Як утворилися основні гази, що становлять атмосферу землі. Шари атмосфери порядку від поверхні землі. Інтенсивність полярних сяйв

Кожна грамотна людина повинна знати не тільки те, що планету оточує атмосфера із суміші всіляких газів, а й те, що існують різні шари атмосфери, які розташовуються на неоднаковому віддаленні поверхні Землі.

Спостерігаючи на небі, ми зовсім не бачимо його складного пристрою, ні неоднорідного складу, ні інших прихованих від очей речей. Але саме завдяки складному та багатокомпонентному складу повітряного шару, навколо планети на ній і існують такі умови, які дозволили виникнути тут життю, розцвісти рослинності, з'явитися всьому тому, що тут будь-коли.

Знання про предмет розмови дає людям вже 6 клас у школі, але дехто до нього ще не доучився, а дехто був там так давно, що вже забув. Проте кожна освічена людина повинна знати, з чого складається світ навколо неї, особливо та її частина, від якої безпосередньо залежить сама можливість її нормального життя.

Як називається кожен із шарів атмосфери, на якій висоті він знаходиться, яку роль грає? Всі ці питання будуть розглянуті нижче.

Будова атмосфери Землі

Дивлячись на небо, особливо коли воно абсолютно безхмарно, дуже складно навіть припустити, що воно має таку складну та багатошарову структуру, що температура там на різних висотах дуже відрізняється, і що саме там, у висоті, відбуваються найважливіші процеси для всієї флори та фауни на землі.

Якби не такий складний склад газового покриву планети, то тут просто не було б жодного життя і навіть можливості для її зародження.

Перші спроби вивчити цю частину навколишнього світу були зроблені ще древніми греками, але ті не могли зайти у своїх висновках занадто далеко, тому що не мали необхідної технічної бази. Вони бачили межі різних верств, було неможливо виміряти їх температуру, вивчити компонентний склад тощо.

В основному лише погодні явища наштовхували найпрогресивніші уми на роздуми про те, що видиме небо не таке просте, як здається.

Вважається, що структура сучасної газової оболонки навколо Землі утворилася три етапи.Спочатку була первинна атмосфераз водню та гелію, захоплених із космічного простору.

Згодом виверження вулканів наповнило повітря масою інших частинок, і виникла вторинна атмосфера. Після проходження всіх основних хімічних реакцій та процесів релаксації частинок виникла нинішня ситуація.

Шари атмосфери по порядку від поверхні землі та їх характеристика

Структура газової оболонки планети досить складна та різноманітна. Розглянемо її докладніше, поступово дійшовши на верхніх рівнів.

Тропосфера

Якщо не брати до уваги прикордонний шар, тропосфера є найнижчим шаром атмосфери. Розширюється вона на висоту приблизно 8-10 км над поверхнею землі в полярних регіонах, на 10-12 км у помірному кліматі, а в тропічних частинах – на 16-18 кілометрів.

Цікавий факт:ця відстань може змінюватися залежно від пори року – взимку вона дещо менша, ніж улітку.

Повітря тропосфери містить у собі основну цілющу силу для всього живого на землі.Тут міститься близько 80% від усього наявного атмосферного повітря, понад 90% водяної пари, саме тут утворюються хмари, циклони та інші атмосферні явища.

Цікаво відзначити поступове зниження температури під час підняття від поверхні планети. Вчені підрахували, що на кожні 100 м-код висоти температура зменшується приблизно на 0,6-0,7 градусів.

Стратосфера

Наступний найважливіший прошарок – стратосфера. Висота стратосфери становить приблизно 45-50 км.Починається вона з 11 км, і тут уже переважають негативні температури, досягаючи цілих -57°С.

Чим важливий цей шар для людини, всіх тварин та рослин? Саме тут, на висоті 20-25 кілометрів, знаходиться озоновий шар - він затримує ультрафіолетові промені, що виходять від сонця, і зменшує їх руйнівний вплив на флору та фауну до прийнятного значення.

Дуже цікаво відзначити, що стратосфера поглинає багато типів випромінювання, які йдуть на землю від сонця, інших зірок та космічного простору. Отримана енергія від цих частинок йде на іонізацію молекул і атомів, що знаходяться тут, з'являються різні хімічні сполуки.

Все це призводить до такого відомого та барвистого явища, як північне сяйво.

Мезосфера

Мезосфера починається приблизно з 50 і тягнеться до 90 кілометрів.Градієнт, або перепад температури зі зміною висоти, тут не настільки великий, як у нижніх шарах. У верхніх межах цієї оболонки температура дорівнює близько -80°С. Склад цієї області включає приблизно 80% азоту, а також 20% кисню.

Важливо відзначити, що мезосфера - свого роду мертва зона для будь-яких літальних пристроїв. Літаки не можуть тут літати, тому що повітря надмірно розріджене, супутники ж на такій низькій висоті не літають, тому що для них щільність повітря дуже велика.

Ще одна цікава характеристика мезосфери – саме тут згоряють метеорити, що налітають на планету.Вивчення таких віддалених від землі шарів відбувається за допомогою спеціальних ракет, але ефективність процесу невелика, тому вивчення регіону залишає бажати кращого.

Термосфера

Відразу після розглянутого шару йде термосфера, висота в км якої тягнеться на цілих 800 км.До певної міри це вже майже відкритий космос. Тут спостерігається агресивна дія космічного випромінювання, радіації, сонячного випромінювання.

Все це породжує таке чудове та гарне явище, як полярне сяйво.

Найнижчий шар термосфери нагрівається до температури приблизно 200 К і більше. Відбувається це завдяки елементарним процесам між атомами та молекулами, їх рекомбінацією та випромінювання.

Верхні шари ж нагріваються завдяки магнітним бурям, що протікають тут, електричним струмам, які при цьому генеруються. Температура шару нерівномірна і може дуже значно коливатися.

У термосфері відбувається політ більшості штучних супутників, балістичних тіл, пілотованих станцій тощо. Також тут виробляються випробування запусків різної зброї, ракет.

Екзосфера

Екзосфера, або як вона ще називається сфера розсіювання, — це найвищий рівень нашої атмосфери, її межа, за якою слідує міжпланетний космічний простір. Починається екзосфера з висоти приблизно 800-1000 кілометрів.

Щільні шари залишилися позаду і тут повітря гранично розріджене, будь-які частинки, що потрапили з боку, просто відносяться в космос в силу дуже слабкої дії сили гравітації.

Закінчується ця оболонка на висоті приблизно 3000-3500 км., і тут майже немає ніяких частинок. Ця зона називається близькокосмічним вакуумом. Тут переважають не окремі частинки у своєму звичайному стані, а плазма, найчастіше повністю іонізована.

Значення атмосфери у житті Землі

Ось так виглядають усі основні рівні устрою атмосфери нашої планети. Детальна її схема може включати й інші регіони, але вони мають другорядне значення.

Важливо, що атмосфера грає життя на Землі вирішальну роль.Багато озону у її стратосфері дозволяють флорі та фауні рятуватися від убивчої дії радіації та випромінювання з космосу.

Також саме тут формується погода, відбуваються всі атмосферні явища, зароджуються та вмирають циклони, вітри, встановлюється той чи інший тиск. Все це має прямий вплив на стан людини, всіх живих організмів та рослин.

Найближчий шар, тропосфера, дає можливість дихати, насичує киснем все живе і дозволяє йому жити. Навіть невеликі відхилення у структурі та компонентному складі атмосфери здатні найзгубнішим чином вплинути на все живе.

Саме тому зараз розгорнулася така кампанія проти шкідливих викидів від авто та виробництва, екологи б'ють на сполох із приводу товщини озонної кулі, партія Зелених і їй подібні борються за максимальне збереження природи. Тільки так можна продовжити нормальне життя на землі і не зробити його нестерпним у кліматичному плані.

Атмосфера Землі – оболонка із газів, що оточує Землі. Атмосфера нашої планети грає величезну роль життя планети і людини зокрема. Наша атмосфера це дивовижне явище, яке ніде раніше не зустрічалося. Атмосфера нашої планети сягає висоти 900 км. та захищає наше життя від руйнівних сил космосу. Також вона підтримує життя і всередині планети, створюючи сприятливі умови для життя. Без атмосфери наше життя було б неможливим

Атмосфери Землі. Підтримка життя

Атмосфера Землі, якщо вірити одному і життю, з'явилася не відразу, а через великий проміжок часу формування планети. Як відомо життя у Всесвіті, на Наразі, Існує тільки на нашій планеті і величезну роль у підтримці життя на Землі грає її атмосфера. Всі зі школи знають, що в атмосфері міститься необхідне всім живим істотам повітря для підтримки життя, але це далеко не все, що робить наша атмосфера. Стародавня Земля не мала жодної атмосфери і нічого іншого, все почало з'являтися з часом.

Багато хто чув про парниковому ефекті, але не всі знають, що це таке. Через парниковий ефект на нашій планеті можливе глобальне потепління. Парниковий ефект здійснює наша атмосфера, коли сонячні промені проходять через атмосферу і відбиваються від , атмосфера затримує гази в собі, нагріваючи повітря і підвищуючи температуру. Гази, що містяться в атмосфері, не дають сонячним променям повертатися назад у космос, але це відбувається не з усіма променями, інакше на Землі температура б підвищувалася постійно. Атмосфера робить це так, щоб не порушити нашу звичну температуру. Саме через парниковий ефект на планеті Венера найвища температура повітря у всій Сонячній системі тому, що атмосфера там дуже щільна і практично не випускає сонячне теплоназад у космос.

Повітряна оболонка планетизахищає нас від смертоносних ультрафіолетових променівщо виходять від Сонця. Ультрафіолетові промені вбили б усе живе на нашій планеті якби не було Атмосфери, а точніше її особливого шару – озонового. Саме цей шар не дає променям потрапити до атмосфери. Але цей захисний шар можна легко зруйнувати, над поверхнею Антарктики було помічено велика озонова діра . Вчені встановили, що наш озоновий шар руйнує хлорофторвуглекислий газ, що міститься в аерозолях та в холодильному устаткуванні. На знімку нижче добре видна озонова дірка. Вчені вважають, що озонова дірка постійно збільшується у розмірах і ставить життя на планеті під загрозу. Для запобігання цьому необхідно використовувати паливо, що не викликає великого диму.

Крім усього, наша атмосфера має дивовижну властивість. Завдяки ній ми можемо спілкуватися. Так, саме завдяки особливій структурі атмосфери звукові хвилі вільно поширюються в ній і ми можемо чути різні звуки. Наша Атмосфера дозволяє нам чути одне одного, чого ми не змогли робити, якби атмосфери не існувало.

