Интегралы от иррациональных функций. Интегрирование иррациональных выражений Интегрирование выражений содержащих иррациональные функции

Универсального способа решения иррациональных уравнений нет, так как их класс отличается количеством. В статье будут выделены характерные виды уравнений с подстановкой при помощи метода интегрирования.

Для использования метода непосредственного интегрирования необходимо вычислять неопределенные интегралы типа ∫ k x + b p d x , где p является рациональной дробью, k и b являются действительными коэффициентами.

Пример 1

Найти и вычислить первообразные функции y = 1 3 x - 1 3 .

Решение

По правилу интегрирования необходимо применить формулу ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C , а таблица первообразных говорит о том, что имеется готовое решение данной функции. Получаем, что

∫ d x 3 x - 1 3 = ∫ (3 x - 1) - 1 3 d x = 1 3 · 1 - 1 3 + 1 · (3 x - 1) - 1 3 + 1 + C = = 1 2 (3 x - 1) 2 3 + C

Ответ: ∫ d x 3 x - 1 3 = 1 2 (3 x - 1) 2 3 + C .

Имеют место быть случаи, когда можно использовать метод подведения под знак дифференциала. Это решается по принципу нахождения неопределенных интегралов вида ∫ f " (x) · (f (x)) p d x , когда значение p считается рациональной дробью.

Пример 2

Найти неопределенный интеграл ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x .

Решение

Отметим, что d x 3 + 5 x - 7 = x 3 + 5 x - 7 " d x = (3 x 2 + 5) d x . Тогда необходимо произвести подведение под знак дифференциала с использованием таблиц первообразных. Получаем, что

∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = ∫ (x 3 + 5 x - 7) - 7 6 · (3 x 2 + 5) d x = = ∫ (x 3 + 5 x - 7) - 7 6 d (x 3 + 5 x - 7) = x 3 + 5 x - 7 = z = = ∫ z - 7 6 d z = 1 - 7 6 + 1 z - 7 6 + 1 + C = - 6 z - 1 6 + C = z = x 3 + 5 x - 7 = - 6 (x 3 + 5 x - 7) 6 + C

Ответ: ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = - 6 (x 3 + 5 x - 7) 6 + C .

Решение неопределенных интегралов предусматривает формулу вида ∫ d x x 2 + p x + q , где p и q являются действительными коэффициентами. Тогда необходимо выделить полный квадрат из-под корня. Получаем, что

x 2 + p x + q = x 2 + p x + p 2 2 - p 2 2 + q = x + p 2 2 + 4 q - p 2 4

Применив формулу, расположенную в таблице неопределенных интегралов, получаем:

∫ d x x 2 ± α = ln x + x 2 ± α + C

Тогда вычисление интеграла производится:

∫ d x x 2 + p x + q = ∫ d x x + p 2 2 + 4 q - p 2 4 = = ln x + p 2 + x + p 2 2 + 4 q - p 2 4 + C = = ln x + p 2 + x 2 + p x + q + C

Пример 3

Найти неопределенный интеграл вида ∫ d x 2 x 2 + 3 x - 1 .

Решение

Для вычисления необходимо вынести число 2 и расположить его перед радикалом:

∫ d x 2 x 2 + 3 x - 1 = ∫ d x 2 x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x 2 + 3 2 x - 1 2

Произвести выделение полного квадрата в подкоренном выражении. Получим, что

x 2 + 3 2 x - 1 2 = x 2 + 3 2 x + 3 4 2 - 3 4 2 - 1 2 = x + 3 4 2 - 17 16

Тогда получаем неопределенный интеграл вида 1 2 ∫ d x x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x + 3 4 2 - 17 16 = = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Ответ: d x x 2 + 3 x - 1 = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Интегрирование иррациональных функций производится аналогичным способом. Применимо для функций вида y = 1 - x 2 + p x + q .

Пример 4

Найти неопределенный интеграл ∫ d x - x 2 + 4 x + 5 .

Решение

Для начала необходимо вывести квадрат знаменателя выражения из-под корня.

∫ d x - x 2 + 4 x + 5 = ∫ d x - x 2 - 4 x - 5 = = ∫ d x - x 2 - 4 x + 4 - 4 - 5 = ∫ d x - x - 2 2 - 9 = ∫ d x - (x - 2) 2 + 9

Табличный интеграл имеет вид ∫ d x a 2 - x 2 = a r c sin x a + C , тогда получаем, что ∫ d x - x 2 + 4 x + 5 = ∫ d x - (x - 2) 2 + 9 = a r c sin x - 2 3 + C

Ответ: ∫ d x - x 2 + 4 x + 5 = a r c sin x - 2 3 + C .

Процесс нахождения первообразных иррациональных функций вида y = M x + N x 2 + p x + q , где имеющиеся M , N , p , q являются действительными коэффициентами, причем имеют схожесть с интегрированием простейших дробей третьего типа. Это преобразование имеет несколько этапов:

подведение дифференциала под корень, выделение полного квадрата выражения под корнем, применение табличных формул.

Пример 5

Найти первообразные функции y = x + 2 x 2 - 3 x + 1 .

Решение

Из условия имеем, что d (x 2 - 3 x + 1) = (2 x - 3) d x и x + 2 = 1 2 (2 x - 3) + 7 2 , тогда (x + 2) d x = 1 2 (2 x - 3) + 7 2 d x = 1 2 d (x 2 - 3 x + 1) + 7 2 d x .

