Умножение двух десятичных дробей. Умножение десятичных дробей: правила, примеры, решения. Задания для самостоятельного решения

Чтобы понять, как умножать десятичные дроби, рассмотрим конкретные примеры.

Правило умножения десятичных дробей

1) Умножаем, не обращая внимания на запятую.

2) В результате отделяем после запятой столько цифр, сколько их после запятых в обоих множителях вместе.

Примеры .

Найти произведение десятичных дробей:

Чтобы умножить десятичные дроби, умножаем, не обращая внимания на запятые. То есть мы умножаем не 6,8 и 3,4, а 68 и 34. В результате отделяем после запятой столько цифр, сколько их после запятых в обоих множителях вместе. В первом множителе после запятой одна цифра, во втором — тоже одна. Итого, отделяем после запятой две цифры.Таким образом, получили окончательный ответ: 6,8∙3,4=23,12.

Умножаем десятичные дроби, не принимая во внимание запятую. То есть фактически вместо умножения 36,85 на 1,14 мы умножаем 3685 на 14. Получаем 51590. Теперь в этом результате надо отделить запятой столько цифр, сколько их в обоих множителях вместе. В первом числе после запятой две цифры, во втором — одна. Итого, отделяем запятой три цифры. Поскольку в конце записи после запятой стоит нуль, в ответ мы его не пишем: 36,85∙1,4=51,59.

Чтобы умножить эти десятичные дроби, умножим числа, не обращая внимания на запятые. То есть умножаем натуральные числа 2315 и 7. Получаем 16205. В этом числе нужно отделить после запятой четыре цифры — столько, сколько их в обоих множителях вместе (в каждом — по два). Окончательный ответ: 23,15∙0,07=1,6205.

Умножение десятичной дроби на натуральное число выполняется аналогично. Умножаем числа, не обращая внимания на запятую, то есть 75 умножаем на 16. В полученном результате после запятой должно стоять столько же знаков, сколько их в обоих множителях вместе — один. Таким образом, 75∙1,6=120,0=120.

Умножение десятичных дробей начинаем с того, что умножаем натуральные числа, так как на запятые не обращаем внимания. После этого отделяем после запятой столько цифр, сколько их в обоих множителях вместе. В первом числе после запятой два знака, во втором — тоже два. Итого, в результате после запятой должно стоять четыре цифры: 4,72∙5,04=23,7888.

В курсе средней и старшей школы учащиеся проходили тему «Дроби». Однако это понятие гораздо шире, чем дается в процессе обучения. Сегодня понятие дроби встречается достаточно часто, и не каждый может провести вычисления какого-либо выражения, к примеру, умножение дробей.

Что такое дробь?

Так исторически сложилось, что дробные числа появились из-за необходимости измерять. Как показывает практика, часто встречаются примеры на определение длины отрезка, объема прямоугольного прямоугольника.

Первоначально ученики знакомятся с таким понятием, как доля. К примеру, если разделить арбуз на 8 частей, то каждому достанется по одной восьмой арбуза. Вот эта одна часть из восьми и называется долей.

Доля, равная ½ от какой-либо величины, называется половиной; ⅓ - третью; ¼ - четвертью. Записи вида 5 / 8 , 4 / 5 , 2 / 4 называют обыкновенными дробями. Обыкновенная дробь разделяется на числитель и знаменатель. Между ними находится черта дроби, или дробная черта. Дробную черту можно нарисовать в виде как горизонтальной, так и наклонной линии. В данном случае она обозначает знак деления.

Знаменатель представляет, на сколько одинаковых долей разделяют величину, предмет; а числитель - сколько одинаковых долей взято. Числитель пишется над дробной чертой, знаменатель - под ней.

Удобнее всего показать обыкновенные дроби на координатном луче. Если единичный отрезок разделить на 4 равные доли, обозначить каждую долю латинской буквой, то в результате можно получить отличное наглядное пособие. Так, точка А показывает долю, равную 1 / 4 от всего единичного отрезка, а точка В отмечает 2 / 8 от данного отрезка.

Разновидности дробей

Дроби бывают обыкновенные, десятичные, а также смешанные числа. Кроме того, дроби можно разделить на правильные и неправильные. Эта классификация больше подходит для обыкновенных дробей.