Будова Атмосфери

Атмосфера має шарувату будову, межі між різними шарами не чіткі і можна помітити великі перепади температури в шарах атмосфери.

Почнемо перерахування шарів зверху донизу:

  1. Перший шар – Магнітосфера. Ця сфера не містить повітря, але вона входить до складу атмосфери. У цьому прошарку літає велика кількість земних супутників.
  2. Другий шар – Екзосфера (460-500 км. від поверхні планети) практично не містить газів, у цьому шарі можна знайти супутники погоди
  3. Третій шар – Термосфера (80-460 км) у цьому шарі дуже велика температура, яка може досягати 1700ºC
  4. Четвертий шар – Мезосфера (50-80 км.) у цьому шарі що ви перебуваєте, тим нижче температура. Саме в цьому шарі згоряють метеорити або інші космічні тіла, що потрапили до атмосфери.
  5. П'ятий шар – Стратосфера (15-40 км) містить озоновий шар планети.Тут зазвичай літають винищувачі та реактивні літаки, оскільки видимість у цьому шарі відмінна та погодні умови не створюють жодних перешкод.
  6. Шостий шар - Тропосфера (9-15 км.) Саме в цьому шарі формується погода, тому що тут міститься велика кількість водяної пари та пилу. Чим вище ви, тим нижче температура

Склад атмосферного повітрявсім давно відомий, це: Азот (78%), Кисень (21%) та Різні гази (1%).

Атмосферний тиск- Давно відоме поняття. Атмосфера має великі розміри дуже величезна і, природно, вона має масу і надає тиск на поверхню планети. Атмосферний тиск вимірюється, як правило, ртутним стовпом. Місця де атмосферний тиск вищий, ртуть у стовпчику піднімається вище. Нормальний для нас тиск дорівнює 766 мм. ртутного стовпа. Атмосферний тиск не однаковий у всіх районах Землі, нерідко буває, що в місцях і піднесених над рівнем моря є різний атмосферний тиск.

Іноді атмосферу, що товстим шаром оточує нашу планету, називають п'ятим океаном. Недарма друга назва літака – повітряне судно. Атмосфера є сумішшю різних газів, серед яких переважають азот і кисень. Саме завдяки останньому на планеті можливе життя у тій формі, до якої ми всі звикли. Крім них є ще 1% інших складових. Це інертні (не вступають у хімічні взаємодії) гази, оксид сірки, Також у п'ятому океані містяться механічні домішки: пил, попіл та ін. далі). Така вражаюча товщина утворює своєрідний непробивний щит, що захищає планету від згубного космічного випромінювання та великих об'єктів.

Розрізняють такі шари атмосфери: тропосфера, за нею слідує стратосфера, далі мезосфера і, нарешті, термосфера. Наведений порядок починається біля поверхні планети. Щільні шари атмосфери представлені першими двома. Саме вони відфільтровують значну частину згубного

Найнижчий шар атмосфери - тропосфера, що тягнеться всього на 12 км над рівнем моря (18 км у тропіках). Тут концентрується до 90% водяної пари, тому хмари формуються у ньому. Більшість повітря також зосереджена саме тут. Всі наступні шари атмосфери холодніші, оскільки близькість до поверхні дозволяє відбитим сонячним променям нагрівати повітря.

Стратосфера сягає майже 50 км від поверхні. Більшість метеозондів «плавають» у цьому шарі. Також тут можуть літати деякі види літаків. Однією з найдивовижніших особливостей є температурний режим: у проміжку від 25 до 40 км починається зростання температури повітря. Від -60 вона піднімається майже до 1. Потім спостерігається невелике зниження до нуля, яке зберігається до висоти 55 км. Верхній кордон - це сумнозвісний

Далі майже до 90 км простягається мезосфера. Температура повітря різко падає. На кожні 100 метрів підйому спостерігається зниження на 0,3 градуси. Іноді її називають найхолоднішою ділянкою атмосфери. Щільність повітря низька, проте її цілком достатньо для створення опору метеорам, що падають.

Шари атмосфери у звичному розумінні закінчуються на висоті близько 118 км. Тут формуються відомі полярні сяйва. Вище починається область термосфери. Через рентгенівські і відбувається іонізація тих небагатьох молекул повітря, що містяться в цій галузі. Дані процеси створюють так звану іоносферу (вона часто входить у термосферу, тому окремо не розглядається).

Все, що знаходиться вище за 700 км, називається екзосферою. повітря вкрай незначне, тому вони вільно переміщуються, не відчуваючи опору через зіткнення. Це дозволяє окремим накопичувати енергію, що відповідає 160 градусам Цельсія, при тому, що навколишня температура низька. Молекули газів розподіляються за обсягом екзосфери відповідно до своєї масою, тому найважчі їх можуть бути виявлені лише у нижній частині шару. Притягнення планети, що зменшується з висотою, вже не в змозі утримувати молекули, тому космічні високоенергетичні частинки і випромінювання повідомляють молекулам газів імпульс, достатній для того, щоб залишити атмосферу. Ця область є однією з найбільш тривалих: вважається, що атмосфера повністю перетворюється на космічний вакуум на висотах, більших 2000 км (іноді навіть фігурує число 10000). Штучні обертаються орбітами ще в термосфері.

Усі зазначені числа є орієнтовними, оскільки межі атмосферних шарів залежить від низки чинників, наприклад, від активності Сонця.

АТМОСФЕРА
газова оболонка, що оточує небесне тіло. Її характеристики залежать від розміру, маси, температури, швидкості обертання та хімічного складу даного небесного тіла, а також визначаються історією його формування, починаючи з моменту зародження. Атмосфера Землі утворена сумішшю газів, яка називається повітрям. Її основні складові - азот та кисень у співвідношенні приблизно 4:1. На людину впливає головним чином стан нижніх 15-25 км атмосфери, оскільки саме в цьому нижньому шарі зосереджено основну масу повітря. Наука, що вивчає атмосферу, називається метеорологією, хоча предметом цієї науки є також погода та її вплив на людину. Стан верхніх шарів атмосфери, розташованих на висотах від 60 до 300 і навіть 1000 км від Землі, також змінюється. Тут розвиваються сильні вітри, шторми і виявляються такі дивовижні електричні явищаяк полярні сяйва. Чимало з перелічених феноменів пов'язані з потоками сонячної радіації, космічного випромінювання, і навіть магнітним полем Землі. Високі шари атмосфери - це також і хімічна лабораторія, оскільки там за умов, близьких до вакууму, деякі атмосферні гази під впливом потужного потоку сонячної енергії вступають у хімічні реакції. Наука, що вивчає ці взаємопов'язані явища та процеси, називається фізикою високих шарів атмосфери.
ЗАГАЛЬНА ХАРАКТЕРИСТИКА АТМОСФЕРИ ЗЕМЛІ
Розміри.Поки ракети-зонди та штучні супутники не досліджували зовнішні шари атмосфери на відстанях, що у кілька разів перевершують радіус Землі, вважалося, що в міру віддалення від земної поверхніатмосфера поступово стає більш розрідженою і плавно перетворюється на міжпланетний простір. Наразі встановлено, що потоки енергії з глибоких шарів Сонця проникають у космічний простір далеко за орбіту Землі, аж до зовнішніх меж. Сонячної системи. Цей т.зв. сонячний вітер обтікає магнітне поле Землі, формуючи видовжену "порожнину", усередині якої і зосереджена земна атмосфера. Магнітне поле Землі помітно звужено зі зверненої до Сонця денної сторони і утворює довгу мову, що ймовірно виходить за межі орбіти Місяця, - з протилежного, нічного боку. Кордон магнітного поля Землі називається магнітопаузою. З денного боку цей кордон проходить на відстані близько семи земних радіусів від поверхні, але в періоди підвищеної сонячної активності виявляється ще ближче до Землі. Магнітопауза є одночасно межею земної атмосфери, зовнішня оболонка якої називається також магнітосферою, тому що в ній зосереджені заряджені частинки (іони), рух яких обумовлений магнітним полем Землі. Загальна вага газів атмосфери становить приблизно 4,5 * 1015 т. Таким чином, "вага" атмосфери, що припадає на одиницю площі, або атмосферний тиск становить приблизно 11 т/м2.
Значення життя.Зі сказаного вище випливає, що Землю від міжпланетного простору відокремлює потужний захисний шар. Космічний простір пронизаний потужним ультрафіолетовим і рентгенівським випромінюванням Сонця і ще більш жорстким космічним випромінюванням, і ці види радіації є згубними для всього живого. На зовнішній межі атмосфери інтенсивність випромінювання смертоносна, але значна його частина затримується атмосферою далеко від Землі. Поглинанням цього випромінювання пояснюються багато властивостей високих шарів атмосфери і особливо що відбуваються там електричні явища. Найнижчий, приземний шар атмосфери особливо важливий для людини, яка мешкає у місці контакту твердої, рідкої та газоподібної оболонок Землі. Верхня оболонка "твердої" Землі називається літосферою. Близько 72% поверхні Землі покрито водами океанів, що становлять більшу частину гідросфери. Атмосфера межує як із літосферою, так і з гідросферою. Людина живе на дні повітряного океану і поблизу або вище за рівень океану водного. Взаємодія цих океанів одна із важливих чинників, визначальних стан атмосфери.
склад.Нижні шари атмосфери складаються із суміші газів (див. табл.). Крім наведених у таблиці, у вигляді невеликих домішок у повітрі присутні й інші гази: озон, метан, такі речовини, як оксид вуглецю (СО), оксиди азоту та сірки, аміак.

