Знаходження площі фігури обмеженою лініями афінах. Площа криволінійної трапеції чисельно дорівнює певному інтегралу. Вирішуємо завдання разом

Нехай функція невід'ємна та безперервна на відрізку. Тоді, згідно з геометричним змістом певного інтеграла, площа криволінійної трапеції, обмеженої зверху графіком цієї функції, знизу – віссю, ліворуч і праворуч – прямими і (див. рис. 2) обчислюється за формулою

Приклад 9. Знайти площу фігури, обмеженою лінією і віссю.

Рішення. Графіком функції є парабола, гілки якої спрямовані вниз. Збудуємо її (рис. 3). Щоб визначити межі інтегрування, знайдемо точки перетину лінії (параболи) з віссю (прямий). Для цього вирішуємо систему рівнянь

Отримуємо: звідки ; отже, , .

Мал. 3

Площу фігури знаходимо за формулою (5):

Якщо функція непозитивна і безперервна на відрізку , то площа криволінійної трапеції, обмеженої знизу графіком даної функції, зверху - віссю , ліворуч і праворуч - прямими і обчислюється за формулою

. (6)

У разі, якщо функція безперервна на відрізку і змінює знак в кінцевому числі точок, то площа заштрихованої фігури (мал. 4) дорівнює сумі алгебри відповідних певних інтегралів:

Мал. 4

Приклад 10. Обчислити площу фігури, обмеженою віссю та графіком функції при .

Мал. 5

Рішення. Зробимо креслення (рис. 5). Шукана площа являє собою суму площ та . Знайдемо кожну з цих площ. Спочатку визначимо межі інтегрування, вирішивши систему Отримаємо, . Отже:

;

.

Таким чином, площа заштрихованої фігури дорівнює

(Кв. од.).

Мал. 6

Нехай, нарешті, криволінійна трапеція обмежена зверху та знизу графіками безперервних на відрізку функцій та ,
а ліворуч і праворуч - прямими і (рис. 6). Тоді її площа обчислюється за формулою



. (8)

Приклад 11. Знайти площу фігури, обмеженою лініямита .

Рішення.Ця фігура зображена на рис. 7. Площу її обчислимо за формулою (8). Вирішуючи систему рівнянь знаходимо, ; отже, , . На відрізку маємо: . Отже, у формулі (8) як візьмемо x, а як – . Отримаємо:

(Кв. од.).

Більш складні завдання на обчислення площ вирішують шляхом розбиття фігури на частини, що не перетинаються, і обчислення площі всієї фігури як суми площ цих частин.

Мал. 7

Приклад 12. Знайти площу фігури, обмеженою лініями , , .

Рішення. Зробимо креслення (рис. 8). Дану фігуру можна розглядати як криволінійну трапецію, обмежену знизу віссю , ліворуч і праворуч – прямими та , зверху – графіками функцій та . Так як фігура обмежена зверху графіками двох функцій, то для обчислення її площі розіб'ємо цю фігуру прямою на дві частини (1 – це абсцис точки перетину ліній і ). Площу кожної з цих частин знаходимо за формулою (4):

(кв. од.); (Кв. од.). Отже:

(Кв. од.).

Мал. 8

х= j ( у)

Мал. 9

На закінчення відзначимо, що якщо криволінійна трапеція обмежена прямими і віссю і безперервною на кривій (рис. 9), то її площа знаходиться за формулою

Об'єм тіла обертання

Нехай криволінійна трапеція, обмежена графіком безперервної на відрізку функції , віссю, прямими і обертається навколо осі (рис. 10). Тоді обсяг отриманого тіла обертання обчислюється за формулою

. (9)

Приклад 13. Обчислити об'єм тіла, отриманого обертанням навколо осі криволінійної трапеції, обмеженою гіперболою, прямими і віссю.

Рішення. Зробимо креслення (рис. 11).

З умови завдання випливає, що , . За формулою (9) отримуємо

.

