Принцип суперпозиции электрических полей определение. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей. Полевая трактовка принципа суперпозиции

Закон Кулона описывает электрическое взаимодействие только двух покоящихся зарядов. Как же найти силу, действующую на некий заряд со стороны нескольких других зарядов? Ответ на этот вопрос дает принцип суперпозиции электрических полей:Напряженность электрического поля , созданного несколькими неподвижными точечными зарядами q 1 , q 2 ,..., q n , равна векторной сумме напряженностей электрических полей
, которые создавал бы каждый из этих зарядов в той же точке наблюдения в отсутствие остальных:

(1.5)

Другими словами, принцип суперпозиции утверждает, что сила взаимодействия двух точечных зарядов не зависит от того, подвергаются эти заряды действию других зарядов или нет.

Рис.1.6. Электрическое поле системы зарядов как суперпозиция полей отдельных зарядов

Итак, для системы N точечных зарядов (рис.1.6) на основании принципа суперпозиции результирующее поле определяется выражением

.

Напряженность электрического поля созданного в точке наблюдения системой зарядов равна векторной сумме напряженностей электрических полей, созданных в этой же точке наблюдения отдельными зарядами упомянутой системы.

Рис. поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Здесь важны 2 момента: векторное сложение и независимость поля каждого заряда от присутствия других зарядов. Если это мы будем говорить о достаточно точечных телах, о достаточно небольших размерах, тогда суперпозиция работает. Однако известно, что в достаточно сильных электрических полях этот принцип уже не работает.

1.7. Распределение зарядов

Часто дискретность распределения электрических зарядов бывает несущественна при расчете полей. При этом математические расчеты существенно упрощаются, если истинное распределение точечных зарядов заменить фиктивным непрерывным распределением.

Если дискретные заряды распределены в объеме, то при переходе к непрерывному распределению вводят понятие объемной плотности заряда по определению

,

где dq - заряд, сосредоточенный в объемеdV (рис.1.8,а).

Рис.1.8. Выделение элементарного заряда в случаях объемно заряженной области (а); поверхностно заряженной области (б); линейно заряженной области (в)

Если дискретные заряды расположены в тонком слое, то вводят понятие поверхностной плотности заряда по определению

,

где dq - заряд, приходящийся на элемент поверхности dS (рис.1.8,б).

Если дискретные заряды локализованы внутри тонкого цилиндра, вводят понятие линейной плотности заряда

,

где dq - заряд на элементе длины цилиндра dl (рис.1.8,в). С использованием введенных распределений выражение для электрического поля в точке А системы зарядов (1.5) запишется в виде

1.8. Примеры расчета электростатических полей в вакууме.

1.8.1. Полепрямолинейного отрезка нити (см. Орокс, примеры 1.9, 1.10) (Пример 1).

Найти напряженность электрического поля, созданного отрезком тонкой, однородно заряженной с линейной плотностью нити (см.рис). Углы 1 , 2 и расстояние r известны.

Отрезок разбивают на небольшие отрезки, каждый из которых относительно точки наблюдения можно считать точечным.
;

Случай полубесконечной нити;

Случай бесконечной нити:

Напряженность электрического поля. Электрическое поле обнаруживается по силам, действующим на заряд. Можно утверждать, что мы знаем о поле все, что нам нужно, если будем знать силу, действующую на любой заряд в любой точке поля.

Если поочередно помещать в одну и ту же точку поля небольшие заряженные тела и измерять силы, то обнаружится, что сила, действующая на заряд со стороны поля, прямо пропорциональна этому заряду. Действительно, пусть поле создается точечным зарядом Согласно закону Кулона (8.2) на заряд действует сила, пропорциональная заряду Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от юряда и может рассматриваться как характеристика поля. Эту характеристику называют напряженностью электрического поля. Подобно силе, напряженность поля векторная

величина. Ее обозначают буквой Е. Если помещенный в поле заряд обозначить через вместо то, по опрелсленню, напряженность равна:

Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду.

Отсюда сила, действующая на заряд со стороны электрического поля, равна:

Направление вектора совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.

Напряженность поля точечного заряда. Найдем напряженность электрического ноля, создаваемого точечным зарядом По закону Кулона этот заряд будет действовать на другой заряд с силой, равной:

Модуль напряженности поля точечного заряда на расстоянии от него равен:

Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд, от заряда, если и к заряду, если (рис. 100).

Принцип суперпозиции полей. Если на тело действуют несколько сил, то согласно законам механики результирующая сила равна геометрической сумме сил:

На электрические заряды действуют силы со стороны электрического поля. Если при наложении полей от нескольких зарядов эти поля не оказывают никакого влияния друг на друга, то результирующая сила со стороны всех полей должна быть равна геометрической сумме сил со стороны каждого поля. Именно так и происходит на самом деле. Это означает, что напряженности полей складываются геометрически, так как согласно (8.9) напряженности прямо пропорциональны силам.