Рассчитаем интеграл: ∫ x + 2 x 2 - 3 x + 1 d x = 1 2 ∫ d (x 2 - 3 x + 1) x 2 - 3 x + 1 + 7 2 ∫ d x x 2 - 3 x + 1 = = 1 2 ∫ (x 2 - 3 x + 1) - 1 2 d (x 2 - 3 x + 1) + 7 2 ∫ d x x - 3 2 2 - 5 4 = = 1 2 · 1 - 1 2 + 1 · x 2 - 3 x + 1 - 1 2 + 1 + 7 2 ln x - 3 2 + x - 3 2 - 5 4 + C = = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C

Ответ: ∫ x + 2 x 2 - 3 x + 1 d x = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C .

Поиск неопределенных интегралов функции ∫ x m (a + b x n) p d x осуществляется при помощи метода подстановки.

Для решения необходимо ввести новые переменные:

  1. Когда число p является целым, тогда считают, что x = z N , а N является общим знаменателем для m , n .
  2. Когда m + 1 n является целым числом, тогда a + b x n = z N , а N является знаменателем числа p .
  3. Когда m + 1 n + p является целым числом, то необходим ввод переменной a x - n + b = z N , а N является знаменателем числа p .
Пример 6

Найти определенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Получаем, что ∫ 1 x 2 x - 9 d x = ∫ x - 1 · (- 9 + 2 x 1) - 1 2 d x . Отсюда следует, что m = - 1 , n = 1 , p = - 1 2 , тогда m + 1 n = - 1 + 1 1 = 0 является целым числом. Можно ввести новую переменную вида - 9 + 2 x = z 2 . Необходимо выразить x через z . На выходы получим, что

9 + 2 x = z 2 ⇒ x = z 2 + 9 2 ⇒ d x = z 2 + 9 2 " d z = z d z - 9 + 2 x = z

Необходимо произвести подстановку в заданный интеграл. Имеем, что

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9 = = 2 3 a r c t g z 3 + C = 2 3 a r c c t g 2 x - 9 3 + C

Ответ: ∫ d x x 2 x - 9 = 2 3 a r c c t g 2 x - 9 3 + C .

Для упрощения решения иррациональных уравнений применяются основные методы интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Интегралы вида (m 1 , n 1 , m 2 , n 2 , … - целые числа). В этих интегралах подынтегральная функция рациональна относительно переменной интегрирования и радикалов от х. Они вычисляются подстановкой x=t s , где s - общий знаменатель дробей, … При такой замене переменной все отношения = r 1 , = r 2 , … являются целыми числами, т. е. интеграл приводится к рациональной функции от переменной t:

Интегралы вида (m 1 , n 1 , m 2 , n 2 , … - целые числа). Эти интегралы подстановкой:

где s - общий знаменатель дробей, …, сводятся к рациональной функции от переменной t.

Интегралы вида Для вычисления интеграла I 1 выделяется полный квадрат под знаком радикала:

и применяется подстановка:

В результате этот интеграл сводится к табличному:

В числителе интеграла I 2 выделяется дифференциал выражения, стоящего под знаком радикала, и этот интеграл представляется в виде суммы двух интегралов:

где I 1 - вычисленный выше интеграл.

Вычисление интеграла I 3 сводится к вычислению интеграла I 1 подстановкой:

Интеграл вида Частные случаи вычисления интегралов данного вида рассмотрены в предыдущем пункте. Существует несколько различных приемов их вычисления. Рассмотрим один из таких приемов, основанный на применении тригонометрических подстановок.

Квадратный трехчлен ax 2 +bx+c путем выделения полного квадрата и замены переменной может быть представлен в виде Таким образом, достаточно ограничиться рассмотрением трех видов интегралов:

Интеграл подстановкой

u=ksint (или u=kcost)

сводится к интегралу от рациональной функции относительно sint и cost.

Интегралы вида (m, n, p є Q, a, b є R). Рассматриваемые интегралы, называемые интегралами от дифференциального бинома, выражаются через элементарные функции только в следующих трех случаях:

1) если p є Z, то применяется подстановка:

где s - общий знаменатель дробей m и n;

2) если Z, то используется подстановка:

где s - знаменатель дроби

3) если Z, то применяется подстановка:

где s - знаменатель дроби

Класс иррациональных функцийочень широк, поэтому универсального способа их интегрирования просто быть не может. В этой статье попытаемся выделить наиболее характерные виды иррациональных подынтегральных функций и поставить им в соответствие метод интегрирования.

Бывают случаи, когда уместно использование метода подведения под знак дифференциала. Например, при нахождении неопределенных интегралов вида, гдеp – рациональная дробь.

Пример.

Найти неопределенный интеграл .

Решение.

Не трудно заметить, что . Следовательно, подводим под знак дифференциала и используем таблицу первообразных:

Ответ:

.

13. Дробно-линейная подстановка

Интегралы типа где а, b, с, d - действительные числа,a,b,...,d,g - натуральные числа, сводятся к интегралам от рациональной функции путем подстановкигде К - наименьшее общee кратное знаменателей дробей

Действительно, из подстановки следует, чтои

т. е. х и dx выражаются через рациональные функции от t. При этом и каждая степень дроби выражается через рациональную функцию от t.

Пример 33.4 . Найти интеграл

Решение: Наименьшее общee кратное знаменателей дробей 2/3 и 1/2 есть 6.

