Ускорение тела при движении по окружности. Вращательное движение. Соотношение между единицами угла

Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

Положение тела на окружности определяется радиусом-вектором \(~\vec r\), проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R (рис. 1).

За время Δt тело, двигаясь из точки А в точку В , совершает перемещение \(~\Delta \vec r\), равное хорде АВ , и проходит путь, равный длине дуги l .

Радиус-вектор поворачивается на угол Δφ . Угол выражают в радианах.

Скорость \(~\vec \upsilon\) движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью . Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δt за который эта дуга пройдена:

\(~\upsilon = \frac{l}{\Delta t}.\)

Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью :

\(~\omega = \frac{\Delta \varphi}{\Delta t}.\)

В СИ единицей угловой скорости является радиан в секунду (рад/с).

При равномерном движении по окружности угловая скорость и модуль линейной скорости - величины постоянные: ω = const; υ = const.

Положение тела можно определить, если известен модуль радиуса-вектора \(~\vec r\) и угол φ , который он составляет с осью Ox (угловая координата). Если в начальный момент времени t 0 = 0 угловая координата равна φ 0 , а в момент времени t она равна φ , то угол поворота Δφ радиуса-вектора за время \(~\Delta t = t - t_0 = t\) равен \(~\Delta \varphi = \varphi - \varphi_0\). Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности :

\(~\varphi = \varphi_0 + \omega t.\)

Оно позволяет определить положение тела в любой момент времени t . Учитывая, что \(~\Delta \varphi = \frac{l}{R}\), получаем\[~\omega = \frac{l}{R \Delta t} = \frac{\upsilon}{R} \Rightarrow\]

\(~\upsilon = \omega R\) - формула связи между линейной и угловой скоростью.

Промежуток времени Τ , в течение которого тело совершает один полный оборот, называется периодом вращения :

\(~T = \frac{\Delta t}{N},\)

где N - число оборотов, совершенных телом за время Δt .

За время Δt = Τ тело проходит путь \(~l = 2 \pi R\). Следовательно,

\(~\upsilon = \frac{2 \pi R}{T}; \ \omega = \frac{2 \pi}{T} .\)

Величина ν , обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения :

\(~\nu = \frac{1}{T} = \frac{N}{\Delta t}.\)

Следовательно,

\(~\upsilon = 2 \pi \nu R; \ \omega = 2 \pi \nu .\)

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 18-19.

Движение по окружности – частный случай криволинейного движения. Скорость тела в любой точке криволинейной траектории направлена по касательной к ней (рис.2.1). Скорость как вектор при этом может изменяться и по модулю (величине) и по направлению. Если модуль скоростиостается неизменным, то говорят оравномерном криволинейном движении.

Пусть тело движется по окружности с постоянной по величине скоростью из точки 1 в точку 2.

При этом тело пройдет путь, равный длине дуги ℓ 12 между точками 1 и 2 за времяt. За это же времяtрадиус- векторR, проведенный из центра окружности 0 к точке, повернется на угол Δφ.

Вектор скорости в точке 2 отличается от вектора скорости в точке 1 по направлению на величину ΔV:

;

Для характеристики изменения вектора скорости на величину δv введем ускорение:

(2.4)

Вектор в любой точке траектории направлен по радиусуRкцентру окружности перпендикулярно к вектору скоростиV 2 . Поэтому ускорение, характеризующее при криволинейном движении изменение скоростипо направлению, называютцентростремительным или нормальным . Таким образом, движение точки по окружности с постоянной по модулю скоростью являетсяускоренным .

Если скорость изменяется не только по направлению, но и по модулю (величине), то кроме нормального ускорениявводят еще икасательное (тангенциальное) ускорение, которое характеризует изменение скорости по величине:

или

Направлен вектор по касательной в любой точке траектории (т.е. совпадает с направлением вектора). Угол между векторамииравен 90 0 .

Полное ускорение точки, движущейся по криволинейной траектории, определяется как векторная сумма (рис.2.1.).

.

Модуль вектора
.

Угловая скорость и угловое ускорение

При движении материальной точки по окружности радиус-векторR, проведенный из центра окружности О к точке, поворачивается на угол Δφ (рис.2.1). Для характеристики вращения вводятся понятия угловой скорости ω и углового ускорения ε.

