Курс лекций. Open Library - открытая библиотека учебной информации Как найти приращение функции примеры

Пусть х – аргумент (независимая переменная); y=y(x) – функция.

Возьмем фиксированное значение аргументах=х 0 и вычислим значение функции y 0 =y(x 0 ) . Теперь произвольным образом зададим приращение (изменение) аргумента и обозначим его х ( х может быть любого знака).

Аргумент с приращением – это точка х 0 + х . Допустим, в ней также существует значение функции y=y(x 0 + х) (см. рисунок).

Таким образом, при произвольном изменении значения аргумента получено изменение функции, которое называется приращением значения функции:

и не является произвольным, а зависит от вида функции и величины
.

Приращения аргумента и функции могут быть конечными , т.е. выражаться постоянными числами, в этом случае их иногда называют конечными разностями.

В экономике конечные приращения рассматриваются весьма часто. Например, в таблице приведены данные о длине железнодорожной сети некоторого государства. Очевидно, приращение длины сети вычисляется путем вычитания предыдущего значения из последующего.

Будем рассматривать длину ж/д сети как функцию, аргументом которой будет время (годы).

Длина ж/д на 31.12, тыс.км.

Приращение

Среднегодовой прирост

Само по себе приращение функции (в данном случае длины ж/д) сети) плохо характеризует изменение функции. В нашем примере из того, что 2,5>0,9 нельзя заключить, что сеть росла быстрее в 2000-2003 годах, чем в 2004 г., потому что приращение 2,5 относится к трехлетнему периоду, а 0,9 – всего к одному году. Поэтому вполне естественно, что приращение функции приводят к единице изменения аргумента. Приращение аргумента здесь – периоды: 1996-1993=3; 2000-1996=4; 2003-2000=3; 2004-2003=1 .

Получим то, что в экономической литературе называют среднегодовым приростом .

Можно избежать операции приведения приращения к единице изменения аргумента, если взять значения функции для значений аргумента, отличающихся на единицу, что не всегда возможно.

В математическом анализе, в частности, в дифференциальном исчислении, рассматривают бесконечно малые (БМ) приращения аргумента и функции.

Дифференцирование функции одной переменной (производная и дифференциал) Производная функции

Приращения аргумента и функции в точке х 0 можно рассматривать как сравнимые бесконечно малые величины (см. тему 4, сравнение БМ), т.е. БМ одного порядка.

Тогда их отношение будет иметь конечный предел, который определяется как производная функции в т х 0 .

    Предел отношения приращения функции к БМ приращению аргумента в точке х=х 0 называется производной функции в данной точке.

Символическое обозначение производной штрихом (а, вернее, римской цифрой I) введено Ньютоном. Можно использовать еще нижний индекс, который показывает, по какой переменной вычисляется производная, например, . Широко используется также другое обозначение, предложенное основоположником исчисления производных, немецким математиком Лейбницем:
. С происхождением этого обозначения вы подробнее познакомитесь в разделеДифференциал функции и дифференциал аргумента.


Данное число оценивает скорость изменения функции, проходящей через точку
.

Установим геометрический смысл производной функции в точке. С этой целью построим график функции y=y(x) и отметим на нем точки, определяющие изменение y(x) в промежутке

Касательной к графику функции в точке М 0
будем считать предельное положение секущейМ 0 М при условии
(точкаМ скользит по графику функции к точкеМ 0 ).

Рассмотрим
. Очевидно,
.

Если точку М устремить вдоль графика функции по направлению к точке М 0 , то значение
будет стремиться к некоторому пределу, который обозначим
. При этом.

Предельный угол совпадает с углом наклона касательной, проведенной к графику функции в т. М 0 , поэтому производная
численно равнаугловому коэффициенту касательной в указанной точке.

-

геометрический смысл производной функции в точке .

Таким образом, можно записать уравнения касательной и нормали (нормаль – это прямая, перпендикулярная касательной) к графику функции в некоторой точке х 0 :

Касательная - .

Нормаль -
.

Представляют интерес случаи, когда эти прямые расположены горизонтально или вертикально (см. тему 3, частные случаи положения прямой на плоскости). Тогда,

если
;

если
.

Определение производной называется дифференцированием функции.

