении при косом изгибе?

6. Как определяются перемещения точек оси балки при косом изгибе?

7. Какой вид сложного сопротивления называется внецентренным растяжением (или сжатием)?

8. По каким формулам определяются нормальные напряжения в поперечных сечениях стержня при внецентренном растяжении и сжатии? Какой вид имеет эпюра этих напряжений?

9. Как определяется положение нейтральной оси при внецентренном растяжении и сжатии? Запишите соответствующие формулы.

10. Какие напряжения возникают в поперечном сечении бруса при изгибе с кручением?

11. Как находятся опасные сечения бруса круглого сечения при изгибе с кручением?

12. Какие точки круглого поперечного сечения являются опасными при изгибе с кручением?

13. Какое напряженное состояние возникает в этих точках?

Существует несколько очень простых, но не эффективных способов преобразования окружностей в растровую форму. Например, рассмотрим для простоты окружность с центром в начале координат. Ее уравнение записывается как x 2 + y 2 =R 2 . Решая это уравнение относительноy , получим

Чтобы изобразить четвертую часть окружности, будем изменять x с единичным шагом от 0 доR и на каждом шаге вычислятьy . Вторым простым методом растровой развертки окружности является использование вычисленийx иy по формуламx =R cos α,y =R sinα при пошаговом изменении угла α от 0до 90.

Для упрощения алгоритма растровой развёртки стандартной окружности можно воспользоваться её симметрией относительно координатных осей и прямых y = ±x ; в случае, когда центр окружности не совпадает с началом координат, эти прямые необходимо сдвинуть параллельно так, чтобы они прошли через центр окружности. Тем самым достаточно построить растровое представление для 1/8 части окружности, а все оставшиеся точки получить симметрией (см. рис. 2 .15).

Рис. 2.15. Восьмисторонняя симметрия

Рассмотрим участок окружности из второго октанта x Є . Далее опишем алгоритм Брезенхейма для этого участка окружности.

На каждом шаге алгоритм выбирает точку P i (x i , y i ), которая является ближайшей к истинной окружности. Идея алгоритма заключается в выборе ближайшей точки при помощи управляющих переменных, значения которых можно вычислить в пошаговом режиме с использованием небольшого числа сложений, вычитаний и сдвигов.

Рассмотрим небольшой участок сетки пикселов, а также возможные способы (от A до E) прохождения истинной окружности через сетку (рис. 2 .16).

Предположим, что точка P i - 1 была выбрана как ближайшая к окружности приx =x i- 1 . Теперь найдем, какая из точек (S i илиT i ) расположена ближе к окружности приx =x i- 1 + 1.

Рис. 2.16. Варианты прохождения окружности через растровую сетку

Заметим, что ошибка при выборе точки P i (x i , y i ) была равна

D(P i ) = (x i 2 + y i 2) –R 2 .

Запишем выражение для ошибок, получаемых при выборе точки S i илиT i :

D(S i ) = [(x i-1 + 1) 2 + (y i-1 ) 2 ] – R 2 ;

D(T i ) = [(x i-1 + 1) 2 + (y i-1 – 1) 2 ] – R 2 .

Если | D(S i ) | ≥ |D(T i ) |, тоT i ближе к реальной окружности, иначе выбираетсяS i .

Введем d i = |D(S i ) | – |D(T i ) |.

T i будет выбираться приd i ≥ 0, в противном случае будет устанавливатьсяS i .

Опуская алгебраические преобразования, запишем d i иd i + 1 для разных вариантов выбора точкиS i илиT i .

D 1 = 3 – 2R .

Если выбирается S i (когдаd i < 0), тоd i + 1 =d i + 4x i -1 + 6.

Если выбирается T i (когдаd i ≥ 0), тоd i + 1 =d i + 4 (x i - 1 –y i - 1) + 10.

Существует модификация алгоритма Брезенхейма для эллипса.

      1. Закраска области, заданной цветом границы

Рассмотрим область, ограниченную набором пикселей заданного цвета и точку (x, y ), лежащую внутри этой области.

Задача заполнения области заданным цветом в случае, когда эта область не является выпуклой, может оказаться довольно сложной.

Простейший рекурсивный алгоритм:

void PixelFill(int x, int y, int border_color, int color)

int c = getpixel(x, y);

if ((c != border_color) && (c != color))

putpixel(x, y, color);

PixelFill(x – 1, y, border_color, color);

PixelFill(x + 1, y, border_color, color);

PixelFill(x, y – 1, border_color, color);

PixelFill(x, y + 1, border_color, color);

Этот алгоритм является слишком неэффективным, так как для всякого уже отрисованного пикселя функция вызывается ещё 4 раза и, кроме того, этот алгоритм требует слишком большого объёма стека из-за большой глубины рекурсии. Поэтому для решения задачи закраски области предпочтительнее алгоритмы, способные обрабатывать сразу целые группы пикселей, т. е. использовать их «связность». Если данный пиксель принадлежит области, то, скорее всего, его ближайшие соседи также принадлежат данной области.