Под правильной дробью понимают число, у которого числитель меньше знаменателя. Соответственно, неправильная дробь - число, у которого числитель больше знаменателя. Второй вид обычно записывают в виде смешанного числа. Такое выражение состоит из целой и дробной части. Например, 1½. 1 - целая часть, ½ - дробная. Однако если нужно провести какие-то манипуляции с выражением (деление или умножение дробей, их сокращение или преобразование), смешанное число переводится в неправильную дробь.

Правильное дробное выражение всегда меньше единицы, а неправильное - больше либо равно 1.

Что касается то под этим выражением понимают запись, в которой представлено любое число, знаменатель дробного выражения которого можно выразить через единицу с несколькими нулями. Если дробь правильная, то целая часть в десятичной записи будет равна нулю.

Чтобы записать десятичную дробь, нужно сначала написать целую часть, отделить ее от дробной с помощью запятой и потом уже записать дробное выражение. Необходимо помнить, что после запятой числитель должен содержать столько же цифровых символов, сколько нулей в знаменателе.

Пример . Представить дробь 7 21 / 1000 в десятичной записи.

Алгоритм перевода неправильной дроби в смешанное число и наоборот

Записывать в ответе задачи неправильную дробь некорректно, поэтому ее нужно перевести в смешанное число:

  • разделить числитель на имеющийся знаменатель;
  • в конкретном примере неполное частное - целое;
  • и остаток - числитель дробной части, причем знаменатель остается неизменным.

Пример . Перевести неправильную дробь в смешанное число: 47 / 5 .

Решение . 47: 5. Неполное частное равняется 9, остаток = 2. Значит, 47 / 5 = 9 2 / 5 .

Иногда нужно представить смешанное число в качестве неправильной дроби. Тогда нужно воспользоваться следующим алгоритмом:

  • целая часть умножается на знаменатель дробного выражения;
  • полученное произведение прибавляется к числителю;
  • результат записывается в числителе, знаменатель остается неизменным.

Пример . Представить число в смешанном виде в качестве неправильной дроби: 9 8 / 10 .

Решение . 9 х 10 + 8 = 90 + 8 = 98 - числитель.

Ответ : 98 / 10.

Умножение дробей обыкновенных

Над обыкновенными дробями можно совершать различные алгебраические операции. Чтобы перемножить два числа, нужно числитель перемножить с числителем, а знаменатель со знаменателем. Причем умножение дробей с разными знаменателямине отличается от произведения дробных чисел с одинаковыми знаменателями.

Случается, что после нахождения результата нужно сократить дробь. В обязательном порядке нужно максимально упростить получившееся выражение. Конечно, нельзя сказать, что неправильная дробь в ответе - это ошибка, но и назвать верным ответом ее тоже затруднительно.

Пример . Найти произведение двух обыкновенных дробей: ½ и 20 / 18 .

Как видно из примера, после нахождения произведения получилась сократимая дробная запись. И числитель, и знаменатель в данном случае делится на 4, и результатом выступает ответ 5 / 9 .

Умножение дробей десятичных

Произведение десятичных дробей довольно сильно отличается от произведения обыкновенных по своему принципу. Итак, умножение дробей заключается в следующем:

  • две десятичные дроби нужно записать друг под другом так, чтобы крайние правые цифры оказались одна под другой;
  • нужно перемножить записанные числа, несмотря на запятые, то есть как натуральные;
  • подсчитать количество цифр после знака запятой в каждом из чисел;
  • в получившемся после перемножения результате нужно отсчитать справа столько цифровых символов, сколько содержится в сумме в обоих множителях после запятой, и поставить отделяющий знак;
  • если цифр в произведении оказалось меньше, тогда перед ними нужно написать столько нулей, чтобы покрыть это количество, поставить запятую и приписать целую часть, равную нулю.

Пример . Вычислить произведение двух десятичных дробей: 2,25 и 3,6.

Решение .

Умножение смешанных дробей

Чтобы вычислить произведение двух смешанных дробей, нужно использовать правило умножения дробей:

  • перевести числа в смешанном виде в неправильные дроби;
  • найти произведение числителей;
  • найти произведение знаменателей;
  • записать получившийся результат;
  • максимально упростить выражение.

Пример . Найти произведение 4½ и 6 2 / 5.