 Если функция в точке х 0 имеет конечную производную, то она называется дифференцируемой в этой точке. Функция, дифференцируемая во всех точках некоторого интервала, называется дифференцируемой на этом интервале.

Теорема . Если функция y=y(x) дифференцируема в т. х 0 , то она в этой точке непрерывна.

Таким образом, непрерывность – необходимое (но не достаточное) условие дифференцируемости функции.

1. приращение аргумента и приращение функции.

Пусть дана функция . Возьмём два значения аргумента: начальное и изменённое, которое принято обозначать
, где - величина на которую изменяется аргумент при переходе от первого значения ко второму, оно называется приращением аргумента.

Значения аргумента и соответствуют определённым значениям функции: начальное и изменённое
, величину , на которую изменяется значение функции при изменении аргумента на величину , называется приращением функции.

2. понятие предела функции в точке.

Число называется пределом функции
при, стремящемся к , если для любого числа
найдётся такое число
, что при всех
, удовлетворяющих неравенству
, будет выполняться неравенство
.

Второе определение: Число называется пределом функции при, стремящемся к , если для любого числа существует такая окрестность точки , что для любого из этой окрестности . Обозначается
.

3. бесконечно большие и бесконечно малые функции в точке. Бесконечно малая функция в точке – функция, предел которой, когда она стремится к данной точке равен нулю. Бесконечно большая функция в точке – функция предел которой когда она стремится к к данной точке равен бесконечности.

4. основные теоремы о пределах и следствия из них (без доказательства).





следствие: постоянный множитель можно вынести за знак предела:

Если последовательности и сходятся и предел последовательности отличен от нуля, то






следствие: постоянный множитель можно вынести за знак предела.

11. если при существуют пределы функций
и
и предел функции отличен от нуля,

то существуют также и предел их отношения, равный отношению пределов функций и :

.

12. если
, то
, справедлива и обратная.

13. теорема о пределе промежуточной последовательности. Если последовательности
сходящиеся, и
и
то

5. предел функции на бесконечности.

Число а называется пределом функции на бесконечности, (при х стремящемся к бесконечности) если для любой последовательности стремящемся к бесконечности
соответствует последовательность значений стремящихся к числу а .

6. gределы числовой последовательности.

Число а называется пределом числовой последовательности , если для любого положительного числа найдётся натуральное число N, такое, что при всех n > N выполняется неравенство
.

Символически это определяется так:
справедливо .

Тот факт, что число а является пределом последовательности , обозначается следующим образом:

.

7.число « е ». натуральные логарифмы.

Число « е » представляет собой предел числовой последовательности, n - й член которой
, т. е.

.

Натуральный логарифм – логарифм с основанием е. натуральные логарифмы обозначаются
без указания основания.

Число
позволяет переходить от десятичного логарифма к натуральному и обратно.

, его называют модулем перехода от натуральных логарифмов к десятичным.

8. замечательные пределы
,


.

Первый замечательный предел:



таким образом при

по теореме о пределе промежуточной последовательности

второй замечательный предел:

.

Для доказательства существования предела
используют лемму: для любого действительного числа
и
справедливо неравенство
(2) (при
или
неравенство обращается в равенство.)


Последовательность (1) можно записать так:

.

Теперь рассмотрим вспомогательную последовательность с общим членом
убедимся, что она убывает и ограничена снизу:
если
, то последовательность убывает. Если
, то последовательность ограничена снизу. Покажем это:

в силу равенства (2)

т. е.
или
. Т. е. последовательность убывает, а т. к. то последовательность ограничена снизу. Если последовательность убывает и ограничена снизу, то она имеет предел. Тогда

имеет предел и последовательность (1), т. к.

и
.

Л. Эйлер назвал этот предел .

9. односторонние пределы, разрыв функции.

число А левый предел, если для любой последовательности выполняется следующее: .

число А правый предел, если для любой последовательности выполняется следующее: .

Если в точке а принадлежащей области определения функции или её границе, нарушается условие непрерывности функции, то точка а называется точкой разрыва или разрывом функции.если при стремлении точки

12. сумма членов бесконечной убывающей геометрической прогрессии. Геометрическая прогрессия – последовательность, в которой отношение между последующим и предыдущим членами остаётся неизменным, это отношение называется знаменателем прогрессии. Сумма первых n членов геометрической прогрессии выражается формулой
данную формулу удобно использовать для убывающей геометрической прогрессии – прогрессии у которой абсолютная величина её знаменателя меньше нуля.- первый член; - знаменатель прогрессии; - номер взятого члена последовательности. Сумма бесконечной убывающей прогрессии – число, к которому неограничено приближается сумма первых членов убывающей прогрессиии при неограниченном возростании числа .
т. о. Сумма членов бесконечно убывающей геометрической прогрессии равна .

Определение 1

Если для каждой пары $(x,y)$ значений двух независимых переменных из некоторой области ставится в соответствие определенное значение $z$, то говорят, что $z$ является функцией двух переменных $(x,y)$. Обозначение: $z=f(x,y)$.

В отношении функции $z=f(x,y)$ рассмотрим понятия общего (полного) и частного приращений функции.

Пусть дана функция $z=f(x,y)$двух независимых переменных $(x,y)$.

Замечание 1

Так как переменные $(x,y)$ являются независимыми, то одна из них может изменяться, а другая при этом сохранять постоянное значение.

Дадим переменной $x$ приращение $\Delta x$, при этом сохраним значение переменной $y$ неизменным.

Тогда функция $z=f(x,y)$ получит приращение, которое будет называться частным приращением функции $z=f(x,y)$ по переменной $x$. Обозначение:

Аналогично дадим переменной $y$ приращение $\Delta y$, при этом сохраним значение переменной $x$ неизменным.

Тогда функция $z=f(x,y)$ получит приращение, которое будет называться частным приращением функции $z=f(x,y)$ по переменной $y$. Обозначение:

Если же аргументу $x$ дать приращение $\Delta x$, а аргументу $y$ - приращение $\Delta y$, то получается полное приращение заданной функции $z=f(x,y)$. Обозначение:

Таким образом, имеем:

    $\Delta _{x} z=f(x+\Delta x,y)-f(x,y)$ - частное приращение функции $z=f(x,y)$ по $x$;

    $\Delta _{y} z=f(x,y+\Delta y)-f(x,y)$ - частное приращение функции $z=f(x,y)$ по $y$;

    $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$ - полное приращение функции $z=f(x,y)$.

Пример 1

Решение:

$\Delta _{x} z=x+\Delta x+y$ - частное приращение функции $z=f(x,y)$ по $x$;

$\Delta _{y} z=x+y+\Delta y$ - частное приращение функции $z=f(x,y)$ по $y$.

$\Delta z=x+\Delta x+y+\Delta y$ - полное приращение функции $z=f(x,y)$.

Пример 2

Вычислить частные и полное приращение функции $z=xy$ в точке $(1;2)$ при $\Delta x=0,1;\, \, \Delta y=0,1$.

Решение:

По определению частного приращения найдем:

$\Delta _{x} z=(x+\Delta x)\cdot y$ - частное приращение функции $z=f(x,y)$ по $x$

$\Delta _{y} z=x\cdot (y+\Delta y)$ - частное приращение функции $z=f(x,y)$ по $y$;

По определению полного приращения найдем:

$\Delta z=(x+\Delta x)\cdot (y+\Delta y)$ - полное приращение функции $z=f(x,y)$.

Следовательно,

\[\Delta _{x} z=(1+0,1)\cdot 2=2,2\] \[\Delta _{y} z=1\cdot (2+0,1)=2,1\] \[\Delta z=(1+0,1)\cdot (2+0,1)=1,1\cdot 2,1=2,31.\]

Замечание 2

Полное приращение заданной функции $z=f(x,y)$ не равно сумме ее частных приращений $\Delta _{x} z$ и $\Delta _{y} z$. Математическая запись: $\Delta z\ne \Delta _{x} z+\Delta _{y} z$.

Пример 3

Проверить утверждение замечания для функции

Решение:

$\Delta _{x} z=x+\Delta x+y$; $\Delta _{y} z=x+y+\Delta y$; $\Delta z=x+\Delta x+y+\Delta y$ (получены в примере 1)

Найдем сумму частных приращений заданной функции $z=f(x,y)$

\[\Delta _{x} z+\Delta _{y} z=x+\Delta x+y+(x+y+\Delta y)=2\cdot (x+y)+\Delta x+\Delta y.\]

\[\Delta _{x} z+\Delta _{y} z\ne \Delta z.\]

Определение 2

Если для каждой тройки $(x,y,z)$ значений трех независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией трех переменных $(x,y,z)$ в данной области.