Угол φ можно измерять в радианах. 1 рад равен углу, который опирается на дугу ℓ, равную радиусуRокружности, т.е.

или 12 = R φ (2.5.)

Продифференцируем уравнение (2.5.)

(2.6.)

Величина dℓ/dt=V мгн. Величину ω =dφ/dtназываютугловой скоростью (измеряется в рад/с). Получим связь между линейной и угловой скоростями:

Величина ω векторная. Направление вектораопределяетсяправилом винта (буравчика) : оно совпадает с направлением перемещения винта, ориентированного вдоль оси вращения точки или тела и вращаемого в направлении поворота тела (рис.2.2), т.е.
.

Угловым ускорением называется векторная величина производная от угловой скорости (мгновенное угловое ускорение)

, (2.8.)

Вектор совпадает с осью вращения и направлен в туже сторону, что и вектор, если вращение ускоренное, и в противоположную, если вращение замедленное.

Число оборотов n тела в единицу времени называют частотой вращения .

Время Т одного полного оборота тела называют периодом вращения . При этом R опишет угол Δφ=2π радиан

С учетом сказанного

, (2.9)

Уравнение (2.8) можно записать следующим образом:

(2.10)

Тогда тангенциальная составляющая ускорения

а  =R(2.11)

Нормальное ускорение а n можно выразить следующим образом:

с учетом (2.7) и (2.9)

(2.12)

Тогда полное ускорение .

Для вращательного движения с постоянным угловым ускорением можно записать уравнение кинематики по аналогии с уравнением (2.1) – (2.3) для поступательного движения:

,

.

При описании движения точки по окружности мы будем характеризовать перемещение точки углом Δφ , который описывает радиус-вектор точки за время Δt . Угловое перемещение за бесконечно малый промежуток времени dt обозначается .

Угловое перемещение – величина векторная. Определяется направление вектора (или ) по правилу буравчика: если вращать буравчик (винт с правосторонней резьбой) в направлении движения точки, то буравчик будет двигаться в направлении вектора углового смещения. На рис. 14 точка М движется по часовой стрелке, если смотреть на плоскость движения снизу. Если крутить буравчик в этом направлении, то вектор будет направлен вверх.

Таким образом, направление вектора углового перемещения определяется выбором положительного направления вращения. Положительное направление вращения определяется правилом буравчика с правосторонней резьбой. Однако с таким же успехом можно было взять буравчик с левосторонней резьбой. В этом случае направление вектора углового смещения было бы противоположным.

При рассмотрении таких величин, как скорость, ускорение, вектор смещения не возникал вопрос о выборе их направления: оно определялось естественным образом из природы самих величин. Такие вектора называются полярными. Вектора, подобные вектору углового перемещения, называются аксиальными, или псевдовекторами . Направление аксиального вектора определяется выбором положительного направления вращения. Кроме того, аксиальный вектор не имеет точки приложения. Полярные векторы , которые мы рассматривали до сих пор, приложены к движущейся точке. Для аксиального вектора можно лишь указать направление (ось, axis – лат.), вдоль которой он направлен. Ось, вдоль которой направлен вектор углового смещения, перпендикулярна плоскости вращения. Обычно вектор углового перемещения изображают на оси, проходящей через центр окружности (рис. 14), хотя его можно нарисовать в любом месте, в том числе на оси, проходящей через рассматриваемую точку.

В системе СИ углы измеряются в радианах. Радиан – это такой угол, длина дуги которого равна радиусу окружности. Таким образом, полный угол (360 0) равен 2π радиан.

Движение точки по окружности

Угловая скорость – векторная величина, численно равная углу поворота за единицу времени. Обозначается обычно угловая скорость греческой буквой ω. По определению, угловая скорость – это производная угла по времени:

. (19)

Направление вектора угловой скорости совпадает с направлением вектора углового перемещения (рис. 14). Вектор угловой скорости, так же, как и вектор углового перемещения, является аксиальным вектором.


Размерность угловой скорости – рад/с.

Вращение с постоянной угловой скоростью называется равномерным, при этом ω = φ/t.