Умножение числа на дробь (дроби на число)

Помимо нахождения произведения двух дробей, смешанных чисел, встречаются задания, где нужно помножить на дробь.

Итак, чтобы найти произведение десятичной дроби и натурального числа, нужно:

  • записать число под дробью так, чтобы крайние правые цифры оказались одна над другой;
  • найти произведение, несмотря на запятую;
  • в полученном результате отделить целую часть от дробной с помощью запятой, отсчитав справа то количество знаков, которое находится после запятой в дроби.

Чтобы умножить обыкновенную дробь на число, следует найти произведение числителя и натурального множителя. Если в ответе получается сократимая дробь, ее следует преобразовать.

Пример . Вычислить произведение 5 / 8 и 12.

Решение . 5 / 8 * 12 = (5*12) / 8 = 60 / 8 = 30 / 4 = 15 / 2 = 7 1 / 2.

Ответ : 7 1 / 2.

Как видно из предыдущего примера, необходимо было сократить получившийся результат и преобразовать неправильное дробное выражение в смешанное число.

Также умножение дробей касается и нахождения произведения числа в смешанном виде и натурального множителя. Чтобы перемножить эти два числа, следует целую часть смешанного множителя умножить на число, числитель помножить на это же значение, а знаменатель оставить неизменным. Если требуется, нужно максимально упростить получившийся результат.

Пример . Найти произведение 9 5 / 6 и 9.

Решение . 9 5 / 6 х 9 = 9 х 9 + (5 х 9) / 6 = 81 + 45 / 6 = 81 + 7 3 / 6 = 88 1 / 2.

Ответ : 88 1 / 2.

Умножение на множители 10, 100, 1000 или 0,1; 0,01; 0,001

Из предыдущего пункта вытекает следующее правило. Для умножения дроби десятичной на 10, 100, 1000, 10000 и т. д. нужно передвинуть запятую вправо на столько символов цифр, сколько нулей во множителе после единицы.

Пример 1 . Найти произведение 0,065 и 1000.

Решение . 0,065 х 1000 = 0065 = 65.

Ответ : 65.

Пример 2 . Найти произведение 3,9 и 1000.

Решение . 3,9 х 1000 = 3,900 х 1000 = 3900.

Ответ : 3900.

Если нужно перемножить натуральное число и 0,1; 0,01; 0,001; 0,0001 и т. д., следует передвинуть влево запятую в получившемся произведении на столько символов цифр, сколько нулей находится до единицы. Если необходимо, перед натуральным числом записываются нули в достаточном количестве.

Пример 1 . Найти произведение 56 и 0,01.

Решение . 56 х 0,01 = 0056 = 0,56.

Ответ : 0,56.

Пример 2 . Найти произведение 4 и 0,001.

Решение . 4 х 0,001 = 0004 = 0,004.

Ответ : 0,004.

Итак, нахождение произведения различных дробей не должно вызывать затруднений, разве что подсчет результата; в таком случае без калькулятора просто не обойтись.

В этой статье мы рассмотрим такое действие, как умножение десятичных дробей. Начнем с формулировки общих принципов, далее покажем, как умножить одну десятичную дробь на другую и рассмотрим метод умножения столбиком. Все определения будут проиллюстрированы примерами. Потом мы разберем, как правильно умножить десятичные дроби на обыкновенные, а также на смешанные и натуральные числа (в том числе 100 , 10 и др.)

В рамках этого материала мы коснемся только правил умножения положительных дробей. Случаи с отрицательными разобраны отдельно в статьях об умножении рациональных и действительных чисел.

Сформулируем общие принципы, которых надо придерживаться при решении задач на умножение десятичных дробей.

Вспомним для начала, что десятичные дроби есть не что иное, как особая форма записи обыкновенных дробей, следовательно, процесс их умножения можно свести к аналогичному для дробей обыкновенных. Это правило работает и для конечных, и для бесконечных дробей: после их перевода в обыкновенные с ними легко выполнять умножение по уже изученным нами правилам.

Посмотрим, как решаются такие задачи.

Пример 1

Вычислите произведение 1 , 5 и 0 , 75 .

Решение: для начала заменим десятичные дроби на обыкновенные. Мы знаем, что 0 , 75 – это 75 / 100 , а 1 , 5 – это 15 10 . Мы можем сократить дробь и произвести выделение целой части. Полученный результат 125 1000 мы запишем как 1 , 125 .

