Обратные тригонометрические функции. Арксинус, арккосинус - свойства, графики, формулы Sinx обратная функция

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны . Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y
Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ), имеющая область определения и множество значений .
Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y ), имеющая область определения и множество значений .
Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус , Тангенс, котангенс .

y = arcsin x


y = arccos x


y = arctg x


y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x при
sin(arcsin x) = x
arccos(cos x) = x при
cos(arccos x) = x

arctg(tg x) = x при
tg(arctg x) = x
arcctg(ctg x) = x при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

См. также: Вывод формул обратных тригонометрических функций

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при


при

при

при


при

при

при

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Функция, обратная косинусу

Областью значений функции y=cos x (см. рис. 2) является отрезок. На отрезке функция непрерывна и монотонно убывает.

Рис. 2

Значит, на отрезке определена функция, обратная функции y=cos x. Эту обратную функцию называют арккосинусом и обозначают y=arccos x .

Определение

Aрккосинусом числа а, если |а|1, называют угол, косинус которого принадлежит отрезку; его обозначают arccos а.

Таким образом, arccos а есть угол, удовлетворяющий следующим двум условиям: сos (arccos a)=a, |а|1; 0? arccos a ?р.

Например, arccos, так как cos и; arccos, так как cosи.

Функция y = arccos x (рис. 3) определена на отрезке, областью ее значений является отрезок. На отрезке функция y=arccos x непрерывна и монотонно убывает от р до 0 (поскольку y=cos х - непрерывная и монотонно убывающая функция на отрезке); на концах отрезка она достигает своих экстремальных значений: arccos(-1)= р, arccos 1= 0. Отметим, что arccos 0 = . График функции y = arccos x (см. рис. 3) симметричен графику функции y = cos x относительно прямой y=x .

Рис. 3

Покажем, что имеет место равенство arccos(-x) = р-arccos x.

В самом деле, по определению 0 ? arcсos х? р. Умножая на (-1) все части последнего двойного неравенства, получаем - р? arcсos х? 0. Прибавляя р ко всем частям последнего неравенства, находим, что 0? р-arccos х? р.

Таким образом, значения углов arccos(-х) и р - arccos х принадлежат одному и тому же отрезку. Поскольку на отрезке косинус монотонно убывает, то на нем не может быть двух различных углов, имеющих равные косинусы. Найдем косинусы углов arccos(-х) и р-arccos х. По определению cos (arccos x) = - x, по формулам приведения и по определению имеем: cos (р - - arccos х) = - cos (arccos х)= - х. Итак, косинусы углов равны, значит, равны и сами углы.

Функция, обратная синусу

Рассмотрим функцию y=sin х (рис. 6), которая на отрезке [-р/2;р/2] возрастающая, непрерывная и принимает значения из отрезка [-1; 1]. Значит, на отрезке [- р/2; р/2] определена функция, обратная функции y=sin x.

Рис. 6

Эту обратную функцию называют арксинусом и обозначают y=arcsin x. Введем определение арксинуса числа а .

Арксинусом числа а, если называют угол (или дугу), синус которого равен числу а и который принадлежит отрезку [-р/2; р/2]; его обозначают arcsin а.

Таким образом, arcsin а есть угол, удовлетворяющий следующим условиям: sin (arcsin a)=a, |a| ?1; -р/2 ? arcsin а? р/2. Например, так как sin и [- р/2; р/2]; arcsin , так как sin = и [- р/2; р/2].

Функция y=arcsin х (рис. 7) определена на отрезке [- 1; 1], областью ее значений является отрезок [-р/2;р/2]. На отрезке [- 1; 1] функция y=arcsin x непрерывна и монотонно возрастает от -р/2 до р/2 (это следует из того, что функция y=sin x на отрезке [-р/2; р/2] непрерывна и монотонно возрастает). Наибольшее значение она принимает при x =1: arcsin 1 = р/2, а наименьшее - при х = -1: arcsin (-1) = -р/2. При х = 0 функция равна нулю: arcsin 0 = 0 .

