Формула разложения квадратного многочлена. Разложение квадратных трехчленов на множители: примеры и формулы. Примеры разложения многочленов на множители с помощью формул

Квадратным трехчленом называется многочлен вида ax 2 + bx + c , где x – переменная, a, b, c – некоторые числа, причем a ≠ 0.

Коэффициент а называют старшим коэффициентом , c свободным членом квадратного трехчлена.

Примеры квадратных трехчленов:

2 x 2 + 5 x + 4 (здесь a = 2, b = 5, c = 4)

x 2 – 7x + 5 (здесь a = 1, b = -7, c = 5)

9x 2 + 9x – 9 (здесь a = 9, b = 9, c = -9)

Коэффициент b или коэффициент c либо оба коэффициента одновременно могут быть равны нулю. Например:

5 x 2 + 3 x (здесь a = 5, b = 3, c = 0, поэтому значение c в уравнении отсутствует).

6x 2 – 8 (здесь a = 6, b = 0, c = -8)

2x 2 (здесь a = 2, b = 0, c = 0)

Значение переменной, при котором многочлен обращается в ноль, называют корнем многочлена .

Чтобы найти корни квадратного трехчлена ax 2 + bx + c , надо приравнять его к нулю –
то есть решить квадратное уравнение ax 2 + bx + c = 0 (см.раздел "Квадратное уравнение").

Разложение квадратного трехчлена на множители

Пример:

Разложим на множители трехчлен 2x 2 + 7x – 4.

Мы видим: коэффициент а = 2.

Теперь найдем корни трехчлена. Для этого приравняем его к нулю и решим уравнение

2x 2 + 7x – 4 = 0.

Как решается такое уравнение – см. в разделе «Формулы корней квадратного уравнения. Дискриминант». Здесь же мы сразу назовем результат вычислений. Наш трехчлен имеет два корня:

x 1 = 1/2, x 2 = –4.

Подставим в нашу формулу значения корней, вынеся за скобки значение коэффициента а , и получим:

2x 2 + 7x – 4 = 2(x – 1/2) (x + 4).

Полученный результат можно записать иначе, умножив коэффициент 2 на двучлен x – 1/2:

2x 2 + 7x – 4 = (2x – 1) (x + 4).

Задача решена: трехчлен разложен на множители.

Такое разложение можно получить для любого квадратного трехчлена, имеющего корни.

ВНИМАНИЕ!

Если дискриминант квадратного трехчлена равен нулю, то этот трехчлен имеет один корень, но при разложении трехчлена этот корень принимают как значение двух корней – то есть как одинаковое значение x 1 и x 2 .

К примеру, трехчлен имеет один корень, равный 3. Тогда x 1 = 3, x 2 = 3.

Разложение квадратных трехчленов на множители относится к школьным заданиям, с которыми рано или поздно сталкивается каждый. Как его выполнить? Какова формула разложения квадратного трехчлена на множители? Разберемся пошагово с помощью примеров.

Общая формула

Разложение квадратных трехчленов на множители осуществляется решением квадратного уравнения. Это несложная задача, которую можно решить несколькими методами - нахождением дискриминанта, при помощи теоремы Виета, существует и графический способ решения. Первые два способа изучаются в средней школе.

Общая формула выглядит так: lx 2 +kx+n=l(x-x 1)(x-x 2) (1)

Алгоритм выполнения задания

Для того чтобы выполнить разложение квадратных трехчленов на множители, нужно знать теорему Вита, иметь под рукой программу для решения, уметь находить решение графически или искать корни уравнения второй степени через формулу дискриминанта. Если дан квадратный трехчлен и его надо разложить на множители, алгоритм действий такой:

1) Приравнять исходное выражение к нулю, чтобы получить уравнение.

2) Привести подобные слагаемые (если есть такая необходимость).

3) Найти корни любым известным способом. Графический метод лучше применять в случае, если заранее известно, что корни - целые и небольшие числа. Нужно помнить, что количество корней равно максимальной степени уравнения, то есть у квадратного уравнения корней два.

4) Подставить значение х в выражение (1).

5) Записать разложение квадратных трехчленов на множители.