Ответ: 1 , 125 .

Мы можем использовать метод подсчета столбиком, как и для натуральных чисел.

Пример 2

Умножьте одну периодическую дробь 0 , (3) на другую 2 , (36) .

Для начала приведем исходные дроби к обыкновенным. У нас получится:

0 , (3) = 0 , 3 + 0 , 03 + 0 , 003 + 0 , 003 + . . . = 0 , 3 1 - 0 , 1 = 0 , 3 9 = 3 9 = 1 3 2 , (36) = 2 + 0 , 36 + 0 , 0036 + . . . = 2 + 0 , 36 1 - 0 , 01 = 2 + 36 99 = 2 + 4 11 = 2 4 11 = 26 11

Следовательно, 0 , (3) · 2 , (36) = 1 3 · 26 11 = 26 33 .

Полученную в итоге обыкновенную дробь можно привести к десятичному виду, разделив числитель на знаменатель в столбик:

Ответ: 0 , (3) · 2 , (36) = 0 , (78) .

Если у нас в условии задачи стоят бесконечные непериодические дроби, то нужно выполнить их предварительное округление (см. статью об округлении чисел, если вы забыли, как это делается). После этого можно производить действие умножения с уже округленными десятичными дробями. Приведем пример.

Пример 3

Вычислите произведение 5 , 382 … и 0 , 2 .

Решение

У нас в задаче есть бесконечная дробь, которую нужно предварительно округлить до сотых. Получится, что 5 , 382 … ≈ 5 , 38 . Второй множитель округлять до сотых смысла не имеет. Теперь можно подсчитать нужное произведение и записать ответ: 5 , 38 · 0 , 2 = 538 100 · 2 10 = 1 076 1000 = 1 , 076 .

Ответ: 5 , 382 … · 0 , 2 ≈ 1 , 076 .

Метод подсчета столбиком можно применять не только для натуральных чисел. Если у нас есть десятичные дроби, мы можем умножить их точно таким же образом. Выведем правило:

Определение 1

Умножение десятичных дробей столбиком выполняется в 2 шага:

1. Выполняем умножение столбиком, не обращая внимание на запятые.

2. Ставим в итоговом числе десятичную запятую, отделяя ей столько цифр с правой стороны, сколько оба множителя содержат десятичных знаков вместе. Если в результате не хватает для этого цифр, дописываем слева нули.

Разберем примеры таких расчетов на практике.

Пример 4

Умножьте десятичные дроби 63 , 37 и 0 , 12 столбиком.

Решение

Первым делом выполним умножение чисел, игнорируя десятичные запятые.

Теперь нам надо поставить запятую на нужное место. Она будет отделять четыре цифры с правой стороны, поскольку сумма десятичных знаков в обоих множителях равна 4 . Дописывать нули не придется, т.к. знаков достаточно:

Ответ: 3 , 37 · 0 , 12 = 7 , 6044 .

Пример 5

Подсчитайте, сколько будет 3 , 2601 умножить на 0 , 0254 .

Решение

Считаем без учета запятых. Получаем следующее число:

Мы будем ставить запятую, отделяющую 8 цифр с правой стороны, ведь исходные дроби вместе имеют 8 знаков после запятой. Но в нашем результате всего семь цифр, и нам не обойтись без дополнительных нулей:

Ответ: 3 , 2601 · 0 , 0254 = 0 , 08280654 .

Как умножить десятичную дробь на 0,001, 0,01, 01, и т.д

Умножать десятичные дроби на такие числа приходится часто, поэтому важно уметь делать это быстро и точно. Запишем особое правило, которым мы будем пользоваться при таком умножении:

Определение 2

Если мы умножим десятичную дробь на 0 , 1 , 0 , 01 и т.д., в итоге получится число, похожее на исходную дробь, запятая которого перенесена влево на нужное количество знаков. При нехватке цифр для переноса нужно дописывать нули слева.

Так, для умножения 45 , 34 на 0 , 1 надо перенести в исходной десятичной дроби запятую на один знак. У нас получится в итоге 4 , 534 .

Пример 6

Умножьте 9 , 4 на 0 , 0001 .