Обозначение: $w=f(x,y,z)$.

Определение 3

Если для каждой совокупности $(x,y,z,...,t)$ значений независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией переменных $(x,y,z,...,t)$ в данной области.

Обозначение: $w=f(x,y,z,...,t)$.

Для функции от трех и более переменных, аналогично как для функции двух переменных определяются частные приращения по каждой из переменных:

    $\Delta _{z} w=f(x,y,z+\Delta z)-f(x,y,z)$ - частное приращение функции $w=f(x,y,z,...,t)$ по $z$;

    $\Delta _{t} w=f(x,y,z,...,t+\Delta t)-f(x,y,z,...,t)$ - частное приращение функции $w=f(x,y,z,...,t)$ по $t$.

Пример 4

Записать частные и полное приращение функции

Решение:

По определению частного приращения найдем:

$\Delta _{x} w=((x+\Delta x)+y)\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $x$

$\Delta _{y} w=(x+(y+\Delta y))\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $y$;

$\Delta _{z} w=(x+y)\cdot (z+\Delta z)$ - частное приращение функции $w=f(x,y,z)$ по $z$;

По определению полного приращения найдем:

$\Delta w=((x+\Delta x)+(y+\Delta y))\cdot (z+\Delta z)$ - полное приращение функции $w=f(x,y,z)$.

Пример 5

Вычислить частные и полное приращение функции $w=xyz$ в точке $(1;2;1)$ при $\Delta x=0,1;\, \, \Delta y=0,1;\, \, \Delta z=0,1$.

Решение:

По определению частного приращения найдем:

$\Delta _{x} w=(x+\Delta x)\cdot y\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $x$

$\Delta _{y} w=x\cdot (y+\Delta y)\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $y$;

$\Delta _{z} w=x\cdot y\cdot (z+\Delta z)$ - частное приращение функции $w=f(x,y,z)$ по $z$;

По определению полного приращения найдем:

$\Delta w=(x+\Delta x)\cdot (y+\Delta y)\cdot (z+\Delta z)$ - полное приращение функции $w=f(x,y,z)$.

Следовательно,

\[\Delta _{x} w=(1+0,1)\cdot 2\cdot 1=2,2\] \[\Delta _{y} w=1\cdot (2+0,1)\cdot 1=2,1\] \[\Delta _{y} w=1\cdot 2\cdot (1+0,1)=2,2\] \[\Delta z=(1+0,1)\cdot (2+0,1)\cdot (1+0,1)=1,1\cdot 2,1\cdot 1,1=2,541.\]

С геометрической точки зрения полное приращение функции $z=f(x,y)$ (по определению $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$) равно приращению аппликаты графика функции $z=f(x,y)$ при переходе от точки $M(x,y)$ к точке $M_{1} (x+\Delta x,y+\Delta y)$ (рис. 1).

Рисунок 1.

Определение 1

Если для каждой пары $(x,y)$ значений двух независимых переменных из некоторой области ставится в соответствие определенное значение $z$, то говорят, что $z$ является функцией двух переменных $(x,y)$. Обозначение: $z=f(x,y)$.

В отношении функции $z=f(x,y)$ рассмотрим понятия общего (полного) и частного приращений функции.

Пусть дана функция $z=f(x,y)$двух независимых переменных $(x,y)$.

Замечание 1

Так как переменные $(x,y)$ являются независимыми, то одна из них может изменяться, а другая при этом сохранять постоянное значение.

Дадим переменной $x$ приращение $\Delta x$, при этом сохраним значение переменной $y$ неизменным.

Тогда функция $z=f(x,y)$ получит приращение, которое будет называться частным приращением функции $z=f(x,y)$ по переменной $x$. Обозначение:

Аналогично дадим переменной $y$ приращение $\Delta y$, при этом сохраним значение переменной $x$ неизменным.