Рассмотрим метод определения значения и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов q 1 , q 2 , ..., Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. §6), т.е. результирующая сила F , действующая со стороны поля на пробный заряд Q 0 , равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q i:

Согласно (79.1), F =Q 0 E и F i ,=Q 0 E i , где Е -напряженность результирующего поля, а Е i - напряженность поля, создаваемого зарядом Q i . Подставляя последние выражения в (80.1), получим

Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+ Q, -Q ), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называется плечом диполя l . Вектор

совпадающий по направлению с плечом диполя и равный произведению заряда

| Q | на плечо l , называется электрическим моментом диполя р или дипольным моментом (рис. 122).

Согласно принципу суперпозиции (80.2), напряженность Е поля диполя в произвольной точке

Е =Е + + Е - ,

где Е + и Е - - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля на продолжении оси диполя и на перпендикуляре к середине его оси.

1. Напряженность поля на продолжении оси диполя в точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Е A + - .

Обозначив расстояние от точки А до середины оси диполя через л, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l /2<

2. Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому

где r " - расстояние от точки В до середины плеча диполя. Из подобия равнобед-

ренных треугольников, опирающихся плечо диполя и вектор ев, получим

Е B + l / r ". (80.5)

Подставив в выражение (80.5) значение (80.4), получим

Вектор Е B имеет направление, противоположное электрическому моменту диполя (вектор р направлен от отрицательного заряда к положительному).

Принцип суперпозиции

Допустим, что у нас есть три точечных заряда. Эти заряды взаимодействуют. Можно провести эксперимент и измерить силы, которые действуют на каждый заряд. Для того чтобы найти суммарную силу, с которой на один заряд действует второй и третий, необходимо силы, с которыми действуют каждый из них сложить по правилу параллелограмма. Возникает вопрос, равна ли измеряемая сила, которая действует на каждый из зарядов, сумме сил со стороны двух других, если силы рассчитаны по закону Кулона. Исследования показали, что измеряемая сила равна сумме вычисляемых сил в соответствии с законом Кулона со стороны двух зарядов. Такой эмпирический результат выражается в виде утверждений:

  • сила взаимодействия двух точечных зарядов не изменяется, если присутствуют другие заряды;
  • сила, действующая на точечный заряд со стороны двух точечных зарядов, равна сумме сил, действующих на него со стороны каждого из точечных зарядов при отсутствии другого.

Данное утверждение называется принципом суперпозиции. Этот принцип является одной из основ учения об электричестве. Он так же важен, как и закон Кулона. Его обобщение на случай множества зарядов очевидно. Если имеется несколько источников поля (количество зарядов N), то результирующую силу, действующую на пробный заряд q можно найти как:

\[\overrightarrow{F}=\sum\limits^N_{i=1}{\overrightarrow{F_{ia}}}\left(1\right),\]

где $\overrightarrow{F_{ia}}$ -- сила, с которой действует на заряд q заряд $q_i$ если остальные N-1 заряд отсутствуют.

Принцип суперпозиции (1) позволяет, используя закон взаимодействия между точечными зарядами, вычислить силу взаимодействия между зарядами, находящимися на теле конечных размеров. Для этого необходимо разбить каждый из зарядов на малые заряды dq, которые можно считать точечными, взять из попарно, вычислить силу взаимодействия и провести векторное сложение полученных сил.

Полевая трактовка принципа суперпозиции

Принцип суперпозиции имеет полевую трактовку: напряженность поля двух точечных зарядов равна сумме напряженностей, которые создаются каждым из зарядов, при отсутствии другого.

В общем случае принцип суперпозиции относительно напряженностей можно записать так:

\[\overrightarrow{E}=\sum{\overrightarrow{E_i}}\left(2\right).\]

где ${\overrightarrow{E}}_i=\frac{1}{4\pi {\varepsilon }_0}\frac{q_i}{\varepsilon r^3_i}\overrightarrow{r_i}\ $- напряжённость i-го точечного заряда, $\overrightarrow{r_i}\ $- радиус-вектор, проведённый от i-го заряда в точку пространства. Выражение (1) означает, что напряженность поля любого числа точечных зарядов равна сумме напряженностей полей каждого из точечных зарядов, если другие отсутствуют.

Подтверждено инженерной практикой, что принцип суперпозиции соблюдается вплоть до очень больших напряженностей полей. Очень значительные напряженности имеют поля в атомах и ядрах (порядка ${10}^{11}-{10}^{17}\frac{B}{м}$), но и для них использовали принцип суперпозиции в расчетах энергетических уровней атомов и данные расчетов совпали с данными экспериментов с большой точностью. Однако надо отметить, что при очень малых расстояниях (порядка $\sim {10}^{-15}м$) и экстремально сильных полях принцип суперпозиции, возможно, не выполняется. Так, к примеру, на поверхности тяжелых ядер напряженности достигают порядка $\sim {10}^{22}\frac{В}{м}$ принцип суперпозиции выполняется, но при напряженности ${10}^{20}\frac{В}{м}$ возникают квантово -- механические нелинейности взаимодействия.