Решение

Нам придется переносить запятую на четыре знака по количеству нулей во втором множителе, но цифр в первом для этого не хватит. Приписываем необходимые нули и получаем, что 9 , 4 · 0 , 0001 = 0 , 00094 .

Ответ: 0 , 00094 .

Для бесконечных десятичных дробей мы пользуемся тем же правилом. Так, к примеру, 0 , (18) · 0 , 01 = 0 , 00 (18) или 94 , 938 … · 0 , 1 = 9 , 4938 … . и др.

Процесс такого умножения ничем не отличается то действия умножения двух десятичных дробей. Удобно пользоваться методом умножения в столбик, если в условии задачи стоит конечная десятичная дробь. При этом надо учитывать все те правила, о которых мы рассказывали в предыдущем пункте.

Пример 7

Подсчитайте, сколько будет 15 · 2 , 27 .

Решение

Умножим столбиком исходные числа и отделим два знака запятой.

Ответ: 15 · 2 , 27 = 34 , 05 .

Если мы выполняем умножение периодической десятичной дроби на натуральное число, надо сначала поменять десятичную дробь на обыкновенную.

Пример 8

Вычислите произведение 0 , (42) и 22 .

Приведем периодическую дробь к виду обыкновенной.

0 , (42) = 0 , 42 + 0 , 0042 + 0 , 000042 + . . . = 0 , 42 1 - 0 , 01 = 0 , 42 0 , 99 = 42 99 = 14 33

0 , 42 · 22 = 14 33 · 22 = 14 · 22 3 = 28 3 = 9 1 3

Итоговый результат можем записать в виде периодической десятичной дроби как 9 , (3) .

Ответ: 0 , (42) · 22 = 9 , (3) .

Бесконечные дроби перед подсчетами надо предварительно округлить.

Пример 9

Вычислите, сколько будет 4 · 2 , 145 … .

Решение

Округлим до сотых исходную бесконечную десятичную дробь. После этого мы придем к умножению натурального числа и конечной десятичной дроби:

4 · 2 , 145 … ≈ 4 · 2 , 15 = 8 , 60 .

Ответ: 4 · 2 , 145 … ≈ 8 , 60 .

Как умножить десятичную дробь на 1000, 100, 10 и др

Умножение десятичной дроби на 10 , 100 и др. часто встречается в задачах, поэтому мы разберем этот случай отдельно. Основное правило умножения звучит так:

Определение 3

Чтобы умножить десятичную дробь на 1000 , 100 , 10 и др., нужно перенести ее запятую на 3 , 2 , 1 цифры в зависимости от множителя и отбросить слева лишние нули. Если цифр для переноса запятой недостаточно, дописываем справа столько нулей, сколько нам нужно.

Покажем на примере, как именно это делать.

Пример 10

Выполните умножение 100 и 0 , 0783 .

Решение

Для этого нам надо перенести в десятичной дроби запятую на 2 цифры в правую сторону. Мы получим в итоге 007 , 83 ​​​​​Нули, стоящие слева, можно отбросить и записать результат как 7 , 38 .

Ответ: 0 , 0783 · 100 = 7 , 83 .

Пример 11

Умножьте 0 , 02 на 10 тысяч.

Решение: мы будем переносить запятую на четыре цифры вправо. В исходной десятичной дроби нам не хватит для этого знаков, поэтому придется дописывать нули. В этом случае будет достаточно трех 0 . В итоге получилось 0 , 02000 ,перенесем запятую и получим 00200 , 0 . Игнорируя нули слева, можем записать ответ как 200 .

Ответ: 0 , 02 · 10 000 = 200 .

Приведенное нами правило будет работать так же и в случае с бесконечными десятичными дробями, но здесь следует быть очень внимательным к периоду итоговой дроби, так как в нем легко допустить ошибку.

Пример 12

Вычислите произведение 5 , 32 (672) на 1 000 .

Решение: первым делом мы запишем периодическую дробь как 5 , 32672672672 … , так вероятность ошибиться будет меньше. После этого можем переносить запятую на нужное количество знаков (на три). В итоге получится 5326 , 726726 … Заключим период в скобки и запишем ответ как 5 326 , (726) .

Ответ: 5 , 32 (672) · 1 000 = 5 326 , (726) .

Если в условиях задачи стоят бесконечные непериодические дроби, которые надо умножать на десять, сто, тысячу и др., не забываем округлить их перед умножением.