Равномерное вращение можно характеризовать периодом обращения Т, под которым понимают время, за которое тело делает один оборот, т. е. поворачивается на угол 2π. Поскольку промежутку времени Δt = Т соответствует угол поворота Δφ = 2π, то

(20)

Число оборотов в единицу времени ν, очевидно, равно:

(21)

Величина ν измеряется в герцах (Гц). Один герц – это один оборот в секунду, или 2π рад/с.

Понятия периода обращения и числа оборотов в единицу времени можно сохранить и для неравномерного вращения, понимая под мгновенным значением T то время, за которое тело совершило бы один оборот, если бы оно вращалось равномерно с данным мгновенным значением угловой скорости, а под ν понимая то число оборотов, которое совершало бы тело за единицу времени при аналогичных условиях.

Если угловая скорость меняется со временем, то вращение называется неравномерным. В этом случае вводят угловое ускорение аналогично тому, как для прямолинейного движения вводилось линейное ускорение. Угловое ускорение – это изменение угловой скорости за единицу времени, вычисляется как производная угловой скорости по времени или вторая производная углового смещения по времени:

(22)

Так же, как и угловая скорость, угловое ускорение является векторной величиной. Вектор углового ускорения – аксиальный вектор, в случае ускоренного вращения направлен в ту же сторону, что и вектор угловой скорости (рис. 14); в случае замедленного вращения вектор углового ускорения направлен противоположно вектору угловой скорости.

При равнопеременном вращательном движении имеют место соотношения, аналогичные формулам (10) и (11), описывающим равнопеременное прямолинейное движение:

ω = ω 0 ± εt,

.

Вам хорошо известно, что в зависимости от формы траектории движение делится на прямолинейное и криволинейное . С прямолинейным движением мы научились работать на предыдущих уроках, а именно решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Для начала определимся, какие принципиальные отличия есть у криволинейного движения (рис. 1) относительно прямолинейного и к чему эти отличия приводят.

Рис. 1. Траектория криволинейного движения

Поговорим о том, как удобно описывать движение тела при криволинейном движении.

Можно разбить движение на отдельные участки, на каждом из которых движение можно считать прямолинейным (рис. 2).

Рис. 2. Разбиение криволинейного движения на участки прямолинейного движения

Однако более удобным является следующий подход. Мы представим это движение как совокупность нескольких движений по дугам окружностей (рис. 3). Обратите внимание, что таких разбиений меньше, чем в предыдущем случае, кроме того, движение по окружности является криволинейным. К тому же примеры движения по окружности в природе встречается очень часто. Из этого можно сделать вывод:

Для того чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Рис. 3. Разбиение криволинейного движения на движения по дугам окружностей

Итак, начнем изучение криволинейного движения с изучения равномерного движения по окружности. Давайте разберемся, каковы принципиальные отличия криволинейного движения от прямолинейного. Для начала вспомним, что в девятом классе мы изучили тот факт, что скорость тела при движении по окружности направлена по касательной к траектории (рис. 4). Кстати, этот факт вы можете пронаблюдать на опыте, если посмотрите, как движутся искры при использовании точильного камня.

Рассмотрим движение тела по дуге окружности (рис. 5).

Рис. 5. Скорость тела при движении по окружности

Обратите внимание, что в данном случае модуль скорости тела в точке равен модулю скорости тела в точке :

Однако вектор не равен вектору . Итак, у нас появляется вектор разности скоростей (рис. 6):

Рис. 6. Вектор разности скоростей

Причем изменение скорости произошло через некоторое время . Таким образом, мы получаем знакомую комбинацию:

Это не что иное, как изменение скорости за промежуток времени, или ускорение тела. Можно сделать очень важный вывод:

Движение по криволинейной траектории является ускоренным. Природа этого ускорения – непрерывное изменение направление вектора скорости.

Еще раз отметим, что, даже если говорится, что тело равномерно движется по окружности, имеется в виду, что модуль скорости тела не изменяется. Однако такое движение всегда является ускоренным, поскольку изменяется направление скорости.

В девятом классе вы изучали, чему равно такое ускорение и как оно направлено (рис. 7). Центростремительное ускорение всегда направлено к центру окружности, по которой движется тело.