Если заряд распределен непрерывно (нет необходимости учитывать дискретность), то суммарная напряженность поля найдется как:

\[\overrightarrow{E}=\int{d\overrightarrow{E}}\ \left(3\right).\]

В уравнении (3) интегрирование проводят по области распределения зарядов. Если заряды распределены по линии ($\tau =\frac{dq\ }{dl}-линейная\ плотность\ распределения\ заряда$), то интегрирование в (3) проводят по линии. Если заряды распределены по поверхности и поверхностная плотность распределения $\sigma =\frac{dq\ }{dS}$, то интегрируют по поверхности. Интегрирование проводят по объему, если имеют дело с объемным распределением заряда: $\rho =\frac{dq\ }{dV}$, где $\rho $ -- объемная плотность распределения заряда.

Принцип суперпозиции в принципе позволяет определить $\overrightarrow{E}$ для любой точки пространства по известному пространственному распределению заряда.

Пример 1

Задание: Одинаковые точечные заряды q находятся в вершинах квадрата со стороной a. Определите, какая сила, действует на каждый заряд со стороны других трех зарядов.

Изобразим силы, действующие на один из зарядов в вершине квадрата (выбор не важен, так как заряды одинаковы) (рис.1). Результирующую силу, действующую на заряд $q_1$, запишем как:

\[\overrightarrow{F}={\overrightarrow{F}}_{12}+{\overrightarrow{F}}_{14}+{\overrightarrow{F}}_{13}\ \left(1.1\right).\]

Силы ${\overrightarrow{F}}_{12}$ и ${\overrightarrow{F}}_{14}$ равны по модулю и могут быть найдены как:

\[\left|{\overrightarrow{F}}_{12}\right|=\left|{\overrightarrow{F}}_{14}\right|=k\frac{q^2}{a^2}\ \left(1.2\right),\]

где $k=9 {10}^9\frac{Нм^2}{{Кл}^2}.$

Модуль силы ${\overrightarrow{F}}_{13}$ найдем, также по закону Кулона, зная, что диагональ квадрата равна:

следовательно, имеем:

\[\left|{\overrightarrow{F}}_{13}\right|=k\frac{q^2}{2a^2}\ \left(1.4\right)\]

Направим ось OX как указано на рис. 1, спроектируем уравнение (1.1), подставим полученные модули сил, получим:

Ответ: Сила, действующая на каждый из зарядов в вершинах квадрата равна: $F=\frac{kq^2}{a^2}\left(\frac{2\sqrt{2}+1}{2}\right).$

Пример 2

Задание: Электрический заряд равномерно распределен вдоль тонкой нити в равномерной линейной плотностью $\tau $. Найдите выражение для напряженности поля на расстоянии $а$ от конца нити на ее продолжении. Длина нити равна $l$.

Выделим на нити точечный заряд $dq$, запишем для него из закона Кулона выражение для напряженности электростатического поля:

В заданной точке все векторы напряженности направлены одинаково, вдоль оси Х, поэтому, имеем:

Так как заряд по условию задачи равномерно распределен по нити с линейной плотностью $\tau $, то можно записать следующее:

Подставим (2.4) в уравнение (2.1), проинтегрируем:

Ответ: Напряженность поля нити в указанной точке вычисляется по формуле: $E=\frac{k\tau l}{a(l+a)}.$

Электростатическое поле - поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.

Если в пространстве имеется система заряженных тел, то в каждой точке этого пространства существует силовое электрическое поле. Оно определяется через силу, действующую на пробный заряд, помещённый в это поле. Пробный заряд должен быть малым, чтобы не повлиять на характеристику электростатического поля.

Напряжённость электри́ческого по́ля - векторная физическая величина, характеризующаяэлектрическое поле в данной точке и численно равная отношению силы действующей на неподвижный пробный заряд, помещенный в данную точку поля, к величине этого заряда :

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря - разное в разных точках пространства), таким образом, - это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле , и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности N E .

Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).

Поток напряженности через такую элементарную площадку будет равен по определению(рис.13.5).

где - угол между силовой линией и нормалью к площадке dS; - проекция площадки dS на плоскость, перпендикулярную силовым линиям. Тогда поток напряженности поля через всю поверхность площадки S будет равен

Так как , то

где - проекция вектора на нормаль и к поверхности dS.

При́нцип суперпози́ции - один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

    результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов .

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

    Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

    Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий .

    Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.