СКЛАД АТМОСФЕРИ


У високих шарах атмосфери склад повітря змінюється під впливом жорсткого випромінювання Сонця, що призводить до розпаду молекул кисню на атоми. Атомарний кисень є основним компонентом найвищих шарів атмосфери. Нарешті, найбільш віддалених від поверхні Землі шарах атмосфери головними компонентами стають найлегші гази - водень і гелій. Оскільки основна маса речовини зосереджена в нижніх 30 км, зміни складу повітря на висотах більше 100 км не надають помітного впливу на загальний склад атмосфери.
Енергообмін.Сонце є основним джерелом енергії, що надходить на Землю. Перебуваючи на відстані прибл. 150 млн. км від Сонця, Земля отримує приблизно одну двомільярдну частину енергії, що випромінюється ним, головним чином у видимій частині спектра, яку людина називає "світлом". Більшість цієї енергії поглинається атмосферою та літосферою. Земля також випромінює енергію, переважно у вигляді довгохвильової інфрачервоної радіації. Таким чином встановлюється рівновага між енергією, що отримується від Сонця, нагріванням Землі і атмосфери і зворотним потоком теплової енергії, що випромінюється в простір. Механізм цієї рівноваги дуже складний. Пил і молекули газів розсіюють світло, частково відбиваючи їх у світовий простір. Ще більшу частину радіації, що приходить, відображають хмари. Частина енергії поглинається безпосередньо молекулами газів, але переважно - гірськими породами, рослинністю і поверхневими водами. Водяна пара та вуглекислий газ, присутні в атмосфері, пропускають видиме випромінювання, але поглинають інфрачервоне. Теплова енергія накопичується головним чином нижніх шарах атмосфери. Подібний ефект виникає у теплиці, коли скло пропускає світло всередину і ґрунт нагрівається. Оскільки скло відносно непрозоре для інфрачервоної радіації, у парнику акумулюється тепло. Нагрів нижніх шарів атмосфери за рахунок присутності водяної пари та вуглекислого газу часто називають парниковим ефектом. Істотну роль збереженні тепла у нижніх шарах атмосфери грає хмарність. Якщо хмари розсіюються або зростає прозорість повітряних мас, температура неминуче знижується у міру того, як поверхня Землі безперешкодно випромінює теплову енергію в навколишній простір. Вода, що знаходиться на поверхні Землі, поглинає сонячну енергію і випаровується, перетворюючись на газ - водяну пару, яка виносить велика кількістьенергії в нижніх шарах атмосфери. При конденсації водяної пари та утворенні при цьому хмар або туману ця енергія звільняється у вигляді тепла. Близько половини сонячної енергії, що досягає земної поверхні, витрачається на випаровування води та надходить у нижні шари атмосфери. Таким чином, внаслідок парникового ефекту та випаровування води атмосфера прогрівається знизу. Цим частково пояснюється висока активність її циркуляції в порівнянні з циркуляцією Світового океану, який прогрівається тільки зверху і тому значно стабільніший за атмосферу.
також МЕТЕОРОЛОГІЯ І КЛІМАТОЛОГІЯ. Крім загального нагрівання атмосфери сонячним світлом, значне прогрівання деяких її шарів відбувається за рахунок ультрафіолетового та рентгенівського випромінювання Сонця. Будова. Порівняно з рідинами та твердими тілами, у газоподібних речовинах сила тяжіння між молекулами мінімальна. У міру збільшення відстані між молекулами гази можуть розширюватися безмежно, якщо їм ніщо не перешкоджає. Нижнім кордоном атмосфери є Землі. Строго кажучи, цей бар'єр непроникний, тому що газообмін відбувається між повітрям і водою і навіть між повітрям та гірськими породами, але в цьому випадку цими факторами можна знехтувати. Оскільки атмосфера є сферичною оболонкою, вона не має бічних кордонів, а є лише нижня межа та верхня (зовнішня) межа, відкрита з боку міжпланетного простору. Через зовнішній кордон відбувається витік деяких нейтральних газів, і навіть надходження речовини з навколишнього космічного простору. Більшість заряджених частинок, крім космічних променів, які мають високої енергією, або захоплюється магнітосферою, або відштовхується нею. На атмосферу діє сила земного тяжіння, яка утримує повітряну оболонку біля Землі. Атмосферні гази стискаються під впливом своєї ваги. Це стиснення максимально біля нижньої межі атмосфери, тому й щільність повітря тут є найбільшою. На будь-якій висоті над земною поверхнею ступінь стиснення повітря залежить від маси вище стовпа повітря, тому з висотою щільність повітря зменшується. Тиск, що дорівнює масі вищого стовпа повітря, що припадає на одиницю площі, знаходиться в прямій залежності від щільності і, отже, також знижується з висотою. Якби атмосфера являла собою "ідеальний газ" з незалежним від висоти постійним складом, незмінною температурою і на неї діяла б постійна сила тяжкості, то тиск зменшувався б у 10 разів на кожні 20 км висоти. Реальна атмосфера трохи відрізняється від ідеального газу приблизно до висоти 100 км, а потім тиск з висотою зменшується повільніше, оскільки змінюється склад повітря. Невеликі зміни в описану модель вносить і зменшення сили тяжіння в міру віддалення від центру Землі, що становить поблизу земної поверхні прибл. 3% на кожні 100 км. висоти. На відміну від атмосферного тиску, температура з висотою не знижується безперервно. Як показано на рис. 1, вона зменшується приблизно до висоти 10 км, а потім знову починає рости. Це при поглинанні ультрафіолетової сонячної радіації киснем. При цьому утворюється газ озон, молекули якого складаються із трьох атомів кисню (О3). Він також поглинає ультрафіолетове випромінювання, тому цей шар атмосфери, званий озоносферою, нагрівається. Вище температура знову знижується, тому що там набагато менше молекул газу, і, відповідно, скорочується поглинання енергії. У ще вищих шарах температура знову підвищується внаслідок поглинання атмосферою найбільш короткохвильового ультрафіолетового та рентгенівського випромінювання Сонця. Під впливом цього випромінювання відбувається іонізація атмосфери, тобто. молекула газу втрачає електрон і набуває позитивного електричний заряд. Такі молекули стають позитивно зарядженими іонами. Завдяки наявності вільних електронів та іонів цей шар атмосфери набуває властивостей електропровідника. Вважають, що температура продовжує підвищуватися до висот, де розріджена атмосфера перетворюється на міжпланетний простір. На відстані кількох тисяч кілометрів від поверхні Землі, ймовірно, переважають температури від 5000 ° до 10 000 ° С. Хоча молекули та атоми мають дуже великі швидкості руху, а отже, і високу температуру, цей розріджений газ не є "гарячим" у звичному сенсі . Через мізерну кількість молекул на великих висотах їх сумарна теплова енергіядуже невелика. Таким чином, атмосфера складається з окремих шарів (тобто серії концентричних оболонок, або сфер), виділення яких залежить від того, яка властивість становить найбільший інтерес. На підставі розподілу температур метеорологи розробили схему будови ідеальної "середньої атмосфери" (див. рис. 1).

Тропосфера - нижній шар атмосфери, що тягнеться до першого термічного мінімуму (т.зв. тропопаузи). Верхня межа тропосфери залежить від географічної широти(У тропіках - 18-20 км, в помірних широтах - бл. 10 км) та пори року. Національна метеорологічна служба США провела зондування поблизу Південного полюса та виявила сезонні зміни висоти тропопаузи. У березні тропопауза знаходиться на висоті прибл. 7,5 км. З березня до серпня чи вересня відбувається неухильне охолодження тропосфери, і її межа на короткий період у серпні чи вересні піднімається приблизно до висоти 11,5 км. Потім з вересня по грудень вона швидко знижується і досягає свого найнижчого становища - 7,5 км, де і залишається до березня, відчуваючи коливання в межах лише 0,5 км. Саме в тропосфері переважно формується погода, яка визначає умови існування людини. Більшість атмосферної водяної пари зосереджена в тропосфері, і тому тут головним чином і формуються хмари, хоча деякі з них, що складаються з крижаних кристалів, зустрічаються і у більш високих шарах. Для тропосфери характерні турбулентність та потужні повітряні течії (вітри) та шторми. У верхній тропосфері існують сильні повітряні течії певного напрямку. Турбулентні вихори, подібні невеликим виворотам, утворюються під впливом тертя і динамічної взаємодії між повітряними масами, що повільно і швидко рухаються. Оскільки в цих високих прошарках хмарності зазвичай немає, таку турбулентність називають "турбулентністю ясного неба".
Стратосфери.Вищележачий шар атмосфери часто помилково описують як шар із порівняно постійними температурами, де вітри дмуть більш менш стійко і де метеорологічні елементи мало змінюються. Верхні шари стратосфери нагріваються при поглинанні киснем та озоном сонячного. ультрафіолетового випромінювання. Верхня межа стратосфери (стратопауза) проводиться там, де температура трохи підвищується, досягаючи проміжного максимуму, який нерідко можна порівняти з температурою приземного шару повітря. На основі спостережень, проведених за допомогою літаків та куль-зондів, пристосованих для польотів на постійній висоті, у стратосфері встановлені турбулентні обурення та сильні вітри, що дмуть у різних напрямках. Як і в тропосфері, відзначаються потужні повітряні вихори, особливо небезпечні для високошвидкісних літальних апаратів. Сильні вітри , Звані струминними течіями, дмуть у вузьких зонах вздовж меж помірних широт, звернених до полюсів. Однак ці зони можуть зміщуватися, зникати та з'являтися знову. Струменеві течії зазвичай проникають у тропопаузу і виявляються у верхніх шарах тропосфери, але їхня швидкість швидко зменшується зі зниженням висоти. Можливо, частина енергії, що надходить у стратосферу (переважно витрачається на утворення озону), впливає на процеси в тропосфері. Особливо активне перемішування пов'язані з атмосферними фронтами, де великі потоки стратосферного повітря було зареєстровано значно нижче тропопаузи, а тропосферне повітря залучалося нижні шари стратосфери. Значних успіхів було досягнуто у вивченні вертикальної структури нижніх шарів атмосфери у зв'язку з удосконаленням техніки запуску на висоти 25-30 км радіозондів. Мезосфера, що знаходиться вище стратосфери, є оболонкою, в якій до висоти 80-85 км відбувається зниження температури до мінімальних показників для атмосфери в цілому. Рекордно низькі температури до -110 ° С були зареєстровані метеорологічними ракетами, запущеними з американо-канадської установки у Форт-Черчіллі (Канада). Верхня межа мезосфери (мезопауза) приблизно збігається з нижньою межею області активного поглинання рентгенівського та найбільш короткохвильового ультрафіолетового випромінювання Сонця, що супроводжується нагріванням та іонізацією газу. У полярних регіонах влітку у мезопаузі часто з'являються хмарні системи, які займають велику площу, але мають незначний вертикальний розвиток. Такі хмари, що світяться ночами, часто дозволяють виявляти великомасштабні хвилеподібні рухи повітря в мезосфері. Склад цих хмар, джерела вологи та ядер конденсації, динаміка та зв'язок з метеорологічними факторами поки що недостатньо вивчені. Термосфера є шаром атмосфери, в якому безперервно підвищується температура. Його потужність може сягати 600 км. Тиск і, отже, густина газу з висотою постійно зменшуються. Поблизу земної поверхні 1 м3 повітря міститься бл. 2,5?1025 молекул, на висоті бл. 100 км, у нижніх шарах термосфери, - приблизно 1019, на висоті 200 км, в іоносфері - 5*10 15 і, за розрахунками, на висоті бл. 850 км – приблизно 1012 молекул. У міжпланетному просторі концентрація молекул становить 108-109 на 1 м3. На висоті прибл. 100 км. кількість молекул невелика, і вони рідко стикаються між собою. Середня відстань, яку долає молекула, що хаотично рухається, до зіткнення з іншою такою ж молекулою, називається її середнім вільним пробігом. Шар, в якому ця величина настільки збільшується, що ймовірністю міжмолекулярних або міжатомних зіткнень можна знехтувати, знаходиться на межі між термосферою та вищою оболонкою (екзосферою) і називається термопаузою. Термопауза віддалена від земної поверхні приблизно на 650 км. За певної температури швидкість руху молекули залежить від її маси: легші молекули рухаються швидше за важкі. У нижній атмосфері, де вільний пробіг дуже короткий, не спостерігається помітного поділу газів за їхньою молекулярною вагою, але воно виражене вище 100 км. Крім того, під впливом ультрафіолетового та рентгенівського випромінювання Сонця молекули кисню розпадаються на атоми, маса яких становить половину маси молекули. Тому в міру віддалення від поверхні Землі атомарний кисень набуває все більшого значення у складі атмосфери та на висоті бл. 200 км. стає її головним компонентом. Вище, приблизно з відривом 1200 км від Землі, переважають легкі гази - гелій і водень. З них складається зовнішня оболонка атмосфери. Такий поділ за вагою, званий дифузним розшаруванням, нагадує поділ сумішей за допомогою центрифуги. Екзосферою називається зовнішній шар атмосфери, що виділяється на основі змін температури та властивостей нейтрального газу. Молекули та атоми в екзосфері обертаються навколо Землі за балістичними орбітами під впливом сили тяжіння. Деякі з цих орбіт є параболічними і схожі на траєкторії метальних снарядів. Молекули можуть обертатися навколо Землі та по еліптичних орбітах, як супутники. Деякі молекули, в основному водню та гелію, мають розімкнені траєкторії та йдуть у космічний простір (рис. 2).