Поэтому полагаем х+2=t 6 , х=t 6 -2, dx=6t 5 dt, Следовательно,

Пример 33.5. Указать подстановку для нахождения интегралов:

Решение: Для I 1 подстановка х=t 2 , для I 2 подстановка

14. Тригонометрическая подстановка

Интегралы типа приводятся к интегралам от функций, рационально зависящих от тригонометрических функций, с помощью следующих тригонометрических подстановок: х=а sint для первого интеграла; х=а tgt для второго интеграла;для третьего интеграла.

Пример 33.6. Найти интеграл

Решение: Положим х=2 sin t, dx=2 cos tdt, t=arcsin х/2. Тогда

Здесь подынтегральная функция есть рациональная функция относительно х иВыделив под радикалом полный квадрат и сделав подстановку, интегралы указанного типа приводятся к интегралам уже pасcмoтpeннoгo типа, т. е. к интегралам типаЭти интегралы можно вычислить с помощью соответствующих тригонометрических подстановок.

Пример 33.7. Найти интеграл

Решение: Так как х 2 +2х-4=(х+1) 2 -5, то х+1=t, x=t-1, dx=dt. ПоэтомуПоложим

Замечание: Интеграл типа целессooбразно находить с помощью подстановки х=1/t.

15. Определенный интеграл

Пусть функция задана на отрезкеи имеет на нем первообразную. Разностьназываютопределенным интегралом функции по отрезкуи обозначают. Итак,

Разность записывают в виде, тогда. Числаиназываютпределами интегрирования .

Например, одна из первообразных для функции. Поэтому

16 . Если с - постоянное число и функция ƒ(х) интегрируема на , то

т. е. постоянный множитель с можно выносить за знак определенного интеграла.

▼Составим интегральную сумму для функции с ƒ(х). Имеем:

Тогда Отсюда вытекает, что функцияс ƒ(х) интегрируема на [а; b] и справедлива формула (38.1).▲

2. Если функции ƒ 1 (х) и ƒ 2 (х) интегрируемы на [а;b], тогда интегрируема на [а; b] их сумма u

т. е. интеграл от суммы равен сумме интегралов.


Свойство 2 распространяется на сумму любого конечного числа слагаемых.

3.

Это свойство можно принять по определению. Это свойство также подтверждается формулой Ньютона-Лейбница.

4. Если функция ƒ(х) интегрируема на [а; b] и а < с < b, то

т. е. интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности).

При разбиении отрезка [а;b] на части включим точку с в число точек деления (это можно сделать ввиду независимости предела интегральной суммы от способа разбиения отрезка [а; b] на части). Если с = х m , то интегральную сумму можно разбить на две суммы:

Каждая из написанных сумм является интегральной соответственно для отрезков [а; b], [а; с] и [с; b]. Переходя к пределу в последнем равенстве при n → ∞ (λ → 0), получим равенство (38.3).

Свойство 4 справедливо при любом расположении точек а, b, с (считаем, что функция ƒ (х) интегрируема на большем из получающихся отрезков).

Так, например, если а < b < с, то

(использованы свойства 4 и 3).

5. «Теорема о среднем». Если функция ƒ(х) непрерывна на отрезке [а; b], то существует тонка с є [а; b] такая, что

▼По формуле Ньютона-Лейбница имеем

где F"(x) = ƒ(х). Применяя к разности F(b)-F(a) теорему Лагранжа (теорему о конечном приращении функции), получим

F(b)-F(a) = F"(c) (b-а) = ƒ(с) (b-а).▲

Свойство 5 («теорема о среднем») при ƒ (х) ≥ 0 имеет простой геометрический смысл: значение определенного интеграла равно, при некотором с є (а; b), площади прямоугольника с высотой ƒ (с) и основанием b- а (см. рис. 170). Число

называется средним значением функции ƒ(х) на отрезке [а; b].

6. Если функция ƒ (х) сохраняет знак на отрезке [а; b], где а < b, то интегралимеет тот же знак, что и функция. Так, если ƒ(х)≥0 на отрезке [а; b], то

▼По «теореме о среднем» (свойство 5)

где с є [а; b]. А так как ƒ(х) ≥ 0 для всех х Î [а; b], то и

ƒ(с)≥0, b-а>0.

Поэтому ƒ(с) (b-а) ≥ 0, т. е.

7. Неравенство между непрерывными функциями на отрезке [а; b], (a

▼Так как ƒ 2 (х)-ƒ 1 (x)≥0, то при а < b, согласно свойству 6, имеем

Или, согласно свойству 2,

Отметим,что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М - соответственно наименьшее и наибольшее значения функции у = ƒ (х) на отрезке [а; b], (а < b), то

▼Так как для любого х є [а;b] имеем m≤ƒ(х)≤М, то, согласно свойству 7, имеем

Применяяк крайним интегралам свойство 5, получаем

Если ƒ(х)≥0, то свойство 8 иллюстрирует ся геометрически: площадь криволинейной трапеции заключена между площадями прямоугольников, основание которых есть , а высоты равны m и М (см. рис. 171).

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

▼Применяя свойство 7 к очевидным неравенствам -|ƒ(х)|≤ƒ(х)≤|ƒ(х)|, получаем

Отсюда следует, что

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, т. е.

Вычисление площади фигуры является одной из наиболее не простых проблем теории площадей. В школьном курсе геометрии мы научились находить площади основных геометрических фигур, например, круга, треугольника, ромба и т.п. Однако намного чаще приходится сталкиваться с вычислением площадей более сложных фигур. При решении подобных задач приходится прибегать к интегральному исчислению.