Мал. 10

Мал. 11

Обсяг тіла, отриманого обертанням навколо осі Оукриволінійної трапеції, обмеженої прямими у = сі у = d, віссю Оута графіком безперервної на відрізку функції (рис. 12), визначається за формулою

. (10)

х= j ( у)

Мал. 12

Приклад 14 . Обчислити об'єм тіла, отриманого обертанням навколо осі Оукриволінійної трапеції, обмеженої лініями х 2 = 4у, у = 4, х = 0 (рис. 13).

Рішення. Відповідно до умови завдання знаходимо межі інтегрування: , . За формулою (10) отримуємо:

Мал. 13

Довжина дуги плоскої кривої.

Нехай крива , задана рівнянням , де лежить у площині (рис. 14).

Мал. 14

Визначення. Під довжиною дуги розуміється межа, якого прагне довжина ламаної лінії, вписаної у цю дугу, коли кількість ланок ламаної прагне нескінченності, а довжина найбільшої ланки прагне нулю.

Якщо функція та її похідна безперервні на відрізку, то довжина дуги кривої обчислюється за формулою

. (11)

Приклад 15 . Обчислити довжину дуги кривої , укладеної між точками, для яких .

Рішення. З умови завдання маємо . За формулою (11) отримуємо:

.

4. Невласні інтеграли
з нескінченними межами інтегрування

При введенні поняття певного інтеграла передбачалося, що виконуються такі дві умови:

а) межі інтегрування аі є кінцевими;

б) підінтегральна функція обмежена на відрізку.

Якщо хоча б одна з цих умов не виконується, то інтеграл називається невласним.

Розглянемо спочатку невласні інтеграли з нескінченними межами інтегрування.

Визначення. Нехай функція визначена і безперервна на проміжку, тодіта необмеженою праворуч (рис. 15).

Якщо невласний інтеграл сходиться, ця площа є кінцевою; якщо невласний інтеграл розходиться, ця площа нескінченна.

Мал. 15

Аналогічно визначається невласний інтеграл з нескінченною нижньою межею інтегрування:

. (13)

Цей інтеграл сходиться, якщо межа у правій частині рівності (13) існує і кінець; інакше інтеграл називається розбіжним.

Невласний інтеграл із двома нескінченними межами інтегрування визначається наступним чином:

, (14)

де с – будь-яка точка інтервалу. Інтеграл сходиться лише у тому випадку, коли сходяться обидва інтеграли у правій частині рівності (14).

;

г) = [Виділимо в знаменнику повний квадрат: ] = [Заміна:

] =

Отже, невласний інтеграл сходиться та його значення одно .

У попередньому розділі, присвяченому розбору геометричного сенсупевного інтеграла, ми отримали низку формул для обчислення площі криволінійної трапеції:

S (G) = ∫ a b f (x) d x для безперервної та невід'ємної функції y = f (x) на відрізку [a; b ] ,

S (G) = - ∫ a b f (x) d x для безперервної та непозитивної функції y = f (x) на відрізку [a; b].

Ці формули застосовні для вирішення щодо простих завдань. Насправді ж нам частіше доведеться працювати з складнішими фігурами. У зв'язку з цим, цей розділ ми присвятимо розбору алгоритмів обчислення площі фігур, які обмежені функціями явно, тобто. як y = f(x) або x = g(y) .

Теорема

Нехай функції y = f 1 (x) та y = f 2 (x) визначені і безперервні на відрізку [a; b], причому f 1 (x) ≤ f 2 (x) для будь-якого значення x з [a; b]. Тоді формула для обчислення площі фігури G обмеженою лініями x = a , x = b , y = f 1 (x) і y = f 2 (x) матиме вигляд S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Схожа формула буде застосовна для площі фігури, обмеженої лініями y = c , y = d , x = g 1 (y) та x = g 2 (y) : S (G) = ∫ c d (g 2 (y) - g 1 (y) d y.

Доказ

Розберемо три випадки, котрим формула буде справедлива.

У першому випадку, враховуючи властивість адитивності площі, сума площ вихідної фігури G і криволінійної трапеції G 1 дорівнює площі фігури G 2 . Це означає, що

Тому S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x.