СОНЯЧНО-ЗЕМНІ ЗВ'ЯЗКИ І ЇХ ВПЛИВ НА АТМОСФЕРУ
Атмосферні припливи.Притягнення Сонця та Місяця викликає в атмосфері припливи, подібні до земних і морських припливів. Але атмосферні припливи мають суттєву відмінність: атмосфера найсильніше реагує на тяжіння Сонця, тоді як земна кора та океан - на тяжіння Місяця. Це пояснюється тим, що атмосфера нагрівається Сонцем і на додаток до гравітаційного виникає потужний термальний приплив. У цілому нині механізми утворення атмосферних і морських припливів подібні, крім те, що з прогнозу реакції повітря на гравітаційні і термічні впливу необхідно враховувати його стисливість і розподіл температури. Не до кінця зрозуміло, чому півдобові (12-годинні) сонячні припливи в атмосфері переважають над добовими сонячними та напівдобовими місячними припливами, хоча рушійні силидвох останніх процесів набагато потужніший. Раніше вважалося, що в атмосфері виникає резонанс, що посилює саме коливання із 12-годинним періодом. Проте, спостереження, проведені за допомогою геофізичних ракет, свідчать про відсутність температурних причин такого резонансу. При вирішенні цієї проблеми, ймовірно, слід враховувати всі гідродинамічні та термічні особливості атмосфери. У земної поверхні поблизу екватора, де вплив приливних коливань максимальний, воно забезпечує зміну атмосферного тиску на 0,1%. Швидкість приливних вітрів становить прибл. 0,3 км/год. Завдяки складній термічній структурі атмосфери (особливо наявності мінімуму температури в мезопаузі) приливні повітряні течії посилюються, і, наприклад, на висоті 70 км їхня швидкість приблизно в 160 разів вища, ніж у земної поверхні, що має важливі геофізичні наслідки. Вважається, що у нижній частині іоносфери (шар Е) приливні коливання переміщують іонізований газ вертикально магнітному полі Землі, і, отже, тут виникають електричні струми. Ці системи струмів, що постійно виникають, на поверхні Землі встановлюються по обуренням магнітного поля. Добові варіації магнітного поля досить добре узгоджуються з розрахунковими величинами, що свідчить на користь теорії приливних механізмів "атмосферного динамо". Електричні струми, що виникають у нижній частині іоносфери (шар Е), повинні кудись переміщатися, і, отже, ланцюг має замкнутися. Аналогія з динамо-машиною стає повною, якщо розглядати зустрічний рух як роботу двигуна. Передбачається, що зворотна циркуляція електричного струму здійснюється у вищому шарі іоносфери (F), і цим зустрічним потоком можуть пояснюватися деякі своєрідні риси цього шару. Нарешті, приливний ефект повинен породжувати також горизонтальні потоки шарі Е і, отже, шарі F.
Іоносфера.Намагаючись пояснити механізм виникнення полярних сяйв, вчені 19 в. припустили, що у атмосфері існує зона з електрично зарядженими частинками. У 20 ст. експериментально були отримані переконливі докази існування на висотах від 85 до 400 км шару, що відбиває радіохвилі. Нині відомо, що його електричні властивості є наслідком іонізації атмосферного газу. Тому зазвичай цей шар називають іоносферою. Вплив на радіохвилі відбувається головним чином через наявність в іоносфері вільних електронів, хоча механізм поширення радіохвиль пов'язаний із наявністю великих іонів. Останні також цікаві щодо хімічних властивостей атмосфери, оскільки вони активніше нейтральних атомів і молекул. Хімічні реакції, що протікають в іоносфері, відіграють важливу роль у її енергетичному та електричному балансі.
Нормальна іоносфера.Спостереження, проведені за допомогою геофізичних ракет та супутників, дали масу нової інформації, що свідчить, що іонізація атмосфери відбувається під впливом сонячної радіації широкого спектра. Основна її частина (більше 90%) зосереджена у видимій частині спектра. Ультрафіолетове випромінювання з меншою довжиною хвилі та більшою енергією, ніж у фіолетових світлових променів, випромінюється воднем внутрішньої частини атмосфери Сонця (хромосфери), а рентгенівське випромінювання, що має ще більш високу енергію, - гази зовнішньої оболонки Сонця (корони. Нормальний (середній) стан іоносфери обумовлений постійним потужним випромінюванням. Регулярні зміни відбуваються у нормальній іоносфері під впливом добового обертання Землі та сезонних відмінностей кута падіння сонячних променів опівдні, але відбуваються також непередбачувані та різкі зміни стану іоносфери.
Обурення в іоносфері.Як відомо, на Сонці виникають потужні обурення, що циклічно повторюються, які досягають максимуму кожні 11 років. Спостереження за програмою Міжнародного геофізичного року (МГГ) збіглися з періодом найвищої сонячної активності протягом термін систематичних метеорологічних спостережень, тобто. з початку 18 ст. У періоди високої активності яскравість деяких областей на Сонці зростає у кілька разів, і вони посилають потужні імпульси ультрафіолетового та рентгенівського випромінювання. Такі явища називаються спалахами на Сонці. Вони тривають від кількох хвилин до однієї-двої години. Під час спалаху вивергається сонячний газ (в основному протони та електрони), і елементарні частки спрямовуються у космічний простір. Електромагнітне та корпускулярне випромінювання Сонця в моменти таких спалахів дуже впливає на атмосферу Землі. Початкова реакція відзначається через 8 хв після спалаху, коли інтенсивне ультрафіолетове та рентгенівське випромінювання досягає Землі. В результаті різко підвищується іонізація; рентгенівські промені проникають в атмосферу до нижньої межі іоносфери; кількість електронів у цих шарах зростає настільки, що радіосигнали майже повністю поглинаються ("гаснуть"). Додаткове поглинання радіації викликає нагрівання газу, що сприяє розвитку вітрів. Іонізований газ є електричним провідником, і коли він рухається в магнітному полі Землі, проявляється ефект динамо-машини та виникає електричний струм. Такі струми можуть викликати помітні обурення магнітного поля і виявлятися у вигляді магнітних бур. Ця початкова фаза займає лише короткий час, що відповідає тривалості сонячного спалаху. Під час потужних спалахів на Сонці у космічний простір спрямовується потік прискорених частинок. Коли він спрямований у бік Землі, настає друга фаза, що впливає на стан атмосфери. Багато природних явищ, серед яких найбільш відомі полярні сяйва, свідчать про те, що значна кількість заряджених частинок досягає Землі (див. також ПОЛЯРНЕ блиск). Проте процеси відриву цих частинок від Сонця, їх траєкторії у міжпланетному просторі та механізми взаємодії з магнітним полем Землі та магнітосферою поки що недостатньо вивчені. Проблема ускладнилася після відкриття в 1958 Джеймсом Ван Алленом утримуваних геомагнітним полемоболонок, що з заряджених частинок. Ці частинки переміщуються з однієї півкулі в іншу, обертаючись спіралями навколо силових ліній магнітного поля. Поблизу Землі на висоті, яка залежить від форми силових ліній і від енергії частинок, розташовуються "точки відображення", в яких частки змінюють напрямок руху на протилежне (рис. 3). Оскільки напруженість магнітного поля зменшується з віддаленням від Землі, орбіти, якими рухаються ці частинки, дещо спотворюються: електрони відхиляються на схід, а протони - на захід. Тому вони розподіляються як поясів навколо земної кулі.