В этой статье мы рассмотрим задачу о вычислении площади криволинейной трапеции, причем подойдем к ней в геометрическом смысле. Это позволит нам выяснить прямую связь между определенным интегралом и площадью криволинейной трапеции.

Пусть функция y = f(x) непрерывна на отрезке и не меняет знак на нем (то есть, неотрицательная или неположительная). Фигуру G , ограниченную линиями y = f(x), y = 0, x = a и x = b , называют криволинейной трапецией . Обозначим ее площадь S(G) .

Подойдем к задаче вычисления площади криволинейной трапеции следующим образом. В разделе квадрируемые фигурымы выяснили, что криволинейная трапеция является квадрируемой фигурой. Если разбить отрезок на n частей точкамии обозначить, а точкивыбирать так, чтобыпри, то фигуры, соответствующие нижней и верхней суммам Дарбу, можно считать входящейP и объемлющей Q многоугольными фигурами для G .

Таким образом, и при увеличении количества точек разбиенияn , мы придем к неравенству , где- сколь угодно малое положительное число, аs и S – нижняя и верхняя суммы Дарбу для данного разбиения отрезка . В другой записи . Следовательно, обратившись кпонятию определенного интеграла Дарбу, получаем.

Последнее равенство означает, что определенный интеграл для непрерывной и неотрицательной функцииy = f(x) представляет собой в геометрическом смысле площадь соответствующей криволинейной трапеции. В этом и состоит геометрический смысл определенного интеграла .

То есть, вычислив определенный интеграл , мы найдем площадь фигуры, ограниченной линиямиy = f(x), y = 0, x = a и x = b .

Замечание.

Если функция y = f(x) неположительная на отрезке , то площадь криволинейной трапеции может быть найдена как .

Пример.

Вычислить площадь фигуры, ограниченной линиями .

Решение.

Построим фигуру на плоскости: прямая y = 0 совпадает с осью абсцисс, прямые x = -2 и x = 3 параллельны оси ординат, а кривая может быть построена с помощьюгеометрических преобразований графика функции.

Таким образом, нам требуется найти площадь криволинейной трапеции. Геометрический смысл определенного интеграла нам указывает на то, что искомая площадь выражается определенным интегралом. Следовательно, . Этот определенный интеграл можно вычислить поформуле Ньютона-Лейбница.