Виконати останній перехід ми можемо з використанням третьої якості певного інтеграла.

У другому випадку справедлива рівність: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x

Графічна ілюстрація матиме вигляд:

Якщо обидві функції непозитивні, отримуємо: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Графічна ілюстрація матиме вигляд:

Перейдемо до розгляду загального випадку, коли y = f 1 (x) та y = f 2 (x) перетинають вісь O x .

Точки перетину ми позначимо як x i, i = 1, 2,. . . , n-1. Ці точки розбивають відрізок [a; b] на n частин x i-1; x i, i = 1, 2,. . . , n де α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Отже,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Останній перехід ми можемо здійснити з використанням п'ятої якості певного інтеграла.

Проілюструємо на графіку загальний випадок.

Формулу S(G) = ∫ a b f 2 (x) - f 1 (x) d x можна вважати доведеною.

А тепер перейдемо до розбору прикладів обчислення площі фігур, які обмежені лініями y = f(x) та x = g(y) .

Розгляд будь-якого з прикладів ми починатимемо з побудови графіка. Зображення дозволить нам представляти складні фігури як об'єднання більше простих фігур. Якщо побудова графіків та фігур на них викликає у вас труднощі, можете вивчити розділ про основні елементарних функціях, геометричне перетворення графіків функцій, а також побудову графіків під час дослідження функції.

Приклад 1

Необхідно визначити площу фігури, яка обмежена параболою y = - x 2 + 6 x - 5 і прямими лініями y = - 1 3 x - 1 2 x = 1 x = 4 .

Рішення

Зобразимо лінії на графіку в системі декартової координат.

На відрізку [1; 4 ] графік параболи y = - x 2 + 6 x - 5 розташований вище за пряму y = - 1 3 x - 1 2 . У зв'язку з цим для отримання відповіді використовуємо формулу, отриману раніше, а також спосіб обчислення певного інтеграла за формулою Ньютона-Лейбніца:

S(G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 · 4 3 + 19 6 · 4 2 - 9 2 · 4 - - 1 3 · 1 3 + 19 6 · 1 2 - 9 2 · 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Відповідь: S(G) = 13

Розглянемо складніший приклад.

Приклад 2

Необхідно обчислити площу фігури, яка обмежена лініями y = x + 2, y = x, x = 7.

Рішення

В даному випадку ми маємо тільки одну пряму лінію, розташовану паралельно осі абсцис. Це x = 7. Це вимагає від нас знайти другу межу інтегрування самостійно.

Побудуємо графік та нанесемо на нього лінії, дані за умови завдання.

Маючи графік перед очима, ми легко можемо визначити, що нижньою межею інтегрування буде абсцис точки перетину графіка прямої y = x і напів параболи y = x + 2 . Для знаходження абсциси використовуємо рівності:

y = x + 2 О Д З З: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (-1) 2 - 4 · 1 · (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 - 9 2 = - 1 ∉ О Д З

Виходить, що абсцис точки перетину є x = 2 .

Звертаємо вашу увагу на той факт, що в загальному прикладіна кресленні лінії y = x + 2, y = x перетинаються в точці (2; 2), тому такі докладні обчислення можуть здатися зайвими. Ми привели тут таке докладне рішення лише тому, що у складніших випадках рішення може бути не таким очевидним. Це означає, що координати перетину ліній краще завжди обчислювати аналітично.

На інтервалі [2; 7] графік функції y = x розташований вище за графік функції y = x + 2 . Застосуємо формулу для обчислення площі:

S(G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 · 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Відповідь: S(G) = 59 6

Приклад 3

Необхідно обчислити площу фігури, яка обмежена графіками функцій y = 1 x та y = - x 2 + 4 x - 2 .

Рішення

Нанесемо лінії на графік.

Визначимося з межами інтегрування. Для цього визначимо координати точок перетину ліній, прирівнявши вирази 1 x - x 2 + 4 x - 2 . За умови, що x не дорівнює нулю, рівність 1 x = - x 2 + 4 x - 2 стає еквівалентним рівнянню третього ступеня - x 3 + 4 x 2 - 2 x - 1 = 0 із цілими коефіцієнтами. Освіжити в пам'яті алгоритм вирішення таких рівнянь ми можете, звернувшись до розділу «Рішення кубічних рівнянь».

Коренем цього рівняння є х = 1: - 1 3 + 4 · 1 2 - 2 · 1 - 1 = 0 .

Розділивши вираз - x 3 + 4 x 2 - 2 x - 1 на двочлен x - 1 отримуємо: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Коріння, що залишилося, ми можемо знайти з рівняння x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (-3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0 . 3

Ми знайшли інтервал x ∈ 1; 3 + 13 2 , на якому фігура G укладена вище синій і нижче червоної лінії. Це допомагає нам визначити площу фігури:

S(G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 · 3 + 13 2 2 - 2 · 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 · 1 2 - 2 · 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Відповідь: S(G) = 7 + 13 3 - ln 3 + 13 2

Приклад 4

Необхідно обчислити площу фігури, яка обмежена кривими y = x 3 , y = - log 2 x + 1 і віссю абсцис.

Рішення

Нанесемо усі лінії на графік. Ми можемо отримати графік функції y = - log 2 x + 1 з графіка y = log 2 x якщо розташуємо його симетрично щодо осі абсцис і піднімемо на одну одиницю вгору. Рівняння осі абсцис у = 0.

Позначимо точки перетину ліній.

Як очевидно з малюнка, графіки функцій y = x 3 і y = 0 перетинаються у точці (0 ; 0) . Так виходить тому, що х = 0 є єдиним дійсним коренем рівняння х 3 = 0 .

x = 2 є єдиним коренем рівняння - log 2 x + 1 = 0 тому графіки функцій y = - log 2 x + 1 і y = 0 перетинаються в точці (2 ; 0) .

x = 1 є єдиним коренем рівняння x 3 = - log 2 x + 1. У зв'язку з цим графіки функцій y = x 3 і y = - log 2 x + 1 перетинаються в точці (1; 1). Останнє твердження може бути неочевидним, але рівняння x 3 = - log 2 x + 1 не може мати більше одного кореня, так як функція y = x 3 є строго зростаючою, а функція y = - log 2 x + 1 строго спадаючою.

Подальше рішення передбачає кілька варіантів.

Варіант №1

Фігуру G ми можемо представити як суму двох криволінійних трапецій, розташованих вище за осі абсцис, перша з яких розташовується нижче середньої лінії на відрізку x ∈ 0 ; 1 , а друга нижче за червону лінію на відрізку x ∈ 1 ; 2 . Це означає, що площа дорівнює S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Варіант №2

Фігуру G можна представити як різницю двох фігур, перша з яких розташована вище за осі абсцис і нижче за синю лінію на відрізку x ∈ 0 ; 2 , а друга між червоною та синьою лініями на відрізку x ∈ 1 ; 2 . Це дозволяє нам знайти площу наступним чином:

S(G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

В цьому випадку для знаходження площі доведеться використовувати формулу виду S (G) = c d (g 2 (y) - g 1 (y)) d y . Фактично, лінії, які обмежують фігуру, можна подати у вигляді функцій від аргументу y .

Дозволимо рівняння y = x 3 і - log 2 x + 1 щодо x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Отримаємо потрібну площу:

S(G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Відповідь: S(G) = 1 ln 2 - 1 4

Приклад 5

Необхідно обчислити площу фігури, обмежену лініями y = x , y = 2 3 x - 3 , y = - 1 2 x + 4 .

Рішення

Червоною лінією нанесемо на графік лінію, задану функцією y = x. Синім кольором нанесемо лінію y = - 1 2 x + 4, чорним кольором позначимо лінію y = 2 3 x - 3.

Зазначимо точки перетину.

Знайдемо точки перетину графіків функцій y = x та y = - 1 2 x + 4:

x = - 1 2 x + 4 О Д З З: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20) 2 - 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16; x 2 = 20 - 144 2 = 4 П о верка: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 · 16 + 4 = - 4 ⇒ x 1 = 16 не я в л я т с я р е ш е н ня му р а в н е н і я x 2 = 4 = 2 , - 1 2 x 2 + 4 = - 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н н я е м у р а в н і н я ⇒ (4 ; 2) т о к а п е р е с е н і я y = x та y = - 1 2 x + 4

Знайдемо точку перетину графіків функцій y = x та y = 2 3 x - 3:

x = 2 3 x - 3 О Д З: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 - 729 8 = 9 4 Перевірка: x 1 = 9 = 3 , 2 3 x 1 - 3 = 2 3 · 9 - 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н н е м у р а в н е н я ⇒ (9 ; 3) т о к а перес е ч а н я y = x і y = 2 3 x - 3 x 2 = 9 4 = 3 2 , 2 3 x 1 - 3 = 2 3 · 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 н е я в л я ет с я р е ш е н н ня м у р я в н е ня

Знайдемо точку перетину ліній y = - 1 2 x + 4 і y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 · 6 + 4 = 2 3 · 6 - 3 = 1 ⇒ (6 ; 1) точка перес е чення і = - 1 2 x + 4 і y = 2 3 x - 3

Спосіб №1

Представимо площу шуканої фігури як суму площ окремих фігур.

Тоді площа фігури дорівнює:

S(G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 - 4 · 6 - 2 3 · 4 3 2 + 4 2 4 - 4 · 4 + + 2 3 · 9 3 2 - 9 2 3 + 3 · 9 - 2 3 · 6 3 2 - 6 2 3 + 3 · 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Спосіб №2

Площа вихідної фігури можна як суму двох інших фігур.

Тоді розв'яжемо рівняння лінії щодо x , а тільки після цього застосуємо формулу обчислення площі фігури.

y = x ⇒ x = y 2 до р а з н а я л і н і я y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 1 2 x + 4 ⇒ x = - 2 y + 8 с і н я л і н і я

Таким чином, площа дорівнює:

S(G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 - 7 4 · 2 - 7 4 · 1 2 - 7 4 · 1 + + - 3 3 3 + 3 · 3 2 4 + 9 2 · 3 - - 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Як бачите, значення збігаються.

Відповідь: S(G) = 11 3

Підсумки

Для знаходження площі фігури, яка обмежена заданими лініяминам необхідно побудувати лінії на площині, знайти точки їх перетину, застосувати формулу знаходження площі. У цьому розділі ми розглянули варіанти завдань, що найчастіше зустрічаються.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Додаток інтеграла до вирішення прикладних завдань

Обчислення площі

Певний інтеграл безперервної невід'ємної функції f(x) чисельно дорівнює площі криволінійної трапеції, обмеженої кривої y = f(x), віссю Ох і прямими х = а та х = b. Відповідно до цього формула площі записується так:

Розглянемо деякі приклади на обчислення площ плоских фігур.

Завдання № 1. Обчислити площу, обмежену лініями y = x 2 +1, y = 0, x = 0, x = 2.

Рішення.Побудуємо фігуру, площу якої ми маємо обчислити.

y = x 2 + 1 – це парабола гілки якої спрямовані вгору, і парабола зміщена щодо осі O y вгору одну одиницю (рисунок 1).

Малюнок 1. Графік функції y = x 2 + 1

Завдання № 2. Обчислити площу, обмежену лініями y = x 2 – 1, y = 0 у межах від 0 до 1.


Рішення.Графіком даної функції є парабола гілки, якої спрямовані вгору, і парабола зміщена щодо осі O y вниз одну одиницю (рисунок 2).

Малюнок 2. Графік функції y = x 2 – 1


Завдання № 3. Зробіть креслення та обчисліть площу фігури, обмеженою лініями

y = 8 + 2x - x 2 і y = 2x - 4.

Рішення.Перша з цих двох ліній – парабола, спрямована гілками вниз, оскільки коефіцієнт при x 2 негативний, а друга лінія – пряма, що перетинає обидві осі координат.

Для побудови параболи знайдемо координати її вершини: y=2 – 2x; 2 – 2x = 0, x = 1 – абсцис вершини; y(1) = 8 + 2∙1 – 1 2 = 9 – її ордината, N(1;9) – вершина.

Тепер знайдемо точки перетину параболи та прямий, розв'язавши систему рівнянь:

Прирівнюючи праві частини рівняння, ліві частини яких рівні.

Отримаємо 8 + 2x - x 2 = 2x - 4 або x 2 - 12 = 0, звідки .

Отже, точки – точки перетину параболи та прямий (рисунок 1).


Малюнок 3 Графіки функцій y = 8 + 2x – x 2 та y = 2x – 4

Побудуємо пряму y = 2x - 4. Вона проходить через точки (0; -4), (2; 0) на осях координат.

Для побудови параболи можна ще її точки перетину з віссю 0x, тобто коріння рівняння 8 + 2x – x 2 = 0 або x 2 – 2x – 8 = 0. За теоремою Вієта легко знайти його коріння: x 1 = 2, x 2 = 4.

На малюнку 3 зображено фігуру (параболічний сегмент M 1 N M 2), обмежений даними лініями.

Друга частина завдання полягає у знаходженні площі цієї фігури. Її площу можна знайти за допомогою певного інтегралу за формулою .

Щодо даною умовою, Отримаємо інтеграл:

2 Обчислення об'єму тіла обертання

Обсяг тіла, отриманого від обертання кривої y = f(x) навколо осі Ох, обчислюється за формулою:

При обертанні навколо осі О y формула має вигляд:

Завдання №4. Визначити об'єм тіла, отриманого від обертання криволінійної трапеції, обмеженої прямими х = 0 х = 3 та кривою y = навколо осі О х.

Рішення.Побудуємо рисунок (рисунок 4).

Малюнок 4. Графік функції y =

Обсяг, що шукається, дорівнює


Завдання №5. Обчислити обсяг тіла, отриманого від обертання криволінійної трапеції, обмеженою кривою y = x 2 і прямими y = 0 і y = 4 навколо осі O y .

Рішення.Маємо:

Запитання для повторення

У липні 2020 року NASA запускає експедицію на Марс. Космічний апаратдоставить на Марс електронний носій із іменами всіх зареєстрованих учасників експедиції.


Якщо цей пост вирішив вашу проблему або просто сподобався вам, поділіться посиланням на нього зі своїми друзями у соціальних мережах.

Один з цих варіантів коду потрібно скопіювати і вставити в код вашої веб-сторінки, бажано між тегами або відразу після тега . За першим варіантом MathJax підвантажується швидше і менше гальмує сторінку. Натомість другий варіант автоматично відстежує та підвантажує свіжі версії MathJax. Якщо вставити перший код, його потрібно буде періодично оновлювати. Якщо вставити другий код, то сторінки завантажуватимуться повільніше, зате вам не потрібно буде постійно стежити за оновленнями MathJax.

Підключити MathJax найпростіше в Blogger або WordPress: в панелі керування сайтом додайте віджет, призначений для вставки стороннього коду JavaScript, скопіюйте в нього перший або другий варіант завантаженого коду, представленого вище, і розмістіть віджет ближче до початку шаблону (до речі, це зовсім не обов'язково , оскільки скрипт MathJax завантажується асинхронно). Ось і все. Тепер вивчіть синтаксис розмітки MathML, LaTeX та ASCIIMathML, і ви готові вставляти математичні формули на веб-сторінки свого сайту.

Черговий переддень Нового Року... морозна погода та сніжинки на шибці... Все це спонукало мене знову написати про... фрактали, і про те, що знає про це Вольфрам Альфа. З цього приводу є цікава стаття, В якій є приклади двомірних фрактальних структур. Тут ми розглянемо складніші приклади тривимірних фракталів.

Фрактал можна наочно уявити (описати), як геометричну фігуру або тіло (маючи на увазі, що й те й інше є безліч, в даному випадку, безліч точок), деталі якої мають таку форму, як і сама вихідна фігура. Тобто це самоподібна структура, розглядаючи деталі якої при збільшенні, ми бачитимемо ту саму форму, що і без збільшення. Тоді як у випадку звичайної геометричної фігури (не фрактала), при збільшенні ми побачимо деталі, які мають простішу форму, ніж вихідна фігура. Наприклад, при досить великому збільшенні частина еліпса виглядає як відрізок прямий. З фракталами такого не відбувається: за будь-якого їх збільшення ми знову побачимо ту ж саму складну форму, яка з кожним збільшенням повторюватиметься знову і знову.

Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки про фрактал, у своїй статті Фрактали і мистецтво в ім'я науки написав: "Фрактали - це геометричні форми, які однаково складні у своїх деталях, як і у своїй загальній формі. Тобто якщо частина фракталу буде збільшена до розміру цілого, вона виглядатиме, як ціле, або точно, або, можливо, з невеликою деформацією".

Обчислення площі фігури – це, мабуть, одне з найскладніших завдань теорії площ. У шкільній геометрії вчать знаходити площі основних геометричних фігуртаких як, наприклад, трикутник, ромб, прямокутник, трапеція, коло тощо. Однак найчастіше доводиться стикатися з обчисленням площ складніших фігур. Саме під час вирішення таких завдань дуже зручно використовувати інтегральне числення.

Визначення.

Криволінійною трапецією називають деяку фігуру G, обмежену лініями y = f(x), у = 0, х = а та х = b, причому функція f(x) безперервна на відрізку [а; b] і змінює у ньому свій знак (рис. 1). Площу криволінійної трапеції можна позначити S(G).

Певний інтеграл а b f(x)dx для функції f(x), що є безперервною і невід'ємною на відрізку [а; b], і є площу відповідної криволінійної трапеції.

Тобто, щоб знайти площу фігури G, обмеженою лініями y = f(x), у = 0, х = а та х = b, необхідно обчислити певний інтеграл ʃ а b f(x)dx.

Таким чином, S(G) = b b(x)dx.

У разі, якщо функція y = f(x) не є позитивною на [а; b], площа криволінійної трапеції може бути знайдена за формулою S(G) = -ʃ а b f(x)dx.

приклад 1.

Обчислити площу фігури, обмеженою лініями у = х3; у = 1; х = 2.

Рішення.

Задані лінії утворюють фігуру АВС, яка показана штрихуванням на рис. 2.

Шукана площа дорівнює різниці між площами криволінійної трапеції DACE та квадрата DABE.

Використовуючи формулу S = b (x)dx = S(b) – S(a), знайдемо межі інтегрування. Для цього вирішимо систему двох рівнянь:

(у = х 3
(У = 1.

Таким чином, маємо х 1 = 1 – нижню межу та х = 2 – верхню межу.

Отже, S = S DACE - S DABE = 1 2 x 3 dx - 1 = x 4 / 4 | 1 2 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. од.).

Відповідь: 11/4 кв. од.

приклад 2.

Обчислити площу фігури, обмеженою лініями у = √х; у = 2; х = 9.

Рішення.

Задані лінії утворюють фігуру АВС, яка обмежена зверху графіком функції

у = √х, а знизу графіком функції у = 2. Отримана фігура показана штрихуванням на рис. 3.

Площу, що шукається, дорівнює S = ʃ а b (√x – 2). Знайдемо межі інтегрування: b = 9, для знаходження а, розв'яжемо систему двох рівнянь:

(у = √х,
(У = 2.

Таким чином, маємо, що х = 4 = а – це нижня межа.

Отже, S = ∫ 4 9 (√x – 2)dx = ∫ 4 9 √x dx –∫ 4 9 2dx = 2/3 x√х| 4 9 - 2х | 4 9 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. од.).

Відповідь: S = 2 2/3 кв. од.

приклад 3.