Деякі наслідки нагрівання атмосфери Сонцем.Сонячна енергія впливає всю атмосферу. Вище вже згадувалися пояси, утворені зарядженими частинками в магнітному полі Землі і навколо неї. Ці пояси найближче підходять до земної поверхні у приполярних районах (див. рис. 3), де спостерігаються полярні сяйва. На малюнку 1 показано, що у районах прояви полярних сяйв Канаді температури термосфери значно вище, ніж у Південному Заході США. Ймовірно, захоплені частинки віддають частину своєї енергії в атмосферу, особливо при зіткненні з молекулами газу поблизу точок відображення і сходять зі своїх колишніх орбіт. Так відбувається нагрівання високих шарів атмосфери у зоні полярних сяйв. Ще одне важливе відкриття було зроблено щодо орбіт штучних супутників. Луїджі Яккіа, астроном зі Смітсонівської астрофізичної обсерваторії, вважає, що невеликі відхилення цих орбіт обумовлені змінами щільності атмосфери за її нагріванні Сонцем. Він припустив існування на висоті понад 200 км в іоносфері максимуму концентрації електронів, який не відповідає сонячному полудню, а під впливом сили тертя запізнюється по відношенню до нього приблизно дві години. Саме тоді значення щільності атмосфери, звичайні для висоти 600 км, спостерігаються лише на рівні бл. 950 км. Крім того, максимум концентрації електронів зазнає нерегулярних коливань внаслідок короткочасних спалахів ультрафіолетового та рентгенівського випромінювання Сонця. Л.Якіа виявив також короткочасні коливання щільності повітря, що відповідають спалахам на Сонці та збуренням магнітного поля. Ці явища пояснюються вторгненням частинок сонячного походження в атмосферу Землі та нагріванням тих її верств, де проходять орбіти супутників.
АТМОСФЕРНА ЕЛЕКТРИКА
У приземному шарі атмосфери невелика частина молекул піддається іонізації під впливом космічних променів, випромінювання радіоактивних гірських порід та продуктів розпаду радію (в основному радону) у самому повітрі. У процесі іонізації атом втрачає електрон і набуває позитивного заряду. Вільний електрон швидко з'єднується з іншим атомом утворюючи негативно заряджений іон. Такі парні позитивні та негативні іони мають молекулярні розміри. Молекули в атмосфері прагнуть групуватись навколо цих іонів. Декілька молекул, що об'єдналися з іоном, утворюють комплекс, званий зазвичай "легким іоном". В атмосфері присутні також комплекси молекул, відомі у метеорології під назвою ядер конденсації, навколо яких при насиченні повітря вологою починається процес конденсації. Ці ядра є частинками солі та пилу, а також забруднюючих речовин, що надходять у повітря від промислових та інших джерел. Легкі іони часто приєднуються до таких ядр, утворюючи "важкі іони". Під впливом електричного поля легкі та важкі іони переміщаються з одних областей атмосфери до інших, переносячи електричні заряди. Хоча зазвичай атмосфера не вважається електропровідним середовищем, вона все ж таки має невелику провідність. Тому залишене в повітрі заряджене тіло повільно втрачає свій заряд. Провідність атмосфери зростає з висотою через збільшення інтенсивності космічного випромінювання, зменшення втрат іонів в умовах нижчого тиску (і, отже, при більшому середньому вільному пробігу), а також через меншу кількість важких ядер. Провідність атмосфери досягає максимальної величини на висоті бл. 50 км, т.зв. "рівні компенсації". Відомо, що між поверхнею Землі та "рівнем компенсації" постійно існує різницю потенціалів у кілька сотень кіловольт, тобто. Постійне електричне поле. З'ясувалося, що різниця потенціалів між деякою точкою, що знаходиться в повітрі на висоті кількох метрів, і поверхнею Землі дуже велика – понад 100 В. Атмосфера має позитивний заряд, а земна поверхня заряджена негативно. Оскільки електричне поле - область, у кожній точці якої є певне значення потенціалу, можна говорити про градієнт потенціалу. У ясну погоду в межах кількох нижніх метрів напруженість електричного поля атмосфери майже постійна. Через відмінності електропровідності повітря в приземному шарі градієнт потенціалу схильний до добових коливань, хід яких істотно змінюється від місця до місця. За відсутності локальних джерел забруднення повітря над океанами, високо в горах або в полярних районах добовий хід градієнта потенціалу в ясну погоду однаковий. Величина градієнта залежить від всесвітнього, або середнього грінвічського часу (UT) і досягає максимуму в 19 год. Е. Еплтон припустив, що цей максимум електропровідності, ймовірно, збігається з найбільшою грозовою активністю в планетарному масштабі. Розряди блискавок під час гроз переносять негативний заряд до поверхні Землі, оскільки основи найбільш активних купово-дощових грозових хмар мають значний негативний заряд. Верхні частини грозових хмар мають позитивним зарядом, який, за розрахунками Хольцера та Саксона, під час гроз стікає з їхніх вершин. Без постійного поповнення заряд земної поверхні було б нейтралізовано з допомогою провідності атмосфери. Припущення про те, що різниця потенціалів між земною поверхнею та "рівнем компенсації" підтримується завдяки грозам, підкріплюється статистичними даними. Наприклад, максимальна кількість гроз відзначається у долині річки. Амазонки. Найчастіше грози бувають там наприкінці дня, тобто. бл. 19 год середнього грінвічського часу, коли градієнт потенціалу максимальний у будь-якій точці земної кулі. Більше того, сезонні варіації форми кривих добового ходу градієнта потенціалу також знаходяться у повній відповідності до даних про глобальний розподіл гроз. Деякі дослідники стверджують, що джерело електричного поля Землі, можливо, має зовнішнє походження, оскільки електричні поля, як вважають, існують в іоносфері та магнітосфері. Цією обставиною, ймовірно, пояснюється виникнення дуже вузьких видовжених форм полярних сяйв, схожих на куліси та арки.
(див. також ПОЛЯРНЕ блиск). Завдяки наявності градієнта потенціалу та провідності атмосфери між "рівнем компенсації" та поверхнею Землі починають рухатися заряджені частинки: позитивно заряджені іони - у напрямку до земної поверхні, а негативно заряджені - вгору від неї. Сила цього струму становить прибл. 1800 А. Хоча ця величина здається великою, необхідно пам'ятати, що вона розподіляється на всій поверхні Землі. Сила струму в стовпі повітря з площею основи 1 м2 становить лише 4*10 -12 А. З іншого боку, сила струму при розряді блискавки може досягати кількох ампер, хоча, звичайно, такий розряд має малу тривалість - від часток секунди до цілої секунди або трохи більше за повторних розрядів. Блискавка становить великий інтерес як як своєрідне явище природи. Вона дає можливість спостерігати електричний розряд у газовому середовищі при напрузі кілька сотень мільйонів вольт і відстані між електродами кілька кілометрів. У 1750 Б. Франклін запропонував Лондонському королівському суспільству поставити досвід із залізною штангою, укріпленою на ізолюючій підставі та встановленою на високій вежі. Він очікував, що при наближенні грозової хмари до вежі на верхньому кінці спочатку нейтральної штанги зосередиться заряд протилежного знака, а на нижньому - заряд того ж знака, що біля хмари. Якщо напруженість електричного поля при розряді блискавки зросте досить сильно, заряд з верхнього кінця штанги частково стікатиме в повітря, а штанга набуде заряду того ж знака, що й основа хмари. Запропонований Франкліном експеримент не був здійснений в Англії, однак його поставив у 1752 році в Марлі під Парижем французький фізик Жан д'Аламбер. його помічник повідомив, що, коли грозова хмара знаходилася над штангою, при піднесенні до неї заземленого дроту виникали іскри.Сам Франклін, не знаючи про успішний досвід, реалізований у Франції, у червні того ж року провів свій знаменитий експеримент з повітряним змієм і спостерігав електричні На наступний рік, вивчаючи заряди, зібрані зі штанги, Франклін встановив, що підстави грозових хмар зазвичай заряджені негативно.Детальніші дослідження блискавок стали можливі в кінці 19 ст завдяки вдосконаленню методів фотографії, особливо після винаходу апарату з лінзами, що обертаються, що дозволило фіксувати швидко розвиваються. Такий фотоапарат широко використовувався щодо іскрових розрядів. Було встановлено, що існує кілька типів блискавок, причому найбільш поширені лінійні, плоскі (внутрішньохмарні) і кульові (повітряні розряди). Лінійні блискавки є іскровим розрядом між хмарою і земною поверхнею, що йде по каналу з спрямованими вниз відгалуженнями. Плоскі блискавки виникають усередині грозової хмари і виглядають як спалахи розсіяного світла. Повітряні розряди кульових блискавок, що починаються від грозової хмари, часто спрямовані горизонтально і досягають земної поверхні.