Этом параграфе будет рассмотрен метод интегрирования рациональных функций. 7.1. Краткие сведения о рациональных функциях Простейшей рациональной функцией является многочлен ti-ой степени, т.е. функция вида где - действительные постоянные, причем а0 Ф 0. Многочлен Qn(x), у которого коэффициент а0 = 1» называется приведенным. Действительное число b называется корнем многочлена Qn(z), если Q„(b) = 0. Известно, что каждый многочлен Qn(x) с действительными коэффициентами единственным образом разлагается на действительные множители вида где р, q - действительные коэффициенты, причем квадратичные множители не имеют действительных корней и, следовательно, неразложимы на действительные линейные множители. Объединяя одинаковые множители (если таковые имеются) и полагая, для простоты, многочлен Qn(x) приведенным, можнозаписатьегоразложение на множители в виде где - натуральные числа. Так как степень многочлена Qn(x) равна п, то сумма всех показателей а, /3,..., А, сложенная с удвоенной суммой всех показателей щ,..., ц, равна п: Корень а многочлена называется простым или однократным, если а = 1, и кратным, если а > 1; число а называется кратностью корня а. То же самое относится и к другим корням многочлена. Рациональной функцией f(x) или рациональной дробью называется отношение двух многочленов причем предполагается, что многочлены Рт{х) и Qn{x) не имеют общих множителей. Рациональная дробь называется правильной, если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе, т. е. . Если же m п, то рациональная дробь называется неправильной и в этом случае, разделив числитель на знаменатель по правилу деления многочленов, ее можно представить в виде где - некоторые многочлены, а ^^ является правильной рациональной дробью. Пример 1. Рациональная дробь является неправильной дробью. Разделив «уголком», будем иметь Следовательно. Здесь. причем правильная дробь. Определение. Простейшими (или элементарными) дробями называются рациональные дроби следующих четырех типов: где - действительные числа, к - натуральное число, большее или равное 2, а квадратный трехчлен х2 + рх + q не имеет действительных корней, так что -2 _2 его дискриминант В алгебре доказывается следующая теорема. Теорема 3. Правильная рациональная дробь с действительными коэффициентами, знаменатель которой Qn(x) имеет вид разлагается единственным способом на сумму простейших дробей по правилу Интегрирование рациональных функций Краткие сведения о рациональных функциях Интегрирование простейших дробей Общий случай Интегрирование иррациональных функций Первая подстановка Эйлера Вторая подстановка Эйлера Третья подстановка Эйлера В этом разложении - некоторые действительные постоянные, часть которых может быть равна нулю. Для нахождения этих постоянных правую.часть равенства (I) приводят к общему знаменателю, а затем приравнивают коэффициенты при одинаковых степенях х в числителях левой и правой частей. Это дает систему линейных уравнений, из которой находятся искомые постоянные. . Этот метод нахождения неизвестных постоянных называется методом неопределенных коэффициентов. Иногда бывает удобнее применить другой способ нахождения неизвестных постоянных, который состоит в том, что после приравнивания числителей получается тождество относительно х, в котором аргументу х придают некоторые значения, например, значения корней, в результате чего получаются уравнения для нахождения постоянных. Особенно он удобен, если знаменатель Q„(x) имеет только действительные простые корни. Пример 2. Разложи ь на простейшие дроби рациональную дробь Данная дробь правильная. Разлагаем знаменатель на множи ели: Так как корни знаменателя действительные и различные, то на основании формулы (1) разложение дроби на простейшие будет иметь вид Привода правую честь «того равенства к общему знаменателю и приравнивая числители а его левой и правой частях, получим тождество или Неизвестные коэффициенту А. 2?, С найдем двумя способами. Первый споооб. Приравнивая коэффициенты при одинаковых степенях х, т.в. при (свободный член), а левой и правой частях тождестве, получим линейную систему уравнений для нахождения неизвестных коэффициентов А, В, С: Это система имеет единственное решение С Второй способ. Тек как корни знаменателя рваны ствв в я 0, получим 2 = 2А, откуда А * 1; г я 1, получим -1 * -В, откуда 5*1; х я 2, получим 2 = 2С. откуда С» 1, и искомое разложение имеет вид 3. Рехложнтъ не простейшие дроби рациональную дробь 4 Разлагаем многочлен, стоящий а энаиеивтвле, на множители: . Знаменатель имеет две различных двйствитв ьных корня: х\ = 0 кратности кратности 3. Поэтому разложение данной дроби не простейшие имеет вид Приведя правую часть к общему знаменателю, найдем или Первый способ. Приравнивая коэффициенты при одинаковых степенях х в левой и правой частях последнего тождаства. получим линейную систему уравнений Эта система имеет единственное решение и искомым разложением будет Второй способ. В полученном тождестве полагая х = 0, получаем 1 а А2, или А2 = 1; поле* гея х = -1, получим -3 я В}, или Bj я -3. При подстановке найденных значений коэффициентов А\ и В) а тождество оно примет вид или Полагая х = 0, а затем х = -I. найдем, что = 0, В2 = 0 и. значит, В\ = 0. Таким образом, опять получаем Пример 4. Разложить на простейшие дроби рациональную дробь 4 Знаменатель дроби не имеет действительных корней, так как функция х2 + 1 не обращается е. нуль ни при каких действительных значениях х. Поэтому разложение на простейшие дроби должно иметь вид Отсюда получаем или. Приравнивая коэффициенты при сшинаковых степенях х в левой и правой частях последнего равенства, будем иметь откуда находим и, следовательно, Следует отметить, что в некоторых случаях разложения на простейшие дроби можно получить быстрее и проще, действуя каким-либо другим путем, не пользуясь методом неопределенных коэффициентов. Например, для получения разложения дроби в примере 3, можно прибавить и вычесть в числителе Зх2 и произвести деление, так как уквзано ниже. 7.2. Интегрирование простейших дробей, Как было сказано выше, любую неправильную рациональную дробь можно представить в виде суммы некоторого многочлена и правильной рациональной дроби (§7), причем это представление единственно. Интегрирование многочлена не представляет трудностей, поэтому рассмотрим вопрос об интегрировании правильной рациональной дроби. Так как любая правильная рациональная дробь представима в виде суммы простейших дробей, то ее интегрирование сводится к интегрированию простейших дробей. Рассмотрим теперь вопрос об их интегрировании. III. Для нахождения интеграла от простейшей дроби третьего типа выделим у квадратного трехчлена полный квадрат двучлена: Так как второе слагаемое то положим его равным а2, где а затем сделаем подстанов. Тогда, учитывая линейные свойства интеграла, найдем: Пример 5. Найти интеграл 4 Подынтегральная функция является простейшей дробью третьего типа, так как квадратный трехчлен х1 + Ах + 6 не имеет действительных корней (его дискриминант отрицателен: , а в числителе стоит многочлен первой степени. Поэтому поступаем следующим образом: 1) выделяем полный квадрат в знаменателе 2) делаем подстановку (здесь 3) на*одим интегрвл Для нахождения интеграла от простейшей дроби четвертого типа положим, как и выше, . Тогда получим Интеграл в правой части обозначим через Л и преобразуем его следующим образом: Интеграл в правой части интегрируем по частям, полагая откуда или Интегрирование рациональных функций Краткие сведения о рациональных функциях Интегрирование простейших дробей Общий случай Интегрирование иррациональных функций Первая подстановка Эйлера Вторая подстановка Эйлера Третья подстановка Эйлера Мы получили так называемую рекуррентную формулу, которая позволяет найти интеграл Jk для любого к = 2, 3,... . Действительно, интеграл J\ является табличным: Полагая в рекуррентной формуле, найдем Зная и полагая Л = 3, легко найдем Jj и так далее. В окончательном результате, подставляя всюду вместо t и а их выражения через х и коэффициенты р и q, получим для первоначального интеграла выражение егочерез х и заданные числа М, ЛГ, р, q. Пример 8. Нейти интеграл « Подынтеграленая функция есть простейшая дробь четвертого типа, так как дискриминант квадратного трехчлена отрицателен, т.е. в значит, знаменатель действительных корней не имеет, и числитель есть многочлен 1-ой степени. 1) Выделяем а знаменателе полный квадрат 2) Делаем подстановку: Интеграл примет вид: Полагая в рекуррентной формуле * = 2, а3 = 1. будем иметь, и, следовательно, искомый интеграл рввен Возвращаясь к переменной х, получим окончательно 7.3. Общий случай Из результатов пп. 1 и 2 этого параграфа непосредственно следует важная теорема. Теорем! 4. Неопредьченный интеграл от любой рациональной функции всегда существует (на интервалах, в которых знаменатель дроби Q„(х) ф 0) и выражается через конечное число элементарных функций, а именно, он является алгебраической сум.