Тогда функция $z=f(x,y)$ получит приращение, которое будет называться частным приращением функции $z=f(x,y)$ по переменной $y$. Обозначение:

Если же аргументу $x$ дать приращение $\Delta x$, а аргументу $y$ - приращение $\Delta y$, то получается полное приращение заданной функции $z=f(x,y)$. Обозначение:

Таким образом, имеем:

    $\Delta _{x} z=f(x+\Delta x,y)-f(x,y)$ - частное приращение функции $z=f(x,y)$ по $x$;

    $\Delta _{y} z=f(x,y+\Delta y)-f(x,y)$ - частное приращение функции $z=f(x,y)$ по $y$;

    $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$ - полное приращение функции $z=f(x,y)$.

Пример 1

Решение:

$\Delta _{x} z=x+\Delta x+y$ - частное приращение функции $z=f(x,y)$ по $x$;

$\Delta _{y} z=x+y+\Delta y$ - частное приращение функции $z=f(x,y)$ по $y$.

$\Delta z=x+\Delta x+y+\Delta y$ - полное приращение функции $z=f(x,y)$.

Пример 2

Вычислить частные и полное приращение функции $z=xy$ в точке $(1;2)$ при $\Delta x=0,1;\, \, \Delta y=0,1$.

Решение:

По определению частного приращения найдем:

$\Delta _{x} z=(x+\Delta x)\cdot y$ - частное приращение функции $z=f(x,y)$ по $x$

$\Delta _{y} z=x\cdot (y+\Delta y)$ - частное приращение функции $z=f(x,y)$ по $y$;

По определению полного приращения найдем:

$\Delta z=(x+\Delta x)\cdot (y+\Delta y)$ - полное приращение функции $z=f(x,y)$.

Следовательно,

\[\Delta _{x} z=(1+0,1)\cdot 2=2,2\] \[\Delta _{y} z=1\cdot (2+0,1)=2,1\] \[\Delta z=(1+0,1)\cdot (2+0,1)=1,1\cdot 2,1=2,31.\]

Замечание 2

Полное приращение заданной функции $z=f(x,y)$ не равно сумме ее частных приращений $\Delta _{x} z$ и $\Delta _{y} z$. Математическая запись: $\Delta z\ne \Delta _{x} z+\Delta _{y} z$.

Пример 3

Проверить утверждение замечания для функции

Решение:

$\Delta _{x} z=x+\Delta x+y$; $\Delta _{y} z=x+y+\Delta y$; $\Delta z=x+\Delta x+y+\Delta y$ (получены в примере 1)

Найдем сумму частных приращений заданной функции $z=f(x,y)$

\[\Delta _{x} z+\Delta _{y} z=x+\Delta x+y+(x+y+\Delta y)=2\cdot (x+y)+\Delta x+\Delta y.\]

\[\Delta _{x} z+\Delta _{y} z\ne \Delta z.\]

Определение 2

Если для каждой тройки $(x,y,z)$ значений трех независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией трех переменных $(x,y,z)$ в данной области.

Обозначение: $w=f(x,y,z)$.

Определение 3

Если для каждой совокупности $(x,y,z,...,t)$ значений независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией переменных $(x,y,z,...,t)$ в данной области.

Обозначение: $w=f(x,y,z,...,t)$.

Для функции от трех и более переменных, аналогично как для функции двух переменных определяются частные приращения по каждой из переменных:

    $\Delta _{z} w=f(x,y,z+\Delta z)-f(x,y,z)$ - частное приращение функции $w=f(x,y,z,...,t)$ по $z$;

    $\Delta _{t} w=f(x,y,z,...,t+\Delta t)-f(x,y,z,...,t)$ - частное приращение функции $w=f(x,y,z,...,t)$ по $t$.

Пример 4

Записать частные и полное приращение функции

Решение:

По определению частного приращения найдем:

$\Delta _{x} w=((x+\Delta x)+y)\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $x$

$\Delta _{y} w=(x+(y+\Delta y))\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $y$;

$\Delta _{z} w=(x+y)\cdot (z+\Delta z)$ - частное приращение функции $w=f(x,y,z)$ по $z$;

По определению полного приращения найдем:

$\Delta w=((x+\Delta x)+(y+\Delta y))\cdot (z+\Delta z)$ - полное приращение функции $w=f(x,y,z)$.