Обчислити площу фігури, обмеженою лініями у = х 3 - 4х; у = 0; х ≥ 0.

Рішення.

Побудуємо графік функції у = х 3 – 4х при х ≥ 0. Для цього знайдемо похідну у:

y’ = 3x 2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критичні точки.

Якщо зобразити критичні точки на числової осіі розставити знаки похідної, то отримаємо, що функція зменшується від нуля до 2/3 і зростає від 2/3 до плюс нескінченності. Тоді х = 2/√3 – точка мінімуму, мінімальне значення функції min = -16/(3√3) ≈ -3.

Визначимо точки перетину графіка з осями координат:

якщо х = 0, то у = 0, отже, А(0; 0) – точка перетину з віссю Оу;

якщо у = 0, то х 3 - 4х = 0 або х (х 2 - 4) = 0, або х (х - 2) (х + 2) = 0, звідки х 1 = 0, х 2 = 2, х 3 = -2 (не підходить, тому що х ≥ 0).

Точки А(0; 0) та В(2; 0) – точки перетину графіка з віссю Ох.

Задані лінії утворюють фігуру ОАВ, яка показана штрихуванням на рис. 4.

Оскільки функція у = х 3 – 4х приймає на (0; 2) негативне значення, то

S = | 0 2 (x 3 - 4x) dx |.

Маємо: 0 2 (x 3 - 4х) dx = (x 4 / 4 - 4х 2 / 2) | 0 2 = -4, звідки S = ​​4 кв. од.

Відповідь: S = 4 кв. од.

приклад 4.

Знайти площу фігури, обмеженої параболою у = 2х 2 – 2х + 1, прямими х = 0, у = 0 і щодо до даної параболі в точці з абсцисою х 0 = 2.

Рішення.

Спочатку складемо рівняння дотичної до параболи у = 2х 2 – 2х + 1 у точці з абсцисою х₀ = 2.

Оскільки похідна y' = 4x – 2, то за х 0 = 2 отримаємо k = y'(2) = 6.

Знайдемо ординату точки дотику: у 0 = 2 · 2 2 - 2 · 2 + 1 = 5.

Отже, рівняння дотичної має вигляд: у - 5 = 6 (х - 2) або у = 6х - 7.

Побудуємо фігуру, обмежену лініями:

у = 2х 2 - 2х + 1, у = 0, х = 0, у = 6х - 7.

Г у = 2х 2 - 2х + 1 - парабола. Крапки перетину з осями координат: А(0; 1) – з віссю Оу; з віссю Ох – немає точок перетину, т.к. рівняння 2х 2 – 2х + 1 = 0 немає рішень (D< 0). Найдем вершину параболы:

x b = 2/4 = 1/2;

y b = 1/2, тобто вершина параболи точка має координати В(1/2; 1/2).

Отже, фігуру, площу якої потрібно визначити, показано штрихуванням на рис. 5.

Маємо: S О A В D = S OABC - S ADBC.

Знайдемо координати точки D із умови:

6х - 7 = 0, тобто. х = 7/6, отже DC = 2 - 7/6 = 5/6.

Площа трикутника DBC знайдемо за формулою S ADBC ​​= 1/2 · DC · BC. Таким чином,

S ADBC ​​= 1/2 · 5/6 · 5 = 25/12 кв. од.

S OABC = ʃ 0 2 (2x 2 – 2х + 1)dx = (2x 3 /3 – 2х 2 /2 + х)| 0 2 = 10/3 (кв. од.).

Остаточно отримаємо: S О A В D = S OABC - S ADBC ​​= 10/3 - 25/12 = 5/4 = 1 1/4 (кв. од.).

Відповідь: S = 1 1/4 кв. од.

Ми розібрали приклади знаходження площ фігур, обмежених заданими лініями. Для успішного вирішення подібних завданьпотрібно вміти будувати на площині лінії та графіки функцій, знаходити точки перетину ліній, застосовувати формулу для знаходження площі, що передбачає наявність умінь та навичок обчислення певних інтегралів.

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.