чой, членами которой могут быть лишь мнконаены, рациональные дроби, натуральные логарифмы и арктангенсы. Итак, для нахождения неопределенного интеграла от дробно-рациональной функции следует поступать следу юишм образом: 1) если рациональная дробь неправильная, то делением числителя на знаменатель выделяется целая часть, т. е. данная функция представляется в виде суммы многочлена и правильной рациональной дроби; 2) затем знаменатель полученной правильной дроби разлагается на произведение линейных и квадратичных множителей; 3) эта правильная дробь разлагается на сумму простейших дробей; 4) используя линейность интеграла и формулы п. 2, находятся интегралы от каждого слагаемого в отдельности. Пример 7. Найти интеграл М Так как знаменатель есть многочлен третьей стелени, то подынтегральная функция является неправильной дробью. Выделяем в ней целую часть: Следовательно, будем иметь. Знаменатель правильной дроби имеет фи различных действительных корня: и поэтому ее разложение на простейшие дроби имеет вид Отсюда находим. Придавая аргументу х значения, равные корням знаменателя, найдем из этого тождества, что: Следовательно, Искомый интеграл будет равен Пример 8. Найти интеграл 4 Подынтегральная функция является правильной дробью, знаменатель которой имеет два различных действительных корня: х - О кратности 1 и х = 1 кратности 3, Поэтому разложение подынтегральной функции на простейшие дроби имеет вид Приводя правую часть этого равенства к общему знаменателю и сокращая обе части равенства на этст знаменатель, получим или. Приравниваем коэффициенты при одинаковых степенях х в левой и правой частях этого тождества: Отсюда находим. Подставляя найденные значения коэффициентов в разложение, будем иметь Интегрируя, находим: Пример 9. Найти интеграл 4 Знаменатель дроби не имеет действительных корней. Поэтому разложение на простейшие дроби подынтегральной функции имеет вид Отсюда или Приравнивая коэффициенты при одинаковых степенях х в левой и правой частях этого тождества, будем иметь откуда находим и, следовательно, Замечание. В приведенном примере подынтегральную функцию можно представить в виде суммы простейших дробей более простым способом, а именно, в числителе дроби выделяем бином, стоящий в знаменатгле, а затем производим почленное деление: §8. Интегрирование иррациональных функций Функция вида где Рт и £?„ яачяются многочленами степеней тип соответственно от переменных иь«2,... называется рацыональкой функцией от ubu2j... Например, многочлен второй степени от двух переменных и\ и и2 имеет вид где - некоторые действительные постоянные, причем Пример 1, Функция является рациональной функцией от переменных г и у, так как она представляет ообой отношение многочлена третьей степени и многочлене пятой степени а фунщия тисовой не является. В том случае, когда переменные, в свою очередь, являются функциями переменной ж: то функция ] называется рациональной функцией от функций Примера. Фуниция есть рациональная функция от г и рвдиквлв Пряивр 3. Функция вида не является рациональной функцией от х и радикале у/г1 + 1, но она является рациональной функцией от функций Как показывают примеры, интегралы от иррациональных функций не всегда выражаются через элементарные функции. Например, часто встречающиеся в приложениях интегралы не выражаются через элементарные функции; эти интегралы называются эллиптическими интегралами первого и второго родов соответственно. Рассмотрим те случаи, когда интегрирование иррациональных функций можно свести с помощью некоторых подстановок к интегрированию рациональных функций. 1. Пусть требуется найти интеграл где R(x, у) - рациональная функция своих аргументов х и у; m £ 2 - натуральное число; а, 6, с, d - действительные постоянные, удовлетворяющие условию ad- Ьс ^ О (при ad - be = 0 коэффициенты а и Ь пропорциональны коэффициентам с и d, и по-этомуотношение не зависитот ж; значит, в этом случае подынтегральная функция будет являться рациональной функцией переменной х, интегрирование которой было рассмотрено ранее). Сделаем в данном интеграле замену переменной, положив Отсюда выражаем переменную х через новую переменную Имеем х = - рациональная функция от t. Далее находим или, после упрощения, Поэтому где Л1 (t) - рациональная функция от *, так какрациональнаяфунадия от рациональной функции, а также произведение рациональных функций, представляют собой рациональные функции. Интегрировать рациональные функции мы умеем. Пусть Тогда искомый интеграл будет равен При. ИвЙти интеграл 4 Подынтегральна* функция есть рациональная функция от. Поэтому полагаем t = Тогда Интегрирование рациональных функций Краткие сведения о рациональных функциях Интегрирование простейших дробей Общий случай Интегрирование иррациональных функций Первая подстановка Эйлера Вторая подстановка Эйлера Третья подстановка Эйлера Таким образом, получим Примар 5. Найти интеграл Общий знаменатель дробных показателей степеней х равен 12, поэтому подынтегральную функцию можно представить в виде 1 _ 1_ откуда видно, что она является рациональной функцией от: Учитывая это, положим. Следовательно, 2. Рассмотрим интефпы вида где подынтефальная функция такова, что заменив в ней радикал \/ах2 + Ъх + с через у, получим функцию R{x} у) - рациональную относительно обоих аргументов х и у. Этот интеграл сводится к интегралу от рациональной функции другой переменной подстановками Эйлера. 8.1. Первая подстановка Эйлера Пусть коэффициент а > 0. Положим или Отсюда находим х как рациональную функцию от и, значит, Таким образом, указанная подстановка выражает рационально через *. Поэтому будем иметь где Замечание. Первую подстановку Эйлера можно брать и в виде Пример 6. Найти интеграл найдем Поэтому будем иметь dx подстановку Эйлера, показать, что У 8.2. Вторая подстановка Эйлера Пусть трехчлен ах2 + Ьх + с имеет различные действительные корни Я] и х2 (коэффициента может иметь любой знак). В этом случае полагаем Так как то получаем Так как x,dxn у/ах2 + be + с выражаются рационально через t, то исходный интеграл сводится к интегралу от рациональной функции, т. е. где Задача. Применяя первую подстановку Эйлера, показать, что - рациональная функция от t. Пример 7. Нейти интеграл dx М функция ] - х1 имеет различные действительные корни. Поэтому применяем вторую подстановку Эйлере Отсюда находим Подставляя найденные вырежения в Данный?в*гйвл; получим 8.3. ТретьяподстацомлЭйлера Пусть коэффициент с > 0. Делаем замену переменной, положив. Заметим, что для приведения интеграла к интегралу от рациональной функции достаточно первой и второй подстановок Эйлера. В самом деле, если дискриминант б2 -4ас > 0, то корни квадратного трехчлена ах +Ъх + с действител ьны, и в этом случае применима вторая подстановка Эйлера. Если, то знак трехчлена ах2 + Ьх + с совпадает со знаком коэффициента а, и так как трехчлен должен быть положительным, то а > 0. В этом случае применима первая подстановка Эйлера. Для нахождения интегралов указан ного выше вида не всегда целесообразно применять подстановки Эйлера, так какдля них можно найти и другие способы интегрирования, приводящие к цели быстрее. Рассмотрим некоторые из таких интегралов. 1. Для нахождения интегралов вида выделяют прлный квадрат из квадрата ого трехчлена: где После этого делают подстановку и получают где коэффициенты а и Р имеют разные знаки или они оба положительны. При, а также при а > 0 и интеграл сведется к логарифму, если же - к арксинусу. При. Найти имтегрел 4 Таккак то. полагая, получаем Прммар 9. Найти. Полагал x -, будем иметь 2. Интеграл вида приводится к интеграл у из п. 1 следующим образом. Учитывая, что производная ()" = 2, выделяем ее в числителе: 4 Выявляем в числителе производную подкоренного выражения. Так как (х, то будем иметь, учитывая результат примера 9, 3. Интегралы вида где Р„(х) - многочлен п-ой степени, можно находить методом неопределенных коэффициентов, который состоит в следующем. Допустим, что имеет место равенство Пример 10. Майти интеграл где Qn-i(s) -многочлен (n - 1)-ой степени с неопределенными коэффициентами: Для нахождения неизвестных коэффициентов | продифференцируем обе части (1): Затем правую часть равенства (2) приводим к общему знаменателю, равному знаменателю левой части, т.е. у/ах2 + Ьх + с, сокращая на который обе части (2), получим тождество в обеих частях которого стоят многочлены степени п. Приравнивая коэффициенты при одинаковых степенях х в левой и правой частях (3), получим n + 1 уравнений, из которых находим искомые коэффициенты j4*(fc = 0,1,2,..., п). Подставляя их значения в правую часть (1) и найдя интеграл + с получим ответ для данного интеграла. Пример 11. Найти интеграл Положим Дифференцируя обе масти равенства, будем иметь Приводя правую часть к общему знаменателе и сокращая на него обе части, получим тождество или. Приравнивая коэффициенты при одинаковых степенях х, придем к системе уравнений из которой находим = Затем находим интеграл, стоящий в правой части равенства (4): Следовательно, искомый интеграл будет равен