Примеры

Окончательно понять, как выполняется это задание, позволяет практика. Иллюстрируют разложение на множители квадратного трехчлена примеры:

необходимо разложить выражение:

Прибегнем к нашему алгоритму:

1) х 2 -17х+32=0

2) подобные слагаемые сведены

3) по формуле Виета найти корни для этого примера сложно, потому лучше воспользоваться выражением для дискриминанта:

D=289-128=161=(12,69) 2

4) Подставим найденные нами корни в основную формулу для разложения:

(х-2,155) * (х-14,845)

5) Тогда ответ будет таким:

х 2 -17х+32=(х-2,155)(х-14,845)

Проверим, соответствуют ли найденные дискриминантом решения формулам Виета:

14,845 . 2,155=32

Для данных корней применяется теорема Виета, они были найдены правильно, а значит полученное нами разложение на множители тоже правильно.

Аналогично разложим 12х 2 +7х-6.

x 1 =-7+(337) 1/2

x 2 =-7-(337) 1/2

В предыдущем случае решения были нецелыми, но действительными числами, найти которые легко, имея перед собой калькулятор. Теперь рассмотрим более сложный пример, в котором корни будут комплексными: разложить на множители х 2 +4х+9. По формуле Виета корни найти не получится, и дискриминант отрицательный. Корни будут на комплексной плоскости.

D=-20

Исходя из этого, получаем нтересующие нас корни -4+2i*5 1/2 и -4-2i * 5 1/2 , поскольку (-20) 1/2 =2i*5 1/2 .

Получаем искомое разложение, подставив корни в общую формулу.

Еще один пример: нужно разложить на множители выражение 23х 2 -14х+7.

Имеем уравнение 23х 2 -14х+7 =0

D=-448

Значит, корни 14+21,166i и 14-21,166i. Ответ будет такой:

23х 2 -14х+7 =23(х-14-21,166i )*(х-14+21,166i ).

Приведем пример, решить который можно без помощи дискриминанта.

Пусть нужно разложить квадратное уравнение х 2 -32х+255. Очевидно, его можно решить и дискриминантом, однако быстрее в данном случае подобрать корни.

x 1 =15

x 2 =17

Значит х 2 -32х+255 =(х-15)(х-17).

Разложение квадратного трехчлена на множители может пригодится при решении неравенств из задачи С3 или задачи с параметром С5. Так же многие текстовые задачи B13 решатся значительно быстрее, если вы владеете теоремой Виета.

Эту теорему, конечно, можно рассматривать с позиций 8-го класса, в котором она впервые проходится. Но наша задача - хорошо подготовиться к ЕГЭ и научиться решать задания экзамена максимально эффективно. Поэтому в этом уроке рассмотрен подход немного отличный от школьного.

Формулу корней уравнения по теореме Виета знают (или хотя бы видели) многие:

$$x_1+x_2 = -\frac{b}{a}, \quad x_1 · x_2 = \frac{c}{a},$$

где `a, b` и `c` - коэффициенты квадратного трехчлена `ax^2+bx+c`.

Чтобы научиться легко пользоваться теоремой, давайте поймем, откуда она берется (так будет реально легче запомнить).

Пусть перед нами есть уравнение `ax^2+ bx+ с = 0`. Для дальнейшего удобства разделим его на `a` получим `x^2+\frac{b}{a} x + \frac{c}{a} = 0`. Такое уравнение называется приведенным квадратным уравнением.

Важная мысль урока: любой квадратный многочлен, у которого есть корни, можно разложить на скобки. Предположим, что наш можно представить в виде `x^2+\frac{b}{a} x + \frac{c}{a} = (x + k)(x+l)`, где `k` и `l` - некоторые константы.

Посмотрим, как раскроются скобки:

$$(x + k)(x+l) = x^2 + kx+ lx+kl = x^2 +(k+l)x+kl.$$

Таким образом, `k+l = \frac{b}{a}, kl = \frac{c}{a}`.

Это немного отличается от классической трактовки теоремы Виета - в ней мы ищем корни уравнения. Я же предлагаю искать слагаемые для разложения на скобки - так не нужно помнить про минус из формулы (имеется в виду `x_1+x_2 = -\frac{b}{a}`). Достаточно подобрать два таких числа, сумма которых равна среднему коэффициенту, а произведение - свободному члену.

Если нам нужно решение именно уравнения, то оно очевидно: корни `x=-k`или `x=-l` (так как в этих случаях одна из скобок занулится, значит, будет равно нулю и все выражение).

На примере покажу алгоритм, как раскладывать квадратный многочлен на скобки.

Пример первый. Алгоритм разложения квадратного трехчлена на множители

Путь у нас есть квадртаный трехчлен `x^2+5x+4`.

Он приведенный (коэффициент у `x^2` равен единице). Корни у него есть. (Для верности можно прикинуть дискриминант и убедиться, что он больше нуля.)

Дальнейшие шаги (их нужно выучить, выполнив все тренировочные задания):

  1. Выполнить следующую запись: $$x^2+5x+4=(x \ldots)(x \ldots).$$ Вместо точек оставьте свободное место, туда будем дописывать подходящие числа и знаки.
  2. Рассмотреть все возможные варианты, как можно разложить число `4` на произведение двух чисел. Получим пары "кандидатов" на корни уравнения: `2, 2` и `1, 4`.
  3. Прикинуть, из какой пары можно получить средний коэффициент. Очевидно, что это `1, 4`.
  4. Записать $$x^2+5x+4=(x \quad 4)(x \quad 1)$$.
  5. Следующий этап - расставить знаки перед вставленными числами.

    Как понять и навсегда запомнить, какие знаки должны быть перед числами в скобках? Попробуйте раскрыть их (скобки). Коэффициент перед `x` в первой степени будет `(± 4 ± 1)` (пока что знаков мы не знаем - нужно выбрать), и он должен равняться `5`. Очевидно, что здесь будут два плюса $$x^2+5x+4=(x + 4)(x + 1)$$.

    Выполните эту операцию несколько раз (привет, тренировочные задания!) и больше проблем с этим не будет никогда.

Если нужно решить уравнение `x^2+5x+4`, то теперь его решение не составит труда. Его корни: `-4, -1`.

Пример второй. Разложение на множители квадратного трехчлена с коэффициентами различных знаков

Пусть нам нужно решить уравнение `x^2-x-2=0`. Навскидку дискриминант положительный.

Идем по алгоритму.

  1. $$x^2-x-2=(x \ldots) (x \ldots).$$
  2. Разложение двойки на целые множители есть только одно: `2 · 1`.
  3. Пропускаем пункт - выбирать не из чего.
  4. $$x^2-x-2=(x \quad 2) (x \quad 1).$$
  5. Произведение наших чисел отрицательное (`-2` - свободный член), значит, одно из них будет отрицательное, а другое - положительное.
    Поскольку их сумма равна `-1` (коэффициент при `x`), то отрицательным будет `2` (интуитивное объяснение - двойка большее из двух чисел, оно сильнее "перетянет" в отрицательную сторону). Получим $$x^2-x-2=(x - 2) (x + 1).$$

Третий пример. Разложение квадратного трехчлена на множители

Уравнение `x^2+5x -84 = 0`.

  1. $$x+ 5x-84=(x \ldots) (x \ldots).$$
  2. Разложение 84 на целые множители: `4· 21, 6· 14, 12· 7, 2·42`.
  3. Поскольку нам нужно, чтобы разница (или сумма) чисел равнялась 5, то нам подойдет пара `7, 12`.
  4. $$x+ 5x-84=(x\quad 12) (x \quad 7).$$
  5. $$x+ 5x-84=(x + 12) (x - 7).$$

Надеюсь, разложение этого квадратного трехчлена на скобки понятно.

Если нужно решение уравнения, то вот оно: `12, -7`.

Задания для тренировки

Предлагаю вашему вниманию несколько примеров, которые легко решаются с помощью теоремы Виета. (Примеры взяты из журнала "Математика", 2002.)

  1. `x^2+x-2=0`
  2. `x^2-x-2=0`
  3. `x^2+x-6=0`
  4. `x^2-x-6=0`
  5. `x^2+x-12=0`
  6. `x^2-x-12=0`
  7. `x^2+x-20=0`
  8. `x^2-x-20=0`
  9. `x^2+x-42=0`
  10. `x^2-x-42=0`
  11. `x^2+x-56=0`
  12. `x^2-x-56=0`
  13. `x^2+x-72=0`
  14. `x^2-x-72=0`
  15. `x^2+x-110=0`
  16. `x^2-x-110=0`
  17. `x^2+x-420=0`
  18. `x^2-x-420=0`

Спустя пару лет после написания статьи появился сборник из 150 заданий для разложения квадратного многочлена по теореме Виета.

Ставьте лайки и задавайте вопросы в комментариях!

Квадратным трехчленом называется многочлен вида ax^2+bx+c, где х – переменная, a, b и с – некоторые числа, причем а не равно нулю.
Собственно, первое что нам нужно знать, чтобы разложить злополучный трехчлен на множители – теорема. Выглядит она следующим образом: “Если х1 и х2 – корни квадратного трехчлена ax^2+bx+c, то ax^2+bx+c=a(x-x1)(x-x2)”. Конечно, существует и доказательство этой теоремы, но оно требует некоторых теоретических знаний (при вынесении за скобки в многочлене ax^2+bx+c множителя а получаем ax^2+bx+c=a(x^2+(b/a)x + c/a). По теореме Виетта x1+x2=-(b/a), х1*х2=с/а, следовательно b/a=-(x1+x2), с/а=х1*х2. значит, x^2+ (b/a)x+c/a= x^2- (x1+x2)x+ x1x2=x^2-x1x-x2x+x1x2=x(x-x1)-x2(x-x1)= (x-x1)(x-x2). значит, ax^2+bx+c=a(x-x1)(x-x2) . Иногда учителя заставляют учить доказательство, но если оно не востребовано, советую просто запомнить итоговую формулу.

2 шаг

Возьмем как пример трехчлен 3x^2-24x+21. Первое, что нам нужно сделать – приравнять трехчлен к нулю: 3x^2-24x+21=0. Корни полученного квадратного уравнения и будут корнями трехчлена, соответственно.

3 шаг

Решим уравнение 3x^2-24x+21=0. a=3, b=-24, c=21. Итак, решаем. Кто не знает как решать квадратные уравнения, смотрите в мою инструкцию с 2-мя способами их решения на примере этого же уравнения. Получились корни х1=7, х2=1.

4 шаг

Теперь, когда у нас есть корни трехчлена, можно смело подставлять их в формулу =) ax^2+bx+c=a(x-x1)(x-x2)
получаем:3x^2-24x+21=3(х-7)(х-1)
Можно избавиться от члена а, внеся его в скобки: 3x^2-24x+21=(х-7)(х*3-1*3)
в итоге получаем: 3x^2-24x+21=(х-7)(3х-3). Примечание: каждый из полученных множителей ((х-7), (3х-3) являются многочленами первой степени. Вот и все разложение =) Если сомневаетесь в полученном ответе, всегда можно его проверить, перемножив скобки.

5 шаг

Проверка решения. 3x^2-24x+21=3(х-7)(х-3)
(x-7)(3x-3)=3x^2-3x-21x+21=3x^2-24x+21. Теперь мы точно знаем, что наше решение верно! Надеюсь, моя инструкция кому-нибудь поможет =) Удачи в учебе!

  • В нашем случае в уравнении D >0 и мы получили по 2 корня. Если бы было D<0, то уравнение, как и многочлен, соответственно, корней бы не имело.
  • Если квадратный трехчлен не имеет корней, то его нельзя разложить на множители, являющиеся многочленами первой степени.

Это один из самых элементарных способов упростить выражение. Для применения этого метода давай вспомним распределительный закон умножения относительно сложения (не пугайся этих слов, ты обязательно знаешь этот закон, просто мог забыть его название).

Закон гласит: чтобы сумму двух чисел умножить на третье число, нужно каждое слагаемое умножить на это число и полученные результаты сложить, иначе говоря, .

Так же можно проделать и обратную операцию, вот именно эта обратная операция нас и интересует. Как видно из образца, общий множитель а, можно вынести за скобку.

Подобную операцию можно проделывать как с переменными, такими как и, например, так и с числами: .

Да, это слишком элементарный пример, так же, как и приведенный ранее пример, с разложением числа, ведь все знают, что числа, и делятся на, а как быть, если вам досталось выражение посложнее:

Как узнать на что, например, делится число, неет, с калькулятором-то любой сможет, а без него слабо? А для этого существуют признаки делимости, эти признаки действительно стоит знать, они помогут быстро понять, можно ли вынести за скобку общий множитель.

Признаки делимости

Запомнить их не так сложно, скорее всего, большинство из них и так тебе были знакомы, а что-то будет новым полезным открытием, подробнее в таблице:

Примечание: В таблице не хватает признака делимости на 4. Если две последние цифры делятся на 4, то и всё число делится на 4.

Ну как тебе табличка? Советую ее запомнить!

Что ж, вернемся к выражению, может вынести за скобку да и хватит с него? Нет, у математиков принято упрощать, так по полной, выносить ВСЕ что выносится!

И так, с игреком все понятно, а что с числовой частью выражения? Оба числа нечетные, так что на разделить не удастся,

Можно воспользоваться признаком делимости на, сумма цифр, и, из которых состоит число, равна, а делится на, значит и делится на.

Зная это, можно смело делить в столбик, в результате деления на получаем (признаки делимости пригодились!). Таким образом, число мы можем вынести за скобку, так же, как y и в результате имеем:

Чтоб удостовериться, что разложили все верно, можно проверить разложение, умножением!

Также общий множитель можно выносить и в степенных выражениях. Вот тут, например, видишь общий множитель?

У всех членов этого выражения есть иксы - выносим, все делятся на - снова выносим, смотрим что получилось: .

2. Формулы сокращенного умножения

Формулы сокращенного умножения уже упоминались в теории, если ты с трудом помнишь что это, то тебе стоит освежить их в памяти .

Ну, а если ты считаешь себя очень умным и тебе лень читать такую тучу информации, то просто читай дальше, глянь на формулы и сразу берись за примеры.

Суть этого разложения в том, что бы заметить в имеющемся перед тобой выражении какую-то определенную формулу, применить ее и получить, таким образом, произведение чего-то и чего-то, вот и все разложение. Дальше приведены формулы:

А теперь попробуй, разложи на множители следующие выражения, используя приведенные выше формулы:

А вот что должно было получиться:

Как ты успел заметить, эти формулы - весьма действенный способ разложения на множители, он подходит не всегда, но может очень пригодиться!

3. Группировка или метод группировки

А вот тебе еще примерчик:

ну и что с ним делать будешь? Вроде бы и на что-то делится и на, а что-то на и на

Но все вместе на что-то одно не разделишь, ну нет тут общего множителя , как не ищи, что, так и оставить, не раскладывая на множители?

Тут надо смекалку проявить, а имя этой смекалке - группировка!

Применяется она как раз, когда общие делители есть не у всех членов. Для группировки необходимо найти группки слагаемых, имеющих общие делители и переставить их так, чтобы из каждой группы можно было получить один и тот же множитель.

Переставлять местами конечно не обязательно, но это дает наглядность, для наглядности же можно взять отдельные части выражения в скобки, их ставить не запрещается сколько угодно, главное со знаками не напутать.

Не очень понятно все это? Объясню на примере:

В многочлене -- ставим член - после члена - получаем

группируем первые два члена вместе в отдельной скобке и так же группируем третий и четвертый члены, вынеся за скобку знак «минус», получаем:

А теперь смотрим по отдельности на каждую из двух "кучек", на которые мы разбили выражение скобками.

Хитрость в том, чтоб разбить на такие кучки, из которых можно будет вынести максимально большой множитель, либо, как в этом примере, постараться сгруппировать члены так, чтобы после вынесения из кучек множителей за скобку у нас внутри скобок оставались одинаковые выражения.

Из обеих скобок выносим за скобки общие множители членов, из первой скобки, а из второй, получаем:

Но это же не разложение!

П осле разложения должно остаться только умножение , а пока у нас многочлен просто поделен на две части...

НО! Этот многочлен имеет общий множитель. Это

за скобку и получаем финальное произведение

Бинго! Как видишь, тут уже произведение и вне скобок нет ни сложения, ни вычитания, разложение завершено, т.к. вынести за скобки нам больше нечего.

Может показаться чудом, что после вынесения множителей за скобки у нас в скобках остались одинаковые выражения, которые опять же мы и вынесли за скобку.

И вовсе это не чудо, дело в том, что примеры в учебниках и в ЕГЭ специально сделаны так, что большинство выражений в заданиях на упрощение или разложение на множители при правильном к ним подходе легко упрощаются и резко схлопываются как зонтик при нажатии на кнопку, вот и ищи в каждом выражении ту самую кнопку.

Что-то я отвлекся, что у нас там с упрощением? Замысловатый многочлен принял более простой вид: .

Согласись, уже не такой громоздкий, как был?

4. Выделение полного квадрата.

Иногда для применения формул сокращенного умножения (повтори тему ) необходимо преобразовать имеющийся многочлен , представив одно из его слагаемых в виде суммы или разности двух членов.

В каком случае приходится это делать, узнаешь из примера:

Многочлен в таком виде не может быть разложен при помощи формул сокращенного умножения, поэтому его необходимо преобразовать. Возможно, поначалу тебе будет не очевидно какой член на какие разбивать, но со временем ты научишься сразу видеть формулы сокращенного умножения, даже если они не присутствуют не целиком, и будете довольно быстро определять, чего здесь не хватает до полной формулы, а пока - учись, студент, точнее школьник.

Для полной формулы квадрата разности здесь нужно вместо. Представим третий член как разность, получим: К выражению в скобках можно применить формулу квадрата разности (не путать с разностью квадратов!!!) , имеем: , к данному выражению можно применить формулу разности квадратов (не путать с квадратом разности!!!) , представив, как, получим: .

Не всегда разложенное на множители выражение выглядит проще и меньше, чем было до разложения, но в таком виде оно становится более подвижным, в том плане, что можно не париться про смену знаков и прочую математическую ерунду. Ну а вот тебе для самостоятельного решения, следующие выражения нужно разложить на множители.

Примеры:

Ответы:​

5. Разложение квадратного трехчлена на множители

О разложении квадратного трехчлена на множители смотри далее в примерах разложения.

Примеры 5 методов разложения многочлена на множители

1. Вынесение общего множителя за скобки. Примеры.

Помнишь, что такое распределительный закон? Это такое правило:

Пример:

Разложить многочлен на множители.

Решение:

Еще пример:

Разложи на множители.

Решение:

Если слагаемое целиком выносится за скобки, в скобках вместо него остается единица!

2. Формулы сокращенного умножения. Примеры.

Чаще всего используем формулы разность квадратов, разность кубов и сумма кубов. Помнишь эти формулы? Если нет, срочно повтори тему !

Пример:

Разложите на множители выражение.

Решение:

В этом выражении несложно узнать разность кубов:

Пример:

Решение:

3. Метод группировки. Примеры

Иногда можно поменять слагаемые местами таким образом, чтобы из каждой пары соседних слагаемых можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен превратится в произведение.

Пример:

Разложите на множители многочлен.

Решение:

Сгруппируем слагаемые следующим образом:
.

В первой группе вынесем за скобку общий множитель, а во второй − :
.

Теперь общий множитель также можно вынести за скобки:
.

4. Метод выделения полного квадрата. Примеры.

Если многочлен удастся представить в виде разности квадратов двух выражений, останется только применить формулу сокращенного умножения (разность квадратов).

Пример:

Разложите на множители многочлен.

Решение: Пример:

\begin{array}{*{35}{l}}
{{x}^{2}}+6{x}-7=\underbrace{{{x}^{2}}+2\cdot 3\cdot x+9}_{квадрат\ суммы\ {{\left(x+3 \right)}^{2}}}-9-7={{\left(x+3 \right)}^{2}}-16= \\
=\left(x+3+4 \right)\left(x+3-4 \right)=\left(x+7 \right)\left(x-1 \right) \\
\end{array}

Разложите на множители многочлен.

Решение:

\begin{array}{*{35}{l}}
{{x}^{4}}-4{{x}^{2}}-1=\underbrace{{{x}^{4}}-2\cdot 2\cdot {{x}^{2}}+4}_{квадрат\ разности{{\left({{x}^{2}}-2 \right)}^{2}}}-4-1={{\left({{x}^{2}}-2 \right)}^{2}}-5= \\
=\left({{x}^{2}}-2+\sqrt{5} \right)\left({{x}^{2}}-2-\sqrt{5} \right) \\
\end{array}

5. Разложение квадратного трехчлена на множители. Пример.

Квадратный трехчлен - многочлен вида, где - неизвестное, - некоторые числа, причем.

Значения переменной, которые обращают квадратный трехчлен в ноль, называются корнями трехчлена. Следовательно, корни трехчлена - это корни квадратного уравнения.

Теорема.

Пример:

Разложим на множители квадратный трехчлен: .

Сначала решим квадратное уравнение:Теперь можно записать разложение данного квадратного трехчлена на множители:

Теперь твое мнение...

Мы расписали подробно как и для чего раскладывать многочлен на множители.

Мы привели массу примеров как это делать на практике, указали на подводные камни, дали решения...

А что скажешь ты?

Как тебе эта статья? Ты пользуешься этими приемами? Понимаешь их суть?

Пиши в комментриях и... готовься к экзамену!

Пока что он самый важный в твоей жизни.