Чтобы выполнить умножение такого типа, нужно представить десятичную дробь в виде обыкновенной и далее действовать по уже знакомым правилам.

Пример 13

Умножьте 0 , 4 на 3 5 6

Решение

​Cначала переведем десятичную дробь в обыкновенную. Имеем: 0 , 4 = 4 10 = 2 5 .

Мы получили ответ в виде смешанного числа. Можно записать его как периодическую дробь 1 , 5 (3) .

Ответ: 1 , 5 (3) .

Если в расчете участвует бесконечная непериодическая дробь, нужно округлить ее до некоторой цифры и уже потом умножать.

Пример 14

Вычислите произведение 3 , 5678 . . . · 2 3

Решение

Второй множитель мы можем представить как 2 3 = 0 , 6666 …. Далее округлим до тысячного разряда оба множителя. После этого нам будет нужно вычислить произведение двух конечных десятичных дробей 3 , 568 и 0 , 667 . Посчитаем столбиком и получим ответ:

Итоговый результат нужно округлить до тысячных долей, так как именно до этого разряда мы округляли исходные числа. У нас получается, что 2 , 379856 ≈ 2 , 380 .

Ответ: 3 , 5678 . . . · 2 3 ≈ 2 , 380

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На прошлом уроке мы научились складывать и вычитать десятичные дроби (см. урок «Сложение и вычитание десятичных дробей »). Заодно оценили, насколько упрощаются вычисления по сравнению с обычными «двухэтажными» дробями.

К сожалению, с умножением и делением десятичных дробей подобного эффекта не возникает. В некоторых случаях десятичная запись числа даже усложняет эти операции.

Для начала введем новое определение. Мы будем встречаться с ним довольно часто, и не только на этом уроке.

Значащая часть числа - это все, что находится между первой и последней ненулевой цифрой, включая концы. Речь идет только о цифрах, десятичная точка не учитывается.

Цифры, входящие в значащую часть числа, называются значащими цифрами. Они могут повторяться и даже быть равными нулю.

Например, рассмотрим несколько десятичных дробей и выпишем соответствующие им значащие части:

  1. 91,25 → 9125 (значащие цифры: 9; 1; 2; 5);
  2. 0,008241 → 8241 (значащие цифры: 8; 2; 4; 1);
  3. 15,0075 → 150075 (значащие цифры: 1; 5; 0; 0; 7; 5);
  4. 0,0304 → 304 (значащие цифры: 3; 0; 4);
  5. 3000 → 3 (значащая цифра всего одна: 3).

Обратите внимание: нули, стоящие внутри значащей части числа, никуда не деваются. Мы уже сталкивались с чем-то подобным, когда учились переводить десятичные дроби в обычные (см. урок «Десятичные дроби »).

Этот момент настолько важен, а ошибки здесь допускают так часто, что в ближайшее время я опубликую тест на эту тему. Обязательно потренируйтесь! А мы, вооружившись понятием значащей части, приступим, собственно, к теме урока.

Умножение десятичных дробей

Операция умножения состоит из трех последовательных шагов:

  1. Для каждой дроби выписать значащую часть. Получатся два обычных целых числа - без всяких знаменателей и десятичных точек;
  2. Умножить эти числа любым удобным способом. Напрямую, если числа невелики, или столбиком. Получим значащую часть искомой дроби;
  3. Выяснить, куда и на сколько разрядов сдвигается десятичная точка в исходных дробях для получения соответствующей значащей части. Выполнить обратные сдвиги для значащей части, полученной на предыдущем шаге.

Еще раз напомню, что нули, стоящие по бокам от значащей части, никогда не учитываются. Игнорирование этого правила приводит к ошибкам.

  1. 0,28 · 12,5;
  2. 6,3 · 1,08;
  3. 132,5 · 0,0034;
  4. 0,0108 · 1600,5;
  5. 5,25 · 10 000.

Работаем с первым выражением: 0,28 · 12,5.

  1. Выпишем значащие части для чисел из этого выражения: 28 и 125;
  2. Их произведение: 28 · 125 = 3500;
  3. В первом множителе десятичная точка сдвинута на 2 цифры вправо (0,28 → 28), а во второй - еще на 1 цифру. Итого нужен сдвиг влево на три цифры: 3500 → 3,500 = 3,5.