Розряд блискавки зазвичай складається з трьох або більше повторних розрядів - імпульсів, що йдуть по тому самому шляху. Інтервали між послідовними імпульсами дуже короткі, від 1/100 до 1/10 с (цим обумовлено мерехтіння блискавки). Загалом спалах триває близько секунди чи менше. Типовий процес розвитку блискавки можна описати в такий спосіб. Спочатку зверху до земної поверхні спрямовується слабо світиться розряд-лідер. Коли він її досягне, зворотний або головний, що яскраво світиться, розряд проходить від землі вгору по каналу, прокладеному лідером. Розряд-лідер, як правило, рухається зигзагоподібно. Швидкість його поширення коливається від ста до кількох сотень кілометрів на секунду. На своєму шляху він іонізує молекули повітря, створюючи канал з підвищеною провідністю, яким зворотний розряд рухається вгору зі швидкістю приблизно в сто разів більшою, ніж у розряду-лідера. Розмір каналу визначити важко, проте діаметр розряду-лідера оцінюється в 1-10 м, а зворотного розряду - кілька сантиметрів. Розряди блискавки створюють радіоперешкоди, випромінюючи радіохвилі в широкому діапазоні - від 30 кГц до наднизьких частот. Найбільше випромінювання радіохвиль знаходиться, ймовірно, у діапазоні від 5 до 10 кГц. Такі низькочастотні радіоперешкоди "зосереджені" у просторі між нижньою межею іоносфери та земною поверхнею та здатні поширюватися на відстані в тисячі кілометрів від джерела.
ЗМІНИ В АТМОСФЕРІ
Вплив метеорів та метеоритів.Хоча іноді метеорні дощі справляють глибоке враження своїми світловими ефектами, окремі метеори видно досить рідко. Набагато чисельніше невидимі метеори, надто малі, щоб бути помітними в момент їх поглинання атмосферою. Деякі з найдрібніших метеорів, мабуть, зовсім не нагріваються, лише захоплюються атмосферою. Ці дрібні частинки з розмірами від кількох міліметрів до десятитисячних часток міліметра називаються мікрометеоритами. Кількість метеорної речовини, яка щодобово надходить в атмосферу становить від 100 до 10 000 т, причому більша частина цієї речовини припадає на мікрометеорити. Оскільки метеорна речовина частково згорає в атмосфері, її склад поповнюється слідами різних хімічних елементів. Наприклад, кам'яні метеори привносять до атмосфери літій. Згоряння металевих метеорів призводить до утворення найдрібніших сферичних залізних, залізонікелевих та інших крапельок, які проходять крізь атмосферу та осідають на земній поверхні. Їх можна виявити у Гренландії та Антарктиді, де майже без змін роками зберігаються льодовикові покриви. Океанологи знаходять їх у донних океанічних відкладах. Більшість метеорних частинок, що надійшли в атмосферу, осаджується приблизно протягом 30 діб. Деякі вчені вважають, що цей космічний пил відіграє важливу роль у формуванні таких атмосферних явищ, як дощ, оскільки є ядрами конденсації водяної пари. Тому припускають, що випадання опадів статистично пов'язані з великими метеорними дощами. Проте деякі фахівці вважають, що, оскільки загальне надходження метеорної речовини у багато десятків разів перевищує її надходження навіть із найбільшим метеорним дощем, зміною загальної кількості цієї речовини, що відбувається в результаті одного такого дощу, можна знехтувати. Однак, безсумнівно, найбільші мікрометеорити і, звичайно, видимі метеорити залишають довгі сліди іонізації у високих шарах атмосфери, головним чином в іоносфері. Такі сліди можна використовувати для далекого радіозв'язку, оскільки вони відображають високочастотні радіохвилі. Енергія які у атмосферу метеорів витрачається головним чином, і може бути, на її нагрівання. Це одна з другорядних складових теплового балансуатмосфери.
Вуглекислий газ промислового походження.У кам'яновугільному періоді Землі була поширена деревна рослинність. Більшість діоксиду вуглецю, поглиненого тоді рослинами, накопичилася в покладах вугілля й у нафтоносних відкладеннях. Величезні запаси цих корисних копалин людина навчилася використовувати як джерело енергії і зараз швидкими темпами повертає вуглекислий газ у кругообіг речовин. У викопному стані, ймовірно, бл. 4 * 10 13 т вуглецю. За останнє століття людство спалило стільки викопного палива, що приблизно 4*10 11 т вуглецю знову надійшло атмосферу. В даний час в атмосфері є прибл. 2*10 12 т вуглецю, а найближчі сто років з допомогою спалювання викопного палива ця цифра, можливо, подвоїться. Однак не весь вуглець залишиться в атмосфері: частина його розчиниться у водах океану, частина буде поглинена рослинами, а частина пов'язана у процесі вивітрювання гірських порід. Поки не можна передбачити, скільки вуглекислого газу утримуватиметься в атмосфері або який саме вплив він вплине на клімат земної кулі. Тим не менш, вважається, що будь-яке збільшення його змісту викликає потепління, хоча зовсім не обов'язково, що будь-яке потепління суттєво вплине на клімат. Концентрація вуглекислого газу в атмосфері, за результатами вимірювань, помітно збільшується, хоч і нешвидкими темпами. Кліматичні дані по Шпіцбергену та станції Літтл-Америка на шельфовому льодовику Росса в Антарктиді свідчать про підвищення середніх річних температур приблизно за 50-річний період відповідно на 5° та 2,5°С.
Вплив космічного випромінювання.При взаємодії космічних променів, що володіють високою енергією, з окремими складовими атмосфери утворюються радіоактивні ізотопи. Серед них виділяється ізотоп вуглецю 14С, що накопичується в рослинних та тваринних тканинах. Шляхом вимірювання радіоактивності органічних речовин, які давно не обмінюються вуглецем з довкіллямможна визначити їх вік. Радіовуглецевий метод зарекомендував себе як найбільш надійний спосіб датування викопних організмів та предметів матеріальної культури, вік яких не перевищує 50 тис. років. Для датування матеріалів, які мають вік у сотні тисяч років, можна буде використовувати інші радіоактивні ізотопи з великими періодами напіврозпаду, якщо буде вирішено принципове завдання вимірювання вкрай низьких рівнів радіоактивності
(див. також РАДІОВУГЛЕРОДНЕ ДАТУВАННЯ).
ПОХОДЖЕННЯ АТМОСФЕРИ ЗЕМЛІ
Історію утворення атмосфери поки що не вдалося відновити абсолютно достовірно. Проте виявлено деякі можливі зміни її складу. Становлення атмосфери розпочалося відразу після формування Землі. Є досить вагомі підстави вважати, що у процесі еволюції Праземлі та набуття нею близьких до сучасних розмірів та маси вона майже повністю втратила свою первісну атмосферу. Вважається, що на ранньому етапі Земля перебувала в розплавленому стані та прибл. 4,5 млрд років тому оформилася в тверде тіло. Цей рубіж приймається початку геологічного літочислення. Відтоді відбувалася й повільна еволюція атмосфери. Деякі геологічні процеси, як, наприклад, вилив лави при виверженнях вулканів, супроводжувалися викидом газів з надр Землі. До їх складу, ймовірно, входили азот, аміак, метан, водяна пара, оксид та діоксид вуглецю. Під впливом сонячної ультрафіолетової радіації водяна пара розкладалася на водень і кисень, але кисень, що звільнився, вступав у реакцію з оксидом вуглецю з утворенням вуглекислого газу. Аміак розкладався на азот та водень. Водень у процесі дифузії піднімався вгору і залишав атмосферу, а більш важкий азот не міг випаруватися і поступово накопичувався, стаючи основним її компонентом, хоча деяка його частина зв'язувалася під час хімічних реакцій. Під впливом ультрафіолетових променів та електричних розрядів суміш газів, що ймовірно були присутні в початковій атмосфері Землі, вступала в хімічні реакції, внаслідок яких відбувалося утворення органічних речовин, зокрема амінокислот. Отже, життя могло зародитися в атмосфері, важливою від сучасної. З появою примітивних рослин почався процес фотосинтезу (див. також ФОТОСИНТЕЗ), що супроводжувався виділенням вільного кисню. Цей газ, особливо після дифузії у верхні шари атмосфери, став захищати її нижні шари та поверхню Землі від небезпечних для життя ультрафіолетового та рентгенівського випромінювань. За оцінками, наявність всього 0,00004 сучасного обсягу кисню могло призвести до формування шару з удвічі меншою, ніж зараз, концентрацією озону, що забезпечувало дуже істотний захист від ультрафіолетових променів. Ймовірно також, що у первинній атмосфері містилося багато вуглекислого газу. Він витрачався в ході фотосинтезу, і його концентрація мала зменшуватися в міру еволюції світу рослин, а також через поглинання в ході деяких геологічних процесів. Оскільки парниковий ефект пов'язаний із присутністю вуглекислого газу в атмосфері, деякі вчені вважають, що коливання його концентрації є однією з важливих причин таких великомасштабних. кліматичних зміністорія Землі, як льодовикові періоди. Присутній у сучасній атмосфері гелій, ймовірно, здебільшого є продуктом радіоактивного розпаду урану, торію та радію. Ці радіоактивні елементи випускають альфа-частинки, які є ядра атомів гелію. Оскільки в ході радіоактивного розпаду електричний заряд не утворюється і не зникає, на кожну альфа-частинку припадає два електрони. У результаті вона сполучається з ними, утворюючи нейтральні атоми гелію. Радіоактивні елементи містяться в мінералах, розсіяних у товщі гірських порід, тому значна частина гелію, що утворився в результаті радіоактивного розпаду, зберігається в них, дуже повільно випаровуючись в атмосферу. Деяка кількість гелію за рахунок дифузії піднімається вгору в екзосферу, але завдяки постійному припливу від земної поверхні обсяг цього газу атмосфері незмінний. На підставі спектрального аналізу світла зірок та вивчення метеоритів можна оцінити відносний вміст різних хімічних елементів у Всесвіті. Концентрація неону в космосі приблизно в десять мільярдів разів вища, ніж на Землі, криптону – у десять мільйонів разів, а ксенону – у мільйон разів. Звідси випливає, що концентрація цих інертних газів, які спочатку були присутні в земній атмосфері і не поповнювалися в процесі хімічних реакцій, сильно знизилася, ймовірно, ще на етапі втрати Землею своєї первинної атмосфери. Виняток становить інертний газ аргон, оскільки у формі ізотопу 40Ar він і зараз утворюється у процесі радіоактивного розпаду ізотопу калію.
ОПТИЧНІ ЯВИЩА
Розмаїття оптичних явищ у атмосфері обумовлено різними причинами. До найпоширеніших феноменів відносяться блискавка і дуже мальовничі північне і південне полярні сяйва. Крім того, особливо цікаві веселка, гал, паргелій (хибне сонце) і дуги, корона, німби та примари Броккена, міражі, вогні святого Ельма, хмари, що світяться, зелені та сутінкові промені. Веселка – найкрасивіше атмосферне явище. Зазвичай це величезна арка, що складається з різнокольорових смуг, що спостерігається, коли Сонце висвітлює лише частину небосхилу, а повітря насичене крапельками води, наприклад під час дощу. Різнобарвні дуги розташовуються в послідовності спектру (червона, помаранчева, жовта, зелена, блакитна, синя, фіолетова), проте кольори майже ніколи не бувають чистими, оскільки смуги взаємно перекриваються. Як правило, фізичні характеристики веселок істотно різняться, тому і на вигляд вони дуже різноманітні. Їхньою загальною рисою є те, що центр дуги завжди розташовується на прямій, проведеній від Сонця до спостерігача. Головна веселка є дугою, що складається з найбільш яскравих кольорів - червоного на зовнішній стороні і фіолетового - на внутрішній. Іноді видно лише одну дугу, але часто із зовнішнього боку основний веселки з'являється побічна. Вона має не такі яскраві кольори, як перша, а червона та фіолетова смуги в ній міняються місцями: червона розташовується з внутрішньої сторони. Утворення головної веселки пояснюється подвійним заломленням (див. також ОПТИКА) та одноразовим внутрішнім відображенням променів сонячного світла (див. рис. 5). Проникаючи всередину краплі води (А), промінь світла заломлюється і розкладається, як у проходженні крізь призму. Потім він досягає протилежної поверхні краплі (В), відбивається від неї і виходить із краплі назовні (С). При цьому промінь світла, перш ніж досягти спостерігача, переломлюється вдруге. Вихідний білий промінь розкладається на промені різних кольорів із кутом розбіжності 2°. При утворенні побічної веселки відбувається подвійне заломлення та подвійне відображення сонячних променів (див. рис. 6). У цьому випадку світло заломлюється, проникаючи всередину краплі через її нижню частину (А), і відображається від внутрішньої поверхні краплі спочатку в точці, потім в точці С. У точці D світло заломлюється, виходячи з краплі в бік спостерігача.