Рис. 7. Центростремительное ускорение

Модуль центростремительного ускорения может быть рассчитан по формуле:

Переходим к описанию равномерного движения тела по окружности. Договоримся, что скорость , которой вы пользовались по время описания поступательного движения, теперь будет называться линейной скоростью. И под линейной скоростью мы будем понимать мгновенную скорость в точке траектории вращающегося тела.

Рис. 8. Движение точек диска

Рассмотрим диск, который для определенности вращается по часовой стрелке. На его радиусе отметим две точки и (рис. 8). Рассмотрим их движение. За некоторое время эти точки переместятся по дугам окружности и станут точками и . Очевидно, что точка совершила большее перемещение, чем точка . Из этого можно сделать вывод, что чем дальше от оси вращения находится точка, тем с большей линейной скоростью она движется

Однако если внимательно посмотреть на точки и , можно сказать, что неизменным остался угол , на который они повернулись относительно оси вращения . Именно угловые характеристики мы и будем использовать для описания движения по окружности. Отметим, что для описания движения по окружности можно использовать угловые характеристики.

Начнем рассмотрение движения по окружности с самого простого случая – равномерного движения по окружности. Напомним, что равномерным поступательным движением называется движение, при котором за любые равные промежутки времени тело совершает одинаковые перемещения. По аналогии можно дать определение равномерного движения по окружности.

Равномерным движением по окружности называется движение, при котором за любые равные промежутки времени тело поворачивается на одинаковые углы.

Аналогично понятию линейной скорости вводится понятие угловой скорости.

Угловой скоростью равномерного движения ( называется физическая величина, равная отношению угла, на который повернулось тело, ко времени, за которое произошел этот поворот.

В физике чаще всего используется радианная мера угла. Например, угол в равен радиан. Измеряется угловая скорость в радианах в секунду:

Найдем связь между угловой скоростью вращения точки и линейной скоростью этой точки.

Рис. 9. Связь между угловой и линейной скоростью

Точка проходит при вращении дугу длиной , поворачиваясь при этом на угол . Из определения радианной меры угла можно записать:

Разделим левую и правую части равенства на промежуток времени , за который было совершено перемещение, затем воспользуемся определением угловой и линейной скоростей:

Обратим внимание, что чем дальше точка находится от оси вращения, тем выше ее линейная скорость. А точки, расположенные на самой оси вращения, неподвижны. Примером этого может служить карусель: чем ближе вы находитесь к центру карусели, тем легче вам на ней удержаться.

Такая зависимость линейной и угловой скоростей используется в геостационарных спутниках (спутники, которые всегда находятся над одной и той же точкой земной поверхности). Благодаря таким спутникам мы имеем возможность получать телевизионные сигналы.

Вспомним, что ранее мы вводили понятия периода и частоты вращения.

Период вращения – время одного полного оборота. Период вращения обозначается буквой и измеряется в секундах в СИ:

Частота вращения – физическая величина, равная количеству оборотов, которое тело совершает за единицу времени.

Частота обозначается буквой и измеряется в обратных секундах:

Они связаны соотношением:

Существует связь между угловой скоростью и частотой вращения тела. Если вспомнить, что полный оборот равен , легко увидеть, что угловая скорость:

Подставляя эти выражения в зависимость между угловой и линейной скоростью, можно получить зависимость линейной скорости от периода или частоты:

Запишем также связь между центростремительным ускорением и этими величинами:

Таким образом, мы знаем связь между всеми характеристиками равномерного движения по окружности.

Подытожим. На этом уроке мы начали описывать криволинейное движение. Мы поняли, каким образом можно связать криволинейное движение с движением по окружности. Движение по окружности всегда является ускоренным, а наличие ускорения обуславливает тот факт, что скорость всегда меняет свое направление. Такое ускорение называется центростремительным. Наконец, мы вспомнили некоторые характеристики движения по окружности (линейную скорость, угловую скорость, период и частоту вращения) и нашли соотношения между ними.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Аyp.ru ().
  2. Википедия ().

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

  1. Задачи 92, 94, 98, 106, 110 - сб. задач А.П. Рымкевич, изд. 10
  2. Вычислите угловую скорость движения минутной, секундной и часовой стрелок часов. Вычислите центростремительное ускорение, действующее на кончики этих стрелок, если радиус каждой из них равен одному метру.
  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Вы сейчас здесь: Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.