Теперь разберемся с выражением 6,3 · 1,08.

  1. Выпишем значащие части: 63 и 108;
  2. Их произведение: 63 · 108 = 6804;
  3. Снова два сдвига вправо: на 2 и 1 цифру соответственно. Всего - снова 3 цифры вправо, поэтому обратный сдвиг будет на 3 цифры влево: 6804 → 6,804. В этот раз нулей на конце нет.

Добрались до третьего выражения: 132,5 · 0,0034.

  1. Значащие части: 1325 и 34;
  2. Их произведение: 1325 · 34 = 45 050;
  3. В первой дроби десятичная точка уходит вправо на 1 цифру, а во второй - на целых 4. Итого: 5 вправо. Выполняем сдвиг на 5 влево: 45 050 → ,45050 = 0,4505. В конце убрали ноль, а спереди - дописали, чтобы не оставлять «голую» десятичную точку.

Следующее выражение: 0,0108 · 1600,5.

  1. Пишем значащие части: 108 и 16 005;
  2. Умножаем их: 108 · 16 005 = 1 728 540;
  3. Считаем цифры после десятичной точки: в первом числе их 4, во втором - 1. Всего - снова 5. Имеем: 1 728 540 → 17,28540 = 17,2854. В конце убрали «лишний» ноль.

Наконец, последнее выражение: 5,25 · 10 000.

  1. Значащие части: 525 и 1;
  2. Умножаем их: 525 · 1 = 525;
  3. В первой дроби выполнен сдвиг на 2 цифры вправо, а во второй - на 4 цифры влево (10 000 → 1,0000 = 1). Итого 4 − 2 = 2 цифры влево. Выполняем обратный сдвиг на 2 цифры вправо: 525, → 52 500 (пришлось дописать нули).

Обратите внимание на последний пример: поскольку десятичная точка перемещается в разных направлениях, суммарный сдвиг находится через разность. Это очень важный момент! Вот еще пример:

Рассмотрим числа 1,5 и 12 500. Имеем: 1,5 → 15 (сдвиг на 1 вправо); 12 500 → 125 (сдвиг на 2 влево). Мы «шагаем» на 1 разряд вправо, а затем - на 2 влево. В итоге, мы шагнули на 2 − 1 = 1 разряд влево.

Деление десятичных дробей

Деление - это, пожалуй, самая сложная операция. Конечно, здесь можно действовать по аналогии с умножением: делить значащие части, а затем «двигать» десятичную точку. Но в этом случае возникает много тонкостей, которые сводят на нет потенциальную экономию.

Поэтому давайте рассмотрим универсальный алгоритм, который чуть-чуть длиннее, но намного надежнее:

  1. Перевести все десятичные дроби в обычные. Если немного потренироваться, на этот шаг у вас будут уходить считанные секунды;
  2. Разделить полученные дроби классическим способом. Другими словами, умножить первую дробь на «перевернутую» вторую (см. урок «Умножение и деление числовых дробей »);
  3. Если возможно, результат снова представить в виде десятичной дроби. Этот шаг тоже выполняется быстро, поскольку зачастую в знаменателе уже стоит степень десятки.

Задача. Найдите значение выражения:

  1. 3,51: 3,9;
  2. 1,47: 2,1;
  3. 6,4: 25,6:
  4. 0,0425: 2,5;
  5. 0,25: 0,002.

Считаем первое выражение. Для начала переведем оби дроби в десятичные:

Аналогично поступим со вторым выражением. Числитель первой дроби снова разложится на множители:

В третьем и четвертом примерах есть важный момент: после избавления от десятичной записи возникают сократимые дроби. Однако мы не будем выполнять это сокращение.

Последний пример интересен тем, что в числителе второй дроби стоит простое число. Здесь просто нечего разлагать на множители, поэтому считаем «напролом»:

Иногда в результате деления получается целое число (это я про последний пример). В таком случае третий шаг вообще не выполняется.

Кроме того, при делении часто возникают «некрасивые» дроби, которые нельзя перевести в десятичные. Этим деление отличается от умножения, где результаты всегда представимы в десятичной форме. Разумеется, в таком случае последний шаг опять же не выполняется.