На сході і заході Сонця спостерігач бачить веселку як дуги, що дорівнює половині кола, оскільки вісь веселки паралельна горизонту. Якщо Сонце розташовується вище над горизонтом, дуга веселки менше половини кола. Коли Сонце піднімається вище за 42° над горизонтом, веселка зникає. Скрізь, окрім високих широт, веселка не може з'явитися опівдні, коли Сонце стоїть надто високо. Цікаво оцінити відстань до веселки. Хоча здається, що різнокольорова дуга розташована в одній площині, це ілюзія. Насправді веселка має величезну глибину, і її можна уявити у вигляді поверхні пустотілого конуса, у вершині якого знаходиться спостерігач. Ось конуса з'єднує Сонце, спостерігача та центр веселки. Спостерігач дивиться як би вздовж поверхні цього конуса. Двоє людей ніколи не можуть побачити абсолютно однакову веселку. Звичайно, можна спостерігати в цілому той самий ефект, але дві веселки займають різне становище і утворені різними крапельками води. Коли дощ або водяний пил утворюють веселку, повний оптичний ефектдосягається за рахунок сумарного впливу всіх крапельок води, що перетинають поверхню конуса веселки зі спостерігачем у вершині. Роль кожної краплі швидкоплинна. Поверхня конуса веселки складається з кількох шарів. Швидко перетинаючи їх і проходячи при цьому через серію критичних точок, кожна крапля миттєво розкладає сонячний промінь на весь спектр у певній послідовності - від червоного до фіолетового кольору. Багато крапель таким же чином перетинає поверхню конуса, так що веселка представляється спостерігачеві безперервної як вздовж, так і поперек її дуги. Гало - білі або райдужні світлові дуги та кола навколо диска Сонця або Місяця. Вони виникають внаслідок заломлення або відображення світла кристалами льоду або снігу, що знаходяться в атмосфері. Кристали, що формують гало, розташовуються на поверхні уявного конуса з віссю, спрямованої від спостерігача (з вершини конуса) до Сонця. За деяких умов атмосфера буває насичена дрібними кристалами, багато грані яких утворюють прямий кут з площиною, що проходить через Сонце, спостерігача та ці кристали. Такі грані відображають промені світла, що надходять, з відхиленням на 22°, утворюючи червоне з внутрішньої сторони гало, але воно може складатися і з усіх кольорів спектру. Рідше зустрічається гало з кутовим радіусом 46°, що міститься концентрично навколо 22-градусного гало. Його внутрішня сторона теж має червоний відтінок. Причиною цього також є заломлення світла, що відбувається в цьому випадку на гранях кристалів, що утворюють прямі кути. Ширина кільця такого гало перевищує 2,5 °. Як 46-градусні, так і 22-градусні гало, як правило, мають найбільшу яскравість у верхній та нижній частинах кільця. 90-градусне гало, що рідко зустрічається, являє собою слабо світиться, майже безбарвне кільце, що має загальний центр з двома іншими гало. Якщо воно пофарбоване, має червоний колір на зовнішній стороні кільця. Механізм виникнення такого типу гало остаточно не з'ясований (рис. 7).



Паргелії та дуги.Паргельське коло (або коло хибних сонців) - біле кільце з центром у точці зеніту, що проходить через Сонце паралельно горизонту. Причиною його утворення є відображення сонячного світла від граней поверхонь кристалів льоду. Якщо кристали досить рівномірно розподілені повітря, стає видимим повне коло. Паргелії, або помилкові сонця, - це плями, що яскраво світяться, що нагадують Сонце, які утворюються в точках перетину паргелічного кола з гало, що мають кутові радіуси 22°, 46° і 90°. Найчастіше утворюється і найяскравіший паргелій формується на перетині з 22-градусним гало, зазвичай пофарбований майже у всі кольори веселки. Хибні сонця на перетинах з 46- та 90-градусними гало спостерігаються набагато рідше. Паргелії, що виникають на перехрестях з 90-градусними гало, називаються парантеліями, або хибними протисонцями. Іноді видно також антелій (протисонце) - яскрава пляма, розташована на кільці паргелія точно навпроти Сонця. Передбачається, що причиною цього явища служить подвійне внутрішнє відображення сонячного світла. Відбитий промінь проходить тим же шляхом, що і падаючий промінь, але в зворотному напрямку. Околозенітна дуга, іноді невірно звана верхньою дотичною дугою 46-градусного гало, - це дуга в 90° або менше з центром у точці зеніту, розташована вище Сонця приблизно на 46°. Вона буває видна рідко і лише протягом декількох хвилин, має яскраві кольори, причому червоний колір приурочений до зовнішнього боку дуги. Околозенітна дуга примітна своїм забарвленням, яскравістю і чіткими контурами. Ще один цікавий та дуже рідкісний оптичний ефект типу гало – дуги Ловіца. Вони виникають як продовження паргеліїв на перетині з 22-градусним гало, проходять із зовнішнього боку гало і злегка увігнуті у бік Сонця. Стовпи білуватого світла, як і різноманітні хрести, іноді видно на світанку або на заході сонця, особливо в полярних регіонах, і можуть супроводжувати як Сонцю, так і Місяцю. Часом спостерігаються місячні гало та інші ефекти, подібні до описаних вище, причому найбільш звичайне місячне гало (кільце навколо Місяця) має кутовий радіус 22°. Подібно до хибних сонців, можуть виникати помилкові місяці. Корони, або вінці, - невеликі концентричні кольорові кільця навколо Сонця, Місяця чи інших яскравих об'єктів, які спостерігаються іноді, коли джерело світла перебуває за напівпрозорими хмарами. Радіус корони менший за радіус гало і становить бл. 1-5°, найближчим до Сонця виявляється блакитне або фіолетове кільце. Корона виникає при розсіюванні світла дрібними водяними крапельками води, що утворюють хмару. Іноді корона виглядає як пляма (або ореол), що світиться, навколишнє Сонце (або Місяць), яке завершується червонуватим кільцем. В інших випадках за межами ореолу видно не менше двох концентричних кілець більшого діаметра, дуже слабко забарвлених. Це явище супроводжується райдужними хмарами. Іноді краї дуже високо розташованих хмар пофарбовані яскравими кольорами.
Глорії (німби).У особливих умовах виникають незвичайні атмосферні явища. Якщо Сонце знаходиться за спиною спостерігача, а його тінь проектується на хмари або завісу туману, при певному стані атмосфери навколо тіні голови людини можна побачити кольорове коло - німб. Зазвичай такий німб утворюється через відображення світла крапельками роси на трав'яному газоні. Глорії також досить часто можна виявити навколо тіні, яку відкидає літак на хмари нижче.
Привиди Броккена.У деяких районах земної кулі, коли тінь спостерігача при сході або заході Сонця ззаду нього падає на хмари, розташовані на невеликій відстані, виявляється вражаючий ефект: тінь набуває колосальних розмірів. Це відбувається через відображення та заломлення світла найдрібнішими крапельками води в тумані. Описане явище зветься "примара Броккена" на ім'я вершини в горах Гарц у Німеччині.
Міражі- оптичний ефект, зумовлений заломленням світла при проходженні через шари повітря різної щільності і виявляється у виникненні уявного зображення. Видалені об'єкти при цьому можуть виявитися піднятими або опущеними щодо їх дійсного становища, а також можуть бути спотворені та набути неправильних, фантастичних форм. Міражі часто спостерігаються за умов спекотного клімату, наприклад над піщаними рівнинами. Звичайні нижні міражі, коли віддалена, майже рівна поверхня пустелі набуває вигляду відкритої води, особливо якщо дивитися з невеликого піднесення або просто перебувати вище шару нагрітого повітря. Подібна ілюзія зазвичай виникає на нагрітій асфальтованій дорозі, яка далеко попереду виглядає як водяна поверхня. Насправді ця поверхня є відображенням піднебіння. Нижче за рівень очей у цій "воді" можуть з'явитися об'єкти, зазвичай перевернуті. Над нагрітою поверхнею суші формується "повітряний листковий пиріг", причому найближчий до землі шар - нагрітий і настільки розріджений, що світлові хвилі, проходячи через нього, спотворюються, так як швидкість їх поширення змінюється в залежності від щільності середовища. Верхні міражі менш поширені і більш мальовничі проти нижніми. Видалені об'єкти (часто перебувають за морським горизонтом) вимальовуються на небі в перевернутому положенні, інколи ж вище з'являється ще й пряме зображення того ж об'єкта. Це типово для холодних регіонів, особливо при значній температурній інверсії, коли над холоднішим шаром знаходиться тепліший шар повітря. Цей оптичний ефект проявляється внаслідок складних закономірностей поширення фронту світлових хвиль у шарах повітря з неоднорідною щільністю. Іноді виникають дуже незвичайні міражі, особливо у полярних регіонах. Коли міражі виникають на суші, дерева та інші компоненти ландшафту перекинуті. У всіх випадках у верхніх міражах об'єкти видно більш виразно, ніж у нижніх. Коли кордоном двох повітряних мас є вертикальна площина, часом спостерігаються бічні міражі.
Вогні святого Ельма.Деякі оптичні явища в атмосфері (наприклад, світіння та найпоширеніше метеорологічне явище – блискавка) мають електричну природу. Набагато рідше зустрічаються вогні святого Ельма - блідо-блакитні або фіолетові кисті, що світяться, довжиною від 30 см до 1 м і більше, зазвичай на верхівках щог або кінцях рей суден, що знаходяться в морі. Іноді здається, що такелаж судна покритий фосфором і світиться. Вогні святого Ельма іноді виникають на гірських вершинах, а також на шпилях та гострих кутах високих будівель. Це явище є кистьові електричні розряди на кінцях електропровідників, коли в атмосфері навколо них сильно підвищується напруженість електричного поля. Блукаючі вогники - слабке світіння блакитного або зеленуватого кольору, яке іноді спостерігається на болотах, цвинтарях та в склепах. Вони часто виглядають як піднесене приблизно на 30 см над землею, що спокійно горить, не дає тепла, полум'я свічки, що на мить зависає над об'єктом. Вогник здається абсолютно невловимим і при наближенні спостерігача переміщується в інше місце. Причиною цього явища є розкладання органічних залишків і самозаймання болотного газу метану (СН4) або фосфіну (РН3). Блукаючі вогники мають різну форму, іноді навіть кулясту. Зелений промінь – спалах сонячного світла смарагдово-зеленого кольору в той момент, коли останній промінь Сонця ховається за горизонтом. Червона складова сонячного світла зникає першою, решта - по порядку слідом за нею, і останньою залишається смарагдово-зелена. Це явище виникає, лише коли над горизонтом залишається тільки самий краєчок сонячного диска, інакше відбувається змішання кольорів. Сутінкові промені - пучки сонячного світла, що розходяться, які стають видимими завдяки освітленню ними пилу у високих шарах атмосфери. Тіні від хмар утворюють темні смуги, а між ними поширюються промені. Цей ефект спостерігається, коли Сонце знаходиться низько над горизонтом перед світанком або після заходу сонця.