Группой таких пикселов обычно выступает полоса, определяемая правым пикселем. Для хранения правых определяющих пикселов используется стек. Словесно опишем улучшенный алгоритм, использующий когерентность пикселов.

Сначала заполняется горизонтальная полоса пикселов, содержащих начальную точку. Затем, чтобы найти самый правый пиксель каждой строки, справа налево проверяется строка, предыдущая по отношению к только что заполненной полосе. Адреса найденных пикселов заносятся в стек. То же самое выполняется и для строки, следующей и за последней заполненной полосой. Когда строка обработана таким способом, в качестве новой начальной точки используется пиксель, адрес которого берется из стека. Для него повторяется вся описанная процедура. Алгоритм заканчивает свою работу, если стек пуст.

Окружностью называется ряд равноудалённых точек от одной точки, которая, в свою очередь, является центром этой окружности. Окружность имеет также свой радиус, равный расстоянию этих точек от центра.

Отношение длины, какой либо окружности к её диаметру, для всех окружностей одинаково. Это отношение есть число, являющееся математической константой, которое обозначается греческой буквой π .

Определение длины окружности

Формула расчёта длинны окружности

Произвести расчёт окружности можно по следующей формуле:

L = π D = 2 π r

r - радиус окружности

D - диаметр окружности

L - длина окружности

π - 3.14

Пример нахождения длинны окружности

Задача:

Вычислить длину окружности , имеющей радиус 10 сантиметров.

Решение:

Формула для вычисления дины окружности имеет вид:

L = π D = 2 π r

где L – длина окружности, π – 3,14 , r – радиус окружности, D – диаметр окружности.

Таким образом, длина окружности, имеющей радиус 10 сантиметров равна:

L = 2 × 3,14 × 10 = 31,4 сантиметра

Окружность представляет собой геометрическую фигуру, являющуюся совокупностью всех точек на плоскости, удаленных от заданной точки, которая называется ее центром, на некоторое расстояние, не равное нулю и именуемое радиусом. Определять ее длину с различной степенью точности ученые умели уже в глубокой древности: историки науки считают, что первая формула для вычисления длины окружности была составлена примерно в 1900 году до нашей эры в древнем Вавилоне.

С такими геометрическими фигурами, как окружности, мы сталкиваемся ежедневно и повсеместно. Именно ее форму имеет внешняя поверхность колес, которыми оснащаются различные транспортные средства. Эта деталь, несмотря на свою внешнюю простоту и незатейливость, считаются одним из величайших изобретений человечества, причем интересно, что аборигены Австралии и американские индейцы вплоть до прихода европейцев совершенно не имели понятия о том, что это такое.

По всей вероятности, самые первые колеса представляли собой отрезки бревен, которые насаживались на ось. Постепенно конструкция колеса совершенствовалась, их конструкция становилась все более и более сложной, а для их изготовления требовалось использовать массу различных инструментов. Сначала появились колеса, состоящие из деревянного обода и спиц, а затем, для того, чтобы уменьшить износ их внешней поверхности, ее стали обивать металлическими полосами. Для того чтобы определить длины этих элементов, и требуется использовать формулу расчета длины окружности (хотя на практике, вероятнее всего, мастера это делали «на глаз» или просто опоясывая колесо полосой и отрезая требуемый ее участок).

Следует заметить, что колесо используется отнюдь не только в транспортных средствах. Например, его форму имеет гончарный круг, а также элементы шестеренок зубчатых передач, широко применяемых в технике. Издавна колеса использовались в конструкциях водяных мельниц (самые древние из известных ученым сооружений такого рода строились в Месопотамии), а также прялок, применявшихся для изготовления нитей из шерсти животных и растительных волокон.

Окружности нередко можно встретить и в строительстве. Их форму имеют достаточно широко распространенные круглые окна, очень характерные для романского архитектурного стиля. Изготовление этих конструкций – дело весьма непростое и требует высокого мастерства, а также наличия специального инструмента. Одной из разновидностей круглых окон являются иллюминаторы, устанавливаемые в морских и воздушных судах.

Таким образом, решать задачу определения длины окружности часто приходится инженерам-конструкторам, разрабатывающим различные машины, механизмы и агрегаты, а также архитекторам и проектировщикам. Поскольку число π , необходимое для этого, является бесконечным, то с абсолютной точностью определить этот параметр не представляется возможным, и поэтому при вычислениях учитывается та ее степень, которая в том или ином конкретном случае является необходимой и достаточной.