Обратите также внимание на 3-й и 4-й примеры. В них мы намеренно не сокращаем обычные дроби, полученные из десятичных. Иначе это усложнит обратную задачу - представление конечного ответа снова в десятичном виде.

Запомните: основное свойство дроби (как и любое другое правило в математике) само по себе еще не означает, что его надо применять везде и всегда, при каждом удобном случае.

Вы уже знаете, что a * 10 = a + a + a + a + a + a + a + a + a + a. Например, 0,2 * 10 = 0,2 + 0,2 + 0,2 + 0,2 + 0,2 + 0,2 + 0,2 + 0,2 + 0,2 + 0,2 . Несложно догадаться, что эта сумма равна 2, т.е. 0,2 * 10 = 2 .

Аналогично можно убедиться, что:

5,2 * 10 = 52 ;

0,27 * 10 = 2,7 ;

1,253 * 10 = 12,53 ;

64,95 * 10 = 649,5 .

Вы, наверное, догадались, что при умножении десятичной дроби на 10 надо в этой дроби перенести запятую вправо на одну цифру.

А как умножить десятичную дробь на 100 ?

Имеем: a * 100 = a * 10 * 10 . Тогда:

2,375 * 100 = 2,375 * 10 * 10 = 23,75 * 10 = 237,5 .

Рассуждая аналогично, получаем, что:

3,2 * 100 = 320 ;

28,431 * 100 = 2843,1 ;

0,57964 * 100 = 57,964 .

Умножим дробь 7,1212 на число 1 000 .

Имеем: 7,1212 * 1 000 = 7,1212 * 100 * 10 = 712,12 * 10 = 7121,2 .

Эти примеры иллюстрируют следующее правило.

Чтобы умножить десятичную дробь на 10, 100, 1 000 и т.д., надо в этой дроби перенести запятую вправо соответственно на 1, 2, 3 и т.д. цифры .

Итак, если запятую перенести вправо на 1, 2, 3 и т.д. цифры, то дробь увеличится соответственно в 10, 100, 1 000 и т.д. раз.

Следовательно, если запятую перенести влево на 1, 2, 3 и т.д. цифры, то дробь уменьшится соответственно в 10, 100, 1 000 и т.д. раз .

Покажем, что десятичная форма записи дробей дет возможность умножать их, руководствуясь правилом умножения натуральных чисел.

Найдем, например, произведение 3,4 * 1,23 . Увеличим первый множитель в 10 раз, а второй − в 100 раз. Это означает, что мы увеличили произведение в 1 000 раз.

Следовательно, произведение натуральных чисел 34 и 123 в 1 000 раз больше искомого произведения.

Имеем: 34 * 123 = 4182 . Тогда для получения ответа надо число 4 182 уменьшить в 1 000 раз. Запишем: 4 182 = 4 182,0 . Перенося запятую в числе 4 182,0 на три цифры влево, получим число 4,182 , которое в 1 000 раз меньше числа 4 182 . Поэтому 3,4 * 1,23 = 4,182 .

Этот же результат можно получить, руководствуясь следующим правилом.

Чтобы перемножить две десятичные дроби, надо:

1 ) умножить их как натуральные числа, не обращая внимания на запятые;

2 ) в полученном произведении отделить запятой справа столько цифр, сколько их стоит после запятых в обоих множителях вместе.

В тех случаях, когда произведение содержит меньше цифр, чем требуется отделить запятой, слева перед этим произведение дописывают необходимое количество нулей, а затем переносят запятую влево на нужное количество цифр.

Например, 2 * 3 = 6, тогда 0,2 * 3 = 0,006 ; 25 * 33 = 825, тогда 0,025 * 0,33 = 0,00825 .

В тех случаях, когда один из множителей равен 0,1 ; 0,01 ; 0,001 и т.д., удобно пользоваться следующим правилом.

Чтобы умножить десятичную дробь на 0,1 ; 0,01 ; 0,001 и т.д., надо в этой дроби перенести запятую влево соответственно на 1, 2, 3 и т.д. цифры .

Например, 1,58 * 0,1 = 0,158 ; 324,7 * 0,01 = 3,247 .

Свойства умножения натуральных чисел выполняются и для дробных чисел:

ab = ba − переместительное свойство умножения,

(ab) с = a(b с) − сочетательное свойство умножения,

a(b + с) = ab + ac − распределительное свойство умножения относительно сложения.