План:

  1. Интегрирование простейших рациональных дробей.
  2. Интегрирование некоторых иррациональных функций.
  3. Универсальная тригонометрическая подстановка.
  1. Интегрирование простейших рациональных дробей

Напомним, что функция вида Р(х)=а о х п + а 1 х п-1 + а 2 х п-2 +…+ а п-1 х п + а п , где , а о, а 1 …а п – постоянные коэффициенты, называется многочленом или рациональной функцией . Число п называют степенью многочлена .

Дробно-рациональной функцией называется функция, равная отношению двух многочленов, т.е. .

Рассмотрим некоторые простейшие интегралы от дробно-рациональных функций:

1.1. Для нахождения интегралов вида (А - const ) будем пользоваться интегралами от некоторых сложных функций: = .

Пример 20.1. Найдите интеграл .

Решение. Воспользуемся приведенной выше формулой = . Получим, что = .

1.2. Для нахождения интегралов вида (А - const ) будем применять метод выделения в знаменателе полного квадрата. Исходный интеграл в результате преобразований сведется к одному из двух табличных интегралов: или .

Рассмотрим вычисление таких интегралов на конкретном примере.

Пример 20.2. Найдите интеграл .

Решение. Попытаемся выделить в знаменателе полный квадрат, т.е. прийти к формуле (a ± b) 2 = a 2 ± 2ab +b 2 .

Для этого 4х представляем как удвоенное произведение 2∙2∙х . Следовательно, к выражению х 2 + 4х чтобы получить полный квадрат следует добавить квадрат числа два, т.е. 4: х 2 + 4х + 4 = (х + 2) 2 . х + 2) 2 вычесть 4. Получим следующую цепочку преобразований:

х + 2 = и , тогда . Подставим и и dx в полученный интеграл: = = . Воспользуемся табличным интегралом: , где а =3.Получим, что = . Подставим вместо и выражение х+ 2:

Ответ: = .