Енциклопедичний YouTube

    1 / 5

    ✪ Земля космічний корабель (14 Серія) - Атмосфера

    ✪ Чому атмосферу не втягло у космічний вакуум?

    ✪ Вхід в атмосферу Землі корабля "Союз ТМА-8"

    ✪ Атмосфера будова, значення, вивчення

    ✪ О. С. Угольников "Верхня атмосфера. Зустріч Землі та космосу"

    Субтитри

Кордон атмосфери

Атмосферою прийнято вважати ту область навколо Землі, в якій газове середовище обертається разом із Землею як єдине ціле. Атмосфера перетворюється на міжпланетне простір поступово, в екзосфері , що починається висоті 500-1000 км від Землі .

За визначенням, запропонованим Міжнародною, авіаційною федерацією, межа атмосфери і космосу проводиться по лінії Кишені, розташованої на висоті близько 100 км, вище за яку авіаційні польоти стають повністю неможливими. NASA використовує як межу атмосфери позначку в 122 кілометри (400 000 футів), де «шатли» перемикаються з маневрування за допомогою двигунів на аеродинамічний маневрування.

Фізичні властивості

Крім зазначених у таблиці газів, в атмосфері містяться Cl 2 (\displaystyle (\ce (Cl2))) , SO 2 (\displaystyle (\ce (SO2))) , NH 3 (\displaystyle (\ce (NH3))) , CO (\displaystyle ((\ce (CO)))) , O 3 (\displaystyle ((\ce (O3)))) , NO 2 (\displaystyle (\ce (NO2))), вуглеводні , HCl (\displaystyle (\ce (HCl))) , HF (\displaystyle (\ce (HF))) , HBr (\displaystyle (\ce (HBr))) , HI (\displaystyle ((\ce (HI)))), пари Hg (\displaystyle (\ce (Hg))) , I 2 (\displaystyle (\ce (I2))) , Br 2 (\displaystyle (\ce (Br2))), а також багато інших газів у незначних кількостях. У тропосфері постійно знаходиться велика кількість завислих твердих і рідких частинок (аерозоль). Найрідкіснішим газом у Земній атмосфері є Rn (\displaystyle (\ce (Rn))) .

Будова атмосфери

Прикордонний шар атмосфери

Нижній шар тропосфери (1-2 км завтовшки), у якому стан та властивості поверхні Землі безпосередньо впливають на динаміку атмосфери.

Тропосфера

Її верхня межа знаходиться на висоті 8-10 км у полярних, 10-12 км у помірних та 16-18 км у тропічних широтах; взимку нижче, ніж улітку.
Нижній, основний шар атмосфери містить понад 80% всієї маси атмосферного повітря і близько 90% всього водяної пари, що є в атмосфері. У тропосфері сильно розвинені турбулентність та конвекція, виникають хмари, розвиваються циклони та антициклони. Температура зменшується зі зростанням висоти із середнім вертикальним градієнтом 0,65°/100 метрів.

Тропопауза

Перехідний шар від тропосфери до стратосфери, шар атмосфери, де припиняється зниження температури з висотою.

Стратосфера

Шар атмосфери, що знаходиться на висоті від 11 до 50 км. Характерно незначна зміна температури у шарі 11-25 км (нижній шар стратосфери) та підвищення її у шарі 25-40 км від мінус 56,5 до плюс 0,8 °С (верхній шар стратосфери або область інверсії). Досягши на висоті близько 40 км значення близько 273 К (майже 0 ° C) температура залишається постійною до висоти близько 55 км. Ця область постійної температури називається стратопаузою і є межею між стратосферою та мезосферою.

Стратопауза

Прикордонний шар атмосфери між стратосферою та мезосферою. У вертикальному розподілі температури є максимум (близько 0 °C).

Мезосфера

Термосфера

Верхня межа – близько 800 км. Температура зростає до висот 200-300 км, де досягає значень близько 1500 К, після чого залишається майже постійною до висот. Під дією сонячної радіації та космічного випромінювання відбувається іонізація повітря («полярні сяйва») - основні області іоносфери лежать усередині термосфери. На висотах понад 300 км. переважає атомарний кисень. Верхня межа термосфери значною мірою визначається поточною активністю Сонця. У періоди низької активності – наприклад, у 2008-2009 роках – відбувається помітне зменшення розмірів цього шару.

Термопауза

Область атмосфери, що прилягає зверху до термосфери. У цій галузі поглинання сонячного випромінювання незначне, і температура фактично не змінюється з висотою.

Екзосфера (сфера розсіювання)

До висоти 100 км атмосфера є гомогенною добре перемішаною сумішшю газів. У високих шарах розподіл газів за висотою залежить від своїх молекулярних мас, концентрація більш важких газів зменшується швидше у міру віддалення від Землі. Внаслідок зменшення щільності газів температура знижується від 0 °C у стратосфері до мінус 110 °C у мезосфері. Проте кінетична енергіяокремих частинок на висотах 200-250 км. відповідає температурі ~ 150 °C. Понад 200 км спостерігаються значні флуктуації температури та щільності газів у часі та просторі.

На висоті близько 2000-3500 км екзосфера поступово переходить у так званий ближньокосмічний вакуум, Який заповнений рідкісними частинками міжпланетного газу, головним чином атомами водню. Але цей газ є лише частиною міжпланетної речовини. Іншу частину складають пилоподібні частинки кометного та метеорного походження. Крім надзвичайно розріджених пилоподібних частинок, у цей простір проникає електромагнітна та корпускулярна радіація сонячного та галактичного походження.

Огляд

Перед тропосфери припадає близько 80 % маси атмосфери, частку стратосфери - близько 20 %; маса мезосфери - трохи більше 0,3 %, термосфери - менше 0,05 % загальної маси атмосфери.

На підставі електричних властивостей у атмосфері виділяють нейтросферуі іоносферу .

Залежно від складу газу в атмосфері виділяють гомосферуі гетеросферу. Гетеросфера- це область, де гравітація впливає поділ газів, оскільки їх перемішування такий висоті незначно. Звідси випливає змінний склад гетеросфери. Нижче її лежить добре перемішана, однорідна складом частина атмосфери, звана гомосфера . Кордон між цими шарами називається турбопаузою, вона лежить на висоті близько 120 км.

Інші властивості атмосфери та вплив на людський організм

Вже на висоті 5 км над рівнем моря у нетренованої людини з'являється кисневе голодування і без адаптації працездатність людини значно знижується. Тут кінчається фізіологічна зона атмосфери. Подих людини стає неможливим на висоті 9 км, хоча приблизно до 115 км атмосфера містить кисень.

Атмосфера забезпечує нас необхідним для дихання киснем. Однак унаслідок падіння загального тиску атмосфери у міру підйому на висоту відповідно знижується і парціальний тиск кисню.

Історія утворення атмосфери

Згідно з найпоширенішою теорією, атмосфера Землі протягом історії останньої перебула в трьох різних складах. Спочатку вона складалася з легких газів (водню та гелію), захоплених із міжпланетного простору. Це так звана первинна атмосфера. На наступному етапі активна вулканічна діяльністьпризвела до насичення атмосфери та іншими газами, крім водню (вуглекислим газом, аміаком, водяним паром). Так утворилася вторинна атмосфера. Ця атмосфера була відновною. Далі процес утворення атмосфери визначався такими факторами:

  • витік легких газів (водню і гелію) в міжпланетний простір;
  • хімічні реакції, які у атмосфері під впливом ультрафіолетового випромінювання, грозових розрядів та інших чинників.

Поступово ці фактори призвели до утворення третинної атмосфери, Що характеризується набагато меншим вмістом водню і набагато більшим - азоту та вуглекислого газу (утворені в результаті хімічних реакцій з аміаку та вуглеводнів).

Азот

Утворення великої кількості азоту зумовлене окисненням аміачно-водневої атмосфери молекулярним киснем O 2 (\displaystyle (\ce (O2))), який став надходити з поверхні планети в результаті фотосинтезу, починаючи з 3 млрд. років тому. Також азот N 2 (\displaystyle (\ce (N2)))виділяється в атмосферу в результаті денітрифікації нітратів та інших азотовмісних сполук. Азот окислюється озоном до NO (\displaystyle ((\ce (NO))))у верхніх шарах атмосфери.

Азот N 2 (\displaystyle (\ce (N2)))вступає у реакції лише у специфічних умовах (наприклад, при розряді блискавки). Окислення молекулярного азоту озоном при електричних розрядах у малих кількостях використовують у промисловому виготовленні азотних добрив. Окисляти його з малими енерговитратами і переводити в біологічно активну форму можуть ціанобактерії (синьо-зелені водорості) і бульбочкові бактерії, що формують ризобіальний симбіоз з бобовими рослинами, які можуть бути ефективними сидератами - рослинами, які не виснажують, а збагачені.

Кисень

Склад атмосфери почав радикально змінюватися з появою на Землі живих організмів, в результаті фотосинтезу, що супроводжується виділенням кисню і поглинанням вуглекислого газу. Спочатку кисень витрачався на окислення відновлених сполук - аміаку, вуглеводнів, закисної форми заліза, що містилася в океанах та іншому. Після закінчення цього етапу вміст кисню в атмосфері почало зростати. Поступово утворилася сучасна атмосфера, що має окисними властивостями. Оскільки це викликало серйозні та різкі зміни багатьох процесів, що протікають в атмосфері, літосфері та біосфері, ця подія отримала назву Киснева-катастрофа.

Шляхетні гази

Забруднення атмосфери

Останнім часом на еволюцію атмосфери стала впливати людина. Результатом людської діяльності стало постійне зростання вмісту в атмосфері вуглекислого газу через спалювання вуглеводневого палива, накопиченого у попередні геологічні епохи. Великі кількості споживаються при фотосинтезі і поглинаються світовим океаном. Цей газ надходить в атмосферу завдяки розкладу карбонатних гірських порід та органічних речовин рослинного та тваринного походження, а також внаслідок вулканізму та виробничої діяльності людини. За останні 100 років утримання CO 2 (\displaystyle (\ce (CO2)))в атмосфері зросло на 10%, причому основна частина (360 млрд. тонн) надійшла в результаті спалювання палива. Якщо темпи зростання спалювання палива збережуться, то у найближчі 200-300 років кількість CO 2 (\displaystyle (\ce (CO2)))в атмосфері подвоїться і може призвести до