Пример 5

Вычислить частные и полное приращение функции $w=xyz$ в точке $(1;2;1)$ при $\Delta x=0,1;\, \, \Delta y=0,1;\, \, \Delta z=0,1$.

Решение:

По определению частного приращения найдем:

$\Delta _{x} w=(x+\Delta x)\cdot y\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $x$

$\Delta _{y} w=x\cdot (y+\Delta y)\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $y$;

$\Delta _{z} w=x\cdot y\cdot (z+\Delta z)$ - частное приращение функции $w=f(x,y,z)$ по $z$;

По определению полного приращения найдем:

$\Delta w=(x+\Delta x)\cdot (y+\Delta y)\cdot (z+\Delta z)$ - полное приращение функции $w=f(x,y,z)$.

Следовательно,

\[\Delta _{x} w=(1+0,1)\cdot 2\cdot 1=2,2\] \[\Delta _{y} w=1\cdot (2+0,1)\cdot 1=2,1\] \[\Delta _{y} w=1\cdot 2\cdot (1+0,1)=2,2\] \[\Delta z=(1+0,1)\cdot (2+0,1)\cdot (1+0,1)=1,1\cdot 2,1\cdot 1,1=2,541.\]

С геометрической точки зрения полное приращение функции $z=f(x,y)$ (по определению $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$) равно приращению аппликаты графика функции $z=f(x,y)$ при переходе от точки $M(x,y)$ к точке $M_{1} (x+\Delta x,y+\Delta y)$ (рис. 1).

Рисунок 1.

Не всегда в жизни нас интересуют точные значения каких-либо величин. Иногда интересно узнать изменение этой величины, например, средняя скорость автобуса, отношение величины перемещения к промежутку времени и т.д. Для сравнения значения функции в некоторой точке со значениями этой же функции в других точках, удобно использовать такие понятия, как «приращение функции» и «приращение аргумента».

Понятия "приращение функции" и "приращение аргумента"

Допустим, х - некоторая произвольная точка, которая лежит в какой-либо окрестности точки х0. Приращением аргумента в точке х0 называется разность х-х0. Обозначается приращение следующим образом: ∆х.

  • ∆х=х-х0.

Иногда эту величину еще называют приращением независимой переменной в точке х0. Из формулы следует: х = х0+∆х. В таких случаях говорят, что начальное значение независимой переменной х0, получило приращение ∆х.

Если мы изменяем аргумент, то и значение функции тоже будет изменяться.

  • f(x) - f(x0) = f(x0 + ∆х) - f(x0).

Приращением функции f в точке x0, соответствующим приращению ∆х называется разность f(x0 + ∆х) - f(x0). Приращение функции обозначается следующим образом ∆f. Таким образом получаем, по определению:

  • ∆f= f(x0 +∆x) - f(x0).

Иногда, ∆f еще называют приращением зависимой переменной и для обозначения используют ∆у, если функция была, к примеру, у=f(x).

Геометрический смысл приращения

Посмотрите на следующий рисунок.

Как видите, приращение показывает изменение ординаты и абсциссы точки. А отношение приращения функции к приращению аргумента определяет угол наклона секущей, проходящей через начальное и конечное положение точки.

Рассмотрим примеры приращения функции и аргумента

Пример 1. Найти приращение аргумента ∆х и приращение функции ∆f в точке х0, если f(х) = х 2 , x0=2 a) x=1.9 b) x =2.1

Воспользуемся формулами, приведенными выше:

a) ∆х=х-х0 = 1.9 - 2 = -0.1;

  • ∆f=f(1.9) - f(2) = 1.9 2 - 2 2 = -0.39;

b) ∆x=x-x0=2.1-2=0.1;

  • ∆f=f(2.1) - f(2) = 2.1 2 - 2 2 = 0.41.

Пример 2. Вычислить приращение ∆f для функции f(x) = 1/x в точке х0, если приращение аргумента равняется ∆х.

Опять же, воспользуемся формулами, полученными выше.

  • ∆f = f(x0 + ∆x) - f(x0) =1/(x0-∆x) - 1/x0 = (x0 - (x0+∆x))/(x0*(x0+∆x)) = -∆x/((x0*(x0+∆x)).