Покажем, что функция y = arcsin x является нечетной, т.е. arcsin (-х) = - arcsin х при любом х [- 1; 1].

Действительно, по определению, если |x| ?1, имеем: - р/2 ? arcsin x ? ? р/2. Таким образом, углы arcsin (-х) и - arcsin х принадлежат одному и тому же отрезку [- р/2; р/2].

Найдем синусы этих углов: sin (arcsin(-х)) = - х (по определению); поскольку функция y=sin x нечетная, то sin (-arcsin х)= - sin (arcsin x)= - х. Итак, синусы углов, принадлежащих одному и тому же промежутку [-р/2; р/2], равны, значит, равны и сами углы, т.е. arcsin (-х)= - arcsin х. Значит, функция y=arcsin x - нечетная. График функции y=arcsin x симметричен относительно начала координат.

Покажем, что arcsin (sin x) = х для любого х [-р/2; р/2].

Действительно, по определению -р/2 ? arcsin (sin x) ? р/2, а по условию -р/2 ? x ? р/2. Значит, углы х и arcsin (sin x) принадлежат одному и тому же промежутку монотонности функции y=sin x. Если синусы таких углов равны, то равны и сами углы. Найдем синусы этих углов: для угла х имеем sin x, для угла arcsin (sin x) имеем sin (arcsin(sin x)) = sin x. Получили, что синусы углов равны, следовательно, и углы равны, т.е. arcsin (sin x) = х. .

Рис. 7

Рис. 8

График функции arcsin (sin|x|) получается обычными преобразованиями, связанными с модулем, из графика y=arcsin (sin x) (изображен штриховой линией на рис. 8). Искомый график y=arcsin (sin |x-/4|) получается из него сдвигом на /4 вправо вдоль оси абсцисс (изображен сплошной линией на рис. 8)

Функция, обратная тангенсу

Функция y=tg x на промежутке принимает все числовые значения: E (tg x)=. На этом промежутке она непрерывна и монотонно возрастает. Значит, на промежуткеопределена функция, обратная функции y = tg x. Эту обратную функцию называют арктангенсом и обозначают y = arctg x .

Арктангенсом числа а называют угол из промежутка, тангенс которого равен а. Таким образом, arctg a есть угол, удовлетворяющий следующим условиям: tg (arctg a) = a и 0 ? arctg a ? р.

Итак, любому числу х всегда соответствует единственное значение функции y = arctg x (рис. 9) .

Очевидно, что D (arctg x) = , E (arctg x) = .

Функция y = arctg x является возрастающей, поскольку функция y = tg x возрастает на промежутке. Нетрудно доказать, что arctg(-x) = - arctgx, т.е. что арктангенс - нечетная функция.

Рис. 9

График функции y = arctg x симметричен графику функции y = tg x относительно прямой y = x, график y = arctg x проходит через начало координат (ибо arctg 0 = 0) и симметричен относительно начала координат (как график нечетной функции).

Можно доказать, что arctg (tg x) = x, если x.

Функция, обратная котангенсу

Функция y = ctg x на промежутке принимает все числовые значения из промежутка. Область ее значений совпадает с множеством всех действительных чисел. В промежутке функция y = ctg x непрерывна и монотонно возрастает. Значит, на этом промежутке определена функция, обратная функции y = ctg x. Функцию, обратную котангенсу, называют арккотангенсом и обозначают y = arcctg x .

Арккотангенсом числа а называют угол, принадлежащий промежутку, котангенс которого равен а.

Таким образом, аrcctg a есть угол, удовлетворяющий следующим условиям: ctg (arcctg a)=a и 0 ? arcctg a ? р.

Из определения обратной функции и определения арктангенса следует, что D (arcctg x) = , E (arcctg x) = . Арккотангенс является убывающей функцией, поскольку функция y = ctg x убывает в промежутке.

График функции y = arcctg x не пересекает ось Ох, так как y > 0 R. При х = 0 y = arcctg 0 =.

График функции y = arcctg x изображен на рисунке 11.

Рис. 11

Отметим, что для всех действительных значений х верно тождество: arcctg(-x) = р-arcctg x.

Обра́тные тригонометри́ческие фу́нкции-это математические функции, являющиеся обратными тригонометрическим функциям.

Функция y=arcsin(x)

Арксинусом числа α называют такое число α из промежутка [-π/2;π/2], синус которого равен α.
График функции
Функция у= sin⁡(x) на отрезке [-π/2;π/2], строго возрастает и непрерывна; следовательно, она имеет обратную функцию, строго возрастающую и непрерывную.
Функция, обратная для функции у= sin⁡(x), где х ∈[-π/2;π/2], называется арксинусом и обозначается y=arcsin(x),где х∈[-1;1].
Итак, согласно определению обратной функции, областью определения арксинуса является отрезок [-1;1], а множеством значений - отрезок [-π/2;π/2].
Отметим, что график функцииy=arcsin(x),где х ∈[-1;1].симметричен графику функции у= sin(⁡x), где х∈[-π/2;π/2],относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcsin(x).

Пример№1.

Найти arcsin(1/2)?

Так как область значений функцииarcsin(x)принадлежит промежутку [-π/2;π/2], то подходит только значениеπ/6 .Следовательноarcsin(1/2) =π/6.
Ответ:π/6

Пример №2.
Найти arcsin(-(√3)/2)?

Так как область значений arcsin(x) х ∈[-π/2;π/2], то подходит только значение -π/3.Следовательноarcsin(-(√3)/2) =- π/3.

Функция y=arccos(x)

Арккосинусом числа α называют такое число α из промежутка , косинус которого равен α.

График функции

Функция у= cos(⁡x) на отрезке , строго убывает и непрерывна; следовательно, она имеет обратную функцию, строго убывающую и непрерывную.
Функция, обратная для функции у= cos⁡x, где х ∈, называется арккосинусом и обозначается y=arccos(x),где х ∈[-1;1].
Итак, согласно определению обратной функции, областью определения арккосинуса является отрезок [-1;1], а множеством значений - отрезок .
Отметим, что график функцииy=arccos(x),где х ∈[-1;1] симметричен графику функции у= cos(⁡x), где х ∈,относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arccos(x).

Пример №3.

Найти arccos(1/2)?


Так как область значений arccos(x) х∈, то подходит только значение π/3.Следовательно arccos(1/2) =π/3.
Пример №4.
Найти arccos(-(√2)/2)?

Так как область значений функции arccos(x) принадлежит промежутку , то подходит только значение 3π/4.Следовательноarccos(-(√2)/2) =3π/4.

Ответ: 3π/4

Функция y=arctg(x)

Арктангенсом числа α называют такое число α из промежутка [-π/2;π/2], тангенс которого равен α.

График функции

Функция тангенс непрерывная и строго возрастающая на интервале(-π/2;π/2); следовательно, она имеет обратную функцию, которая непрерывна и строго возрастает.
Функция, обратная для функции у= tg⁡(x), где х∈(-π/2;π/2); называется арктангенсом и обозначается y=arctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арктангенса является интервал(-∞;+∞), а множеством значений - интервал
(-π/2;π/2).
Отметим, что график функции y=arctg(x),где х∈R, симметричен графику функции у= tg⁡x, где х ∈ (-π/2;π/2), относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arctg(x).

Пример№5?

Найти arctg((√3)/3).

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение π/6 .Следовательноarctg((√3)/3) =π/6.
Пример№6.
Найти arctg(-1)?

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение -π/4 .Следовательноarctg(-1) = - π/4.

Функция y=arcctg(x)


Арккотангенсом числа α называют такое число α из промежутка (0;π), котангенс которого равен α.

График функции

На интервале (0;π),функция котангенс строго убывает; кроме того,она непрерывна в каждой точке этого интервала; следовательно, на интервале (0;π), эта функция имеет обратную функцию, которая является строго убывающей и непрерывной.
Функция, обратная для функции у=ctg(x), где х ∈(0;π), называется арккотангенсом и обозначается y=arcctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арккотангенса будет R,а множеством значений –интервал (0;π).График функции y=arcctg(x),где х∈R симметричен графику функции y=ctg(x) х∈(0;π),относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcctg(x).




Пример№7.
Найти arcctg((√3)/3)?


Так как область значений arcctg(x) х ∈(0;π), то подходит только значение π/3.Следовательно arccos((√3)/3) =π/3.

Пример№8.
Найти arcctg(-(√3)/3)?

Так как область значений arcctg(x) х∈(0;π), то подходит только значение 2π/3.Следовательноarccos(-(√3)/3) =2π/3.

Редакторы: Агеева Любовь Александровна, Гаврилина Анна Викторовна

Задания, связанные с обратными тригонометрическими функциями, часто предлагаются на школьных выпускных экзаменах и на вступительных экзаменах в некоторых ВУЗах. Подробное изучение этой темы может быть достигнуто только на факультативных занятиях или на элективных курсах. Предлагаемый курс призван как можно полнее развить способности каждого ученика, повысить его математическую подготовку.

Курс рассчитан на 10 часов:

1.Функции arcsin x, arccos x, arctg x, arcctg x (4 ч.).

2.Операции над обратными тригонометрическими функциями (4 ч.).

3.Обратные тригонометрические операции над тригонометрическими функциями (2 ч.).

Урок 1 (2 ч.) Тема: Функции y = arcsin x, y = arccos x, y = arctg x, y = arcctg x.

Цель: полное освещение данного вопроса.

1.Функция y = arcsin х.

а) Для функции y = sin x на отрезке существует обратная (однозначная) функция, которую условились называть арксинусом и обозначать так: y = arcsin x. График обратной функции симметричен с графиком основной функции относительно биссектрисы I - III координатных углов.

Свойства функции y = arcsin x .

1)Область определения: отрезок [-1; 1];

2)Область изменения: отрезок ;

3)Функция y = arcsin x нечетная: arcsin (-x) = - arcsin x;

4)Функция y = arcsin x монотонно возрастающая;

5)График пересекает оси Ох, Оу в начале координат.

Пример 1. Найти a = arcsin . Данный пример подробно можно сформулировать так: найти такой аргумент a , лежащий в пределах от до , синус которого равен .

Решение. Существует бесчисленное множество аргументов, синус которых равен , например: и т.д. Но нас интересует только тот аргумент, который находится на отрезке . Таким аргументом будет . Итак, .

Пример 2. Найти .Решение. Рассуждая так же, как и в примере 1, получим .

б) устные упражнения. Найти: arcsin 1, arcsin (-1), arcsin , arcsin (), arcsin , arcsin (), arcsin , arcsin (), arcsin 0. Образец ответа: , т.к. . Имеют ли смысл выражения: ; arcsin 1,5; ?

в) Расположите в порядке возрастания: arcsin, arcsin (-0,3), arcsin 0,9.

II. Функции y = arccos x, y = arctg x, y = arcctg x (аналогично).

Урок 2 (2 ч) Тема: Обратные тригонометрические функции, их графики.

Цель: на данном уроке необходимо отработать навыки в определении значений тригонометрических функций, в построении графиков обратных тригонометрических функций с использованием Д (у), Е (у) и необходимых преобразований.

На данном уроке выполнить упражнения, включающие нахождение области определения, области значения функций типа: y = arcsin , y = arccos (x-2), y = arctg (tg x), y = arccos .

Следует построить графики функций: а) y = arcsin 2x; б) y = 2 arcsin 2x; в) y = arcsin ;

г) y = arcsin ; д) y = arcsin ; е) y = arcsin ; ж) y = | arcsin | .

Пример. Построим график y = arccos

В домашнее задание можно включить следующие упражнения: построить графики функций: y = arccos , y = 2 arcctg x, y = arccos | x | .

Графики обратных функций

Урок № 3 (2 ч.) Тема:

Операции над обратными тригонометрическими функциями.

Цель: расширить математические познания (это важно для поступающих на специальности с повышенными требованиями к математической подготовке) путем введения основных соотношений для обратных тригонометрических функций.

Материал для урока.

Некоторые простейшие тригонометрические операции над обратными тригонометрическими функциями: sin (arcsin x) = x , i xi ? 1; cos (arсcos x) = x , i xi ? 1; tg (arctg x)= x , x I R; ctg (arcctg x) = x , x I R.

Упражнения.

а) tg (1,5 + arctg 5) = - ctg (arctg 5) = .

ctg (arctg x) = ; tg (arcctg x) = .

б) cos ( + arcsin 0,6) = - cos (arcsin 0,6). Пусть arcsin 0,6 = a , sin a = 0,6;

cos (arcsin x) = ; sin (arccos x) = .

Замечание: берем перед корнем знак “+” потому, что a = arcsin x удовлетворяет .

в) sin (1,5 + arcsin ).Ответ: ;

г) ctg ( + arctg 3).Ответ: ;

д) tg ( – arcctg 4).Ответ: .

е) cos (0,5 + arccos ) . Ответ: .

Вычислить:

a) sin (2 arctg 5) .

Пусть arctg 5 = a , тогда sin 2 a = или sin (2 arctg 5) = ;

б) cos ( + 2 arcsin 0,8).Ответ: 0,28.

в) arctg + arctg .

Пусть a = arctg , b = arctg ,

тогда tg (a + b) = .

г) sin (arcsin + arcsin ).

д) Доказать, что для всех x I [-1; 1] верно arcsin x + arccos x = .

Доказательство:

arcsin x = – arccos x

sin (arcsin x) = sin ( – arccos x)

x = cos (arccos x)

Для самостоятельного решения: sin (arccos ), cos (arcsin ) , cos (arcsin ()), sin (arctg (- 3)), tg (arccos ) , ctg (arccos ).

Для домашнего решения: 1) sin (arcsin 0,6 + arctg 0); 2) arcsin + arcsin ; 3) ctg ( – arccos 0,6); 4) cos (2 arcctg 5) ; 5) sin (1,5 – arcsin 0,8); 6) arctg 0,5 – arctg 3.

Урок № 4 (2ч.) Тема: Операции над обратными тригонометрическими функциями.

Цель: на данном уроке показать использование соотношений в преобразовании более сложных выражений.

Материал для урока.

УСТНО:

а) sin (arccos 0,6), cos (arcsin 0,8);

б) tg (arcсtg 5), ctg (arctg 5);

в) sin (arctg -3), cos (arcсtg());

г) tg (arccos ), ctg (arccos()).

ПИСЬМЕННО:

1) cos (arcsin + arcsin + arcsin ).

2) cos (arctg 5–arccos 0,8) = cos (arctg 5) cos (arccos 0,8) + sin (arctg 5) sin (arccos 0,8) =

3) tg ( - arcsin 0,6) = - tg (arcsin 0,6) =

4)

Самостоятельная работа поможет выявить уровень усвоения материала

1) tg (arctg 2 – arctg )

2) cos( - arctg2)

3) arcsin + arccos

1) cos (arcsin + arcsin )

2) sin (1,5 - arctg 3)

3) arcctg3 – arctg 2

Для домашнего задания можно предложить:

1) ctg (arctg + arctg + arctg ); 2) sin 2 (arctg 2 – arcctg ()); 3) sin (2 arctg + tg ( arcsin )); 4) sin (2 arctg ); 5) tg ( (arcsin ))

Урок № 5 (2ч) Тема: Обратные тригонометрические операции над тригонометрическими функциями.

Цель: сформировать представление учащихся об обратных тригонометрических операциях над тригонометрическими функциями, основное внимание уделить повышению осмысленности изучаемой теории.

При изучении данной темы предполагается ограничение объема теоретического материала, подлежащего запоминанию.

Материал для урока:

Изучение нового материала можно начать с исследования функции y = arcsin (sin x) и построения ее графика.

3. Каждому x I R ставится в соответствие y I , т.е. <= y <= такое, что sin y = sin x.

4. Функция нечетна: sin(-x) = - sin x ; arcsin(sin(-x)) = - arcsin(sin x).

6. График y = arcsin (sin x) на :

a) 0 <= x <= имеем y = arcsin(sin x) = x, ибо sin y = sin x и <= y <= .

б) <= x <= получим y = arcsin (sin x) = arcsin ( - x) = - x, ибо

sin y = sin ( – x) = sinx , 0 <= - x <= .

Итак,

Построив y = arcsin (sin x) на , продолжим симметрично относительно начала координат на [- ; 0], учитывая нечетность этой функции. Используя периодичность, продолжим на всю числовую ось.

Затем записать некоторые соотношения: arcsin (sin a) = a , если <= a <= ; arccos (cos a ) = a , если 0 <= a <= ; arctg (tg a) = a , если < a < ; arcctg (ctg a) = a , если 0 < a < .

И выполнить следующие упражнения:a) arccos(sin 2).Ответ: 2 - ; б) arcsin (cos 0,6).Ответ: - 0,1 ; в) arctg (tg 2).Ответ: 2 - ;

г) arcctg(tg 0,6).Ответ: 0,9 ; д) arccos (cos ( - 2)).Ответ:2 - ; е) аrcsin (sin ( - 0,6)). Ответ: - 0,6; ж) аrctg (tg 2) = arctg (tg (2 - )). Ответ:2 - ; з) аrcctg (tg 0,6). Ответ: - 0,6; - arctg x; д) arccos + arccos

Обратные тригонометрические функции (круговые функции, аркфункции) — математические функции, которые являются обратными к тригонометрическим функциям .

К ним обычно относят 6 функций:

  • арксинус (обозначение: arcsin x ; arcsin x — это угол, sin которого равен x ),
  • арккосинус (обозначение: arccos x ; arccos x — это угол, косинус которого равняется x и так далее),
  • арктангенс (обозначение: arctg x или arctan x ),
  • арккотангенс (обозначение: arcctg x или arccot x или arccotan x ),
  • арксеканс (обозначение: arcsec x ),
  • арккосеканс (обозначение: arccosec x или arccsc x ).

Арксинус (y = arcsin x ) - обратная функция к sin (x = sin y . Другими словами возвращает угол по значению его sin .

Арккосинус (y = arccos x ) - обратная функция к cos (x = cos y cos .

Арктангенс (y = arctg x ) - обратная функция к tg (x = tg y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его tg .

Арккотангенс (y = arcctg x ) - обратная функция к ctg (x = ctg y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его ctg .

arcsec - арксеканс, возвращает угол по значению его секанса.

arccosec - арккосеканс, возвращает угол по значению его косеканса.

Когда обратная тригонометрическая функция не определяется в указанной точке, значит, ее значение не появится в итоговой таблице. Функции arcsec и arccosec не определяются на отрезке (-1,1), а arcsin и arccos определяются только на отрезке [-1,1].

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции прибавлением приставки «арк-» (от лат. arc us — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции связывают с длиной дуги единичной окружности (либо углом, который стягивает эту дугу), которая соответствует тому либо другому отрезку.

Иногда в зарубежной литературе, как и в научных/инженерных калькуляторах , используют обозначениями вроде sin −1 , cos −1 для арксинуса, арккосинуса и тому подобное, — это считается не полностью точным, т.к. вероятна путаница с возведением функции в степень −1 −1 » (минус первая степень) определяет функцию x = f -1 (y) , обратную функции y = f (x) ).

Основные соотношения обратных тригонометрических функций.

Здесь важно обратить внимание на интервалы, для которых справедливы формулы.

Формулы, связывающие обратные тригонометрические функции.

Обозначим любое из значений обратных тригонометрических функций через Arcsin x , Arccos x , Arctan x , Arccot x и сохраним обозначения: arcsin x , arcos x , arctan x , arccot x для их главных значений, тогда связь меж ними выражается такими соотношениями.