1.3. Для нахождения интегралов вида (M, N - const ) будем применять следующий алгоритм :

1. Выделим в знаменателе полный квадрат.

2. Выражение, стоящее в скобках, обозначим новой переменной t. Найдем х , dx и подставим их вместе с t в исходный интеграл (получим интеграл, содержащий только переменную t ).

3. Разобьем полученный интеграл на сумму двух интегралов, каждый из которых вычислим отдельно: один интеграл решается методом подстановки, второй сводится к одной из формул или .

Пример 20.3. Найдите интеграл .

Решение. 1. Попытаемся выделить в знаменателе полный квадрат. Для этого 6х представляем как удвоенное произведение 2∙3∙х . Тогда к выражению х 2 - 6х следует добавить квадрат числа три, т.е. число 9: х 2 – 6х + 9 = (х - 3) 2 . Но, чтобы выражение в знаменателе не изменилось, нужно из (х- 3) 2 вычесть 9. Получим цепочку преобразований:



2. Введем следующую подстановку: пусть х-3 =t (значит, х =t+ 3), тогда . Подставим t, х, dx в интеграл :

3. Представим полученный интеграл как сумму двух интегралов:

Найдем их отдельно.

3.1 Первый интеграл вычисляется методом подстановки. Обозначим знаменатель дроби , тогда . Отсюда . Подставляем и и dt в интеграл и приводим его к виду: = = =ln|u|+C= =ln|t 2 +16|+C. Осталось вернуться к переменной х . Поскольку , то ln|t 2 +16|+C = ln|х 2 - 6х +25|+C.

3.2 Второй интеграл вычисляется по формуле: (где а= 4). Тогда = = .

3.3 Исходный интеграл равен сумме интегралов, найденных в пунктах 3.1 и 3.2: = ln|х 2 - 6х +25|+ .

Ответ: = ln|х 2 - 6х +25|+ .

Методы интегрирования других рациональных функций рассматриваются в полном курсе математического анализа (см., например, Письменный Д.Т. Конспект лекций по высшей математике, ч.1- М.:Айрис-пресс, 2006.).

  1. Интегрирование некоторых иррациональных функций.

Рассмотрим нахождение неопределенных интеграл от следующих типов иррациональных функций: и (а,b,c – const). Для их нахождения будем использовать метод выделения полного квадрата в иррациональном выражении. Тогда рассматриваемые интегралы можно будет привести к видам: ,

Разберем нахождение интегралов от некоторых иррациональных функций на конкретных примерах.

Пример 20.4. Найдите интеграл .

Решение. Попытаемся выделить в знаменателе полный квадрат. Для этого 2х представляем как удвоенное произведение 2∙1∙х . Тогда к выражению х 2 +2х следует добавить квадрат единицы (х 2 + 2х + 1 = (х + 1) 2) и вычесть 1. Получим цепочку преобразований:

Вычислим полученный интеграл методом подстановки. Положим х + 1 = и , тогда . Подставим и, dx , где а =4.Получим, что . Подставим вместо и выражение х+ 1:

Ответ: = .

Пример 20.5. Найдите интеграл .

Решение. Попытаемся выделить под знаком корня полный квадрат. Для этого 8х представляем как удвоенное произведение 2∙4∙х . Тогда к выражению х 2 -8х следует добавить квадрат четырех (х 2 - 8х + 16 = (х - 4) 2) и вычесть его. Получим цепочку преобразований:

Вычислим полученный интеграл методом подстановки. Положим х - 4 = и , тогда . Подставим и, dx в полученный интеграл: = . Воспользуемся табличным интегралом: , где а =3.Получим, что . Подставим вместо и выражение х- 4:

Ответ: = .

  1. Универсальная тригонометрическая подстановка.

Если требуется найти неопределенный интеграл от функции, содержащей sinx и cosx , которые связаны только операциями сложения, вычитания, умножения или деления, то можно использовать универсальную тригонометрическую подстановку .

Суть этой подстановки заключается в том, что sinx и cosx можно выразить через тангенс половинного угла следующим образом: , . Тогда, если ввести подстановку , то sinx и cosx будут выражены через t следующим образом: , . Осталось выразить х через t и найти dх.

Если , то . Найдем dх: = .

Итак, для применения универсальной подстановки достаточно обозначить sinx и cosx через t (формулы выделены в рамке), а записать как . В итоге под знаком интеграла должна получиться рациональная функция, интегрирование которой рассматривалось в пункте 1. Обычно метод применения универсальной подстановки весьма громоздкий, но он всегда приводит к результату.

Рассмотрим пример применения универсальной тригонометрической подстановки.

Пример 20.6. Найдите интеграл .

Решение. Применим универсальную подстановку , тогда , , dх= . Следовательно, = = = = = ., тогда берутся ").

Существует множество интегралов, которые называют "неберущимися ". Такие интегралы не выражаются через привычные нам элементарные функции. Так, например, нельзя взять интеграл , т.к. не существует элементарной функции, производная которой была бы равна . Но некоторые из "неберущихся" интегралов имеют большое прикладное значение. Так интеграл называют интегралом Пуассона и широко применяют в теории вероятностей.

Существуют и другие важные "неберущиеся" интегралы: - интегральный логарифм (применяется в теории чисел), и - интегралы Френеля (применяются в физике). Для них составлены подробные таблицы значений при различных значениях аргумента х .

Контрольные вопросы: