В чем измеряется индукция магнитный поток. Единица измерения магнитного потока. Инновации от американского разработчика

МАГНИТНЫЙ ПОТОК

МАГНИТНЫЙ ПОТОК (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m - магнитная ПРОНИЦАЕМОСТЬ среды, а Н - интенсивность магнитного поля. Плотность магнитного потока - это поток на единицу площади (символ В), который равен Н. Изменение магнитного потока через электрический проводник наводит ЭЛЕКТРОДВИЖУЩУЮ СИЛУ.


Научно-технический энциклопедический словарь .

Смотреть что такое "МАГНИТНЫЙ ПОТОК" в других словарях:

    Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

    - (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

    магнитный поток - Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

    МАГНИТНЫЙ ПОТОК - поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия

    Величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

    Магнитный поток - скалярная величина, равная потоку магнитной индукции... Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

    Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

    Классическая электродинамика … Википедия

    магнитный поток - , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

    Магнитный поток - 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • Магнитный поток и его преобразование , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было…

Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

МАГНИТНЫЙ ПОТОК - (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

магнитный поток - Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

МАГНИТНЫЙ ПОТОК - (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m магнитная ПРОНИЦАЕМОСТЬ среды, а Н интенсивность магнитного поля. Плотность магнитного потока это поток… … Научно-технический энциклопедический словарь

МАГНИТНЫЙ ПОТОК - поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия

МАГНИТНЫЙ ПОТОК - величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

Магнитный поток - скалярная величина, равная потоку магнитной индукции... Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

магнитный поток - поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

магнитный поток - , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

Магнитный поток - 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • Купить за 2252 грн (только Украина)
  • Магнитный поток и его преобразование , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было…

Используя силовые линии, можно не только показывать направление магнитного поля, но также характеризовать величину его индукции.

Условились проводить силовые линии таким образом, чтобы через 1 см² площадки, перпендикулярно вектору индукции в определенной точке, проходило число линий, равное индукции поля в этой точке.

В том месте, где индукция поля будет больше, силовые линии будут гуще. И, наоборот, там, где индукция поля меньше, реже и силовые линии.

Магнитное поле с одинаковой индукцией во всех точках называется однородным полем. Графически магнитное однородное поле изображается силовыми линиями, представляющими собой равно отстоящие друг от друга

Примером однородного поля является поле, находящееся внутри длинного соленоида, а также поле между близко расположенными друг к другу параллельными плоскими полюсными наконечниками электромагнита.

Произведение индукции магнитного поля, пронизывающего данный контур, на площадь контура называется магнитным потоком магнитной индукции либо же просто магнитный поток.

Определение ему дал и изучил его свойства английский ученый-физик - Фарадей. Он открыл, что это понятие позволяет глубже рассмотреть единую природу магнитных и электрических явлений.

Обозначая магнитный поток буквой Ф, площадь контура S и угол между направленностью вектора индукции В и нормалью n к площади контура α, можно написать следующее равенство:

Ф = В S cos α.

Магнитный поток - это скалярная величина.

Так как густота силовых линий произвольного магнитного поля равняется его индукции, то магнитный поток равен всему числу силовых линий, которые пронизывают данный контур.

С изменением поля меняется и магнитный поток, который пронизывает контур: при усилении поля он возрастает, при ослаблении - уменьшается.

За единицу магнитного потока в принимается поток, который пронизывает площадку в 1 м², находящуюся в магнитном однородном поле, с индукцией 1 Вб/м², и расположенную перпендикулярно вектору индукции. Такая единица называется вебером:

1 Вб = 1 Вб/м² ˖ 1 м².

Переменяющийся магнитный поток порождает электрическое поле, имеющее замкнутые силовые линии (вихревое электрическое поле). Такое поле проявляется в проводнике как действие посторонних сил. Данное явление называют электромагнитной индукцией, а электродвижущую силу, возникающую при этом — ЭДС индукции.

Кроме того, следует отметить, что магнитный поток дает возможность характеризовать в целом весь магнит (или же любые другие источники магнитного поля). Следовательно, если дает возможность характеризовать его действие в любой отдельно взятой точке, то магнитный поток - целиком. Т.е., можно сказать о том, что это вторая важнейшая А значит, если магнитная индукция выступает в роли силовой характеристики магнитного поля, то магнитный поток - является его энергетической характеристикой.

Вернувшись к опытам, можно сказать также о том, что всякий виток катушки можно вообразить как отдельно взятый замкнутый виток. Тот же контур, сквозь который и будет проходить магнитный поток вектора магнитной индукции. В таком случае будет отмечаться индукционный электрический ток. Таким образом, именно под воздействием магнитного потока формируется электрополе в замкнутом проводнике. А затем уже это электрическое поле формирует электрический ток.

Определение

Элементарный магнитный поток ($dФ$) сквозь малую поверхность $dS$ равен произведению проекции вектора магнитной индукции ($B_n$) на нормаль к элементарной площадке $dS$ на величину этой площадки:

Полный поток сквозь всю поверхность $S$ будет равен:

\[Ф=\int\limits_S{B_ndS\ \left(2\right).}\]

Если поверхность $S$ является плоской, находится она в однородном магнитном поле, причем перпендикулярно линиям индукции поля, то магнитный поток можно найти как:

\[Ф=BS\ \left(3\right).\]

Вебер - единица измерения магнитного потока в системе СИ

Единицу измерения магнитного потока можно определить исходя из выражения (3), как:

\[\left[Ф\right]=Тл\cdot м^2=Вб.\]

Единица измерения магнитного потока имеет собственное наименование - вебер (Вб). 1 Вебер - единица измерения магнитного потока в Международной системе единиц (СИ), это магнитный поток, который создает магнитное поле имеющее индукцию 1Тл через поперечное сечение площадью 1 $м^2$.

Иногда 1 вебер определяют иначе. Вебер (единица измерения магнитного потока) - это магнитный поток, при уменьшении которого до нуля, в сцепленной с ним электрической цепи, имеющей сопротивление один ом сквозь поперечное сечение проводника проходит заряд равный одному кулону. Данное определение вебера основывается на формуле:

\[\Delta q=\frac{\Delta Ф}{R}\left(4\right),\]

где $\Delta q$ - заряд, который проходит в замкнутой цепи, при изменении магнитного потока $\Delta Ф$ сквозь поверхность, которую ограничивает цепь; $R$ - сопротивление рассматриваемой цепи. Исходя из формулы (4) вебер можно считать комбинацией следующих единиц:

\[\left[Ф\right]=Вб=Кл\cdot Ом.\]

Производная единица измерения магнитного потока вебер выражается через основные единицы системы СИ как:

\[Вб=Тл\cdot м^2=\frac{кг}{А\cdot с^2}\cdot м^2.\]

Для обозначения кратных и дольных десятичных единиц измерения магнитного потока используют стандартные приставки системы СИ. Например, мВб (мили вебер): $1\ мВб={10}^{-3\ }Вб;;$ ГВб (гига вебер) $1\ ГВб={10}^{6\ }Вб.$

Максвелл - единица измерения магнитного потока в системе СГС

В системе СГС (сантиметр, грамм, секунда) единица измерения магнитного потока, так же как в СИ имеет свое наименование. Она называется максвелл (Мкс). С вебером максвелл соотносится как:

Максвелл - единица измерения магнитного потока, получил свое название в честь Дж. К. Максвелла в 1900 г.

\[\left[Ф\right]=Мкс=Гс\cdot {см}^2.\]

Через плоский контур, площадью один квадратный сантиметр, находящийся в однородном магнитном поле с индукцией 1 гаусс (Гс) перпендикулярно направлению вектора магнитной индукции, проходит магнитный поток в один максвелл.

Примеры задач с решением

Пример 1

Задание. Получите вебер, как комбинацию основных единиц Международной системы, основываясь на его определении: $Вб=Кл\cdot Ом.$

Решение. Используя определение вебера- единицы измерения магнитного потока через произведение кулона на ом, рассмотрим как каждая из этих двух единиц выражается через основные единицы СИ. Так для единицы заряда имеем:

\[Кл=А\cdot с\ \left(1.1\right).\]

Для единицы сопротивления:

\[Ом=\frac{м^{2\cdot }\cdot кг}{с^3{\cdot А}^2}\ \left(1.2\right).\]

Используя (1.1) и (1.2) в определении единицы измерения магнитного потока, получаем:

\[Вб=Кл\cdot Ом=А с\ \cdot \frac{м^{2\cdot }\cdot кг}{с^3\cdot А^2}=\frac{м^2\cdot кг}{с^2\cdot А}.\]

Ответ. Единица измерения магнитного потока при определении как $Вб=Кл\cdot Ом$=$\ Тл\cdot м^2=\frac{м^2\cdot кг}{с^2\cdot А}$

Пример 2

Задание. Какова величина магнитного потока, пронизывающего плоскую поверхность, площадь которой равна $S=50\ {см}^2$, если индукция магнитного поля составляет 0,4 Тл, при этом рассматриваемая поверхность расположена под углом $\beta =$300 к направлению вектора магнитной индукции поля? Запишите ответ в единицах системы СГС.

Решение. Сделаем рисунок.

По определению магнитный поток через плоскую поверхность в однородном поле равен:

\[Ф=BS{\cos \alpha \ }\left(2.1\right),\]

где $\alpha $ - угол меду нормалью к плоскости и направлением вектора $\overline{B}$. Следует обратить внимание на то, что в условии задачи угол в 300 - это угол между направлением вектора индукции и плоскостью, следовательно, необходимый для решения задачи угол равен:

\[\alpha =90-\beta \ \left(2.2\right).\]

Так как задачу следует решать в какой-либо, но одной системе единиц, то переведем площадь поверхности в единицы СИ, получим:

Проведем вычисления магнитного потока:

\[Ф=0,4\cdot 5\cdot {10}^{-3}{\cos \left(90-30\right)={10}^{-3}\left(Вб\right).\ }\]

получаем:

\[Ф={10}^{-3}Вб={10}^{-3}\cdot {10}^8={10}^5Мкс.\]

Ответ. $Ф$=${10}^5Мкс$

Ремонтом ежедневно занимаются тысячи людей во всем мире. При его выполнении каждый начинает задумываться о тех тонкостях, которые сопутствуют ремонту: в какой цветовой гамме выбрать обои, как подобрать шторы в цвет обоев, правильно расставить мебель для получения единого стиля помещения. Но о самом главном редко кто задумывается, а этим главным является замена электропроводки в квартире. Ведь если со старой проводкой что-то произойдет, то квартира потеряет всю свою привлекательность и станет совершенно не пригодной для жизни.

Как заменить проводку в квартире знает любой электрик, но это под силу любому обычному гражданину, однако при выполнении данного вида работ ему следует выбирать качественные материалы, чтобы получить безопасную электрическую сеть в помещении.

Первое действие, которое необходимо выполнить, спланировать будущую проводку . На данном этапе нужно определить, в каких именно местах будут проложены провода. Также на данном этапе можно вносить любые коррективы в существующую сеть, что позволит максимально комфортно в соответствии с потребностями хозяев расположить светильники и .

12.12.2019

Узкоотраслевые приборы трикотажной подотрасли и их техническое обслуживание

Для определения растяжимости чулочно-носочных изделий применяется прибор, схема которого показана на рис. 1.

В основе конструкции прибора лежит принцип с автоматическим уравновешиванием коромысла упругими силами испытываемого изделия, действующими с постоянной скоростью.

Весовое коромысло представляет собой равноплечий круглый стальной стержень 6, имеющий ось вращения 7. На его правый конец крепятся с помощью байонетного замка лапки или раздвижная форма следа 9, на которые одевается изделие. На левом плече шарнирно укреплена подвеска для грузов 4, а его конец заканчивается стрелкой 5, показывающей равновесное состояние коромысла. До начала испытаний изделия коромысло приводят в равновесие подвижной гирей 8.

Рис. 1. Схема прибора для измерения растяжимости чулочно-носочных изделий: 1 —направляющая, 2 — левая линейка, 3 — движок, 4 — подвеска для грузов; 5, 10 — стрелки, 6 — стержень, 7 — ось вращения, 8 — гиря, 9 — форма следа, 11— растягивающий рычаг,

12— каретка, 13 — ходовой винт, 14 — правая линейка; 15, 16 — винтовые шестерни, 17 — червячный редуктор, 18 — соединительная муфта, 19 — электродвигатель


Для перемещения каретки 12 с растягивающим рычагом 11 служит ходовой винт 13, на нижнем конце которого закреплена винтовая шестерня 15; через нее вращательное движение передается ходовому винту. Перемена направления вращения винта зависит от изменения вращения 19, который при помощи соединительной муфты 18 связан с червячным редуктором 17. На вал редуктора посажена винтовая шестерня 16, непосредственно сообщающая движение шестерне 15.

11.12.2019

В пневматических исполнительных механизмах перестановочное усилие создается за счет воздействия сжатым воздухом на мембрану, или поршень. Соответственно различают механизмы мембранные, поршневые и сильфонные. Они предназначены для установки и перемещения затвора регулирующего органа в соответствии с пневматическим командным сигналом. Полный рабочий ход выходного элемента механизмов осуществляется при изменении командного сигнала от 0,02 МПа (0,2 кг/см 2) до 0,1 МПа (1 кг/см 2). Предельное давление сжатого воздуха в рабочей полости — 0,25 МПа (2,5 кг/см 2).

У мембранных прямоходных механизмов шток совершает возвратно-поступательное движение. В зависимости от направления движения выходного элемента они подразделяются на механизмы прямого действия (при повышении давления мембраны) и обратного действия.

Рис. 1. Конструкция мембранного исполнительного механизма прямого действия: 1, 3 — крышки, 2—мембрана, 4 — опорный диск, 5 — кронштейн, 6 — пружина, 7 — шток, 8 — опорное кольцо, 9 — регулировочная гайка, 10 — соединительная гайка


Основными конструктивными элементами мембранного исполнительного механизма являются мембранная пневматическая камера с кронштейном и подвижная часть.

Мембранная пневматическая камера механизма прямого действия (рис. 1) состоит из крышек 3 и 1 и мембраны 2. Крышка 3 и мембрана 2 образуют герметическую рабочую полость, крышка 1 прикреплена к кронштейну 5. К подвижной части относятся опорный диск 4, к которому прикреплена мембрана 2, шток 7 с соединительной гайкой 10 и пружина 6. Пружина одним концом упирается в опорный диск 4, а другим через опорное кольцо 8 в регулировочную гайку 9, служащую для изменения начального натяжения пружины и направления движения штока.

08.12.2019

На сегодняшний день существует несколько видов ламп для . У каждого из них есть свои плюсы и минусы. Рассмотрим виды ламп которые наиболее часто используются для освещения в жилом доме или квартире.

Первый вид ламп – лампа накаливания . Это самый дешевый вид ламп. К плюсам таких ламп можно отнести ее стоимость, простоту устройства. Свет от таких ламп является наиболее лучшим для глаз. К минусам таких ламп можно отнести невысокий срок службы и большое количество потребляемой электроэнергии.

Следующий вид ламп – энергосберегающие лампы . Такие лампы можно встретить абсолютно для любых типов цоколей. Представляют из себя вытянутую трубку в которой находится специальный газ. Именно газ создает видимое свечение. У современных энергосберегающих ламп, трубка может иметь самую разнообразную форму. Плюсы таких ламп: низкое энергопотребление по сравнению с лампами накаливания, дневное свечение, большое выбор цоколей. К минусам таких ламп можно отнести сложность конструкции и мерцание. Мерцание обычно незаметно, но глаза будут уставать от света.

28.11.2019

Кабельная сборка — разновидность монтажного узла. Кабельная сборка представляет собой несколько местных , оконцованных с двух сторон в электромонтажном цехе и увязанных в пучок. Монтаж кабельной трассы, осуществляют, укладывая кабельную сборку в устройства крепления кабельной трассы (рис. 1).

Судовая кабельная трасса - электрическая линия, смонтированная на судне из кабелей (пучков кабелей), устройств крепления кабельной трассы, уплотнительных устройств и т. п. (рис. 2).

На судне кабельную трассу располагают в труднодоступных местах (по бортам, подволоку и переборкам); они имеют до шести поворотов в трех плоскостях (рис. 3). На крупных судах наибольшая длина кабелей достигает 300 м, а максимальная площадь сечения кабельной трассы — 780 см 2 . На отдельных судах с суммарной длиной кабелей свыше 400 км для размещения кабельной трассы предусматривают кабельные коридоры.

Кабельные трассы и проходящие по ним кабели подразделяют на местные и магистральные в зависимости от отсутствия (наличия) устройств уплотнения.

Магистральные кабельные трассы подразделяют на трассы с торцовыми и проходными коробками в зависимости от типа применения кабельной коробки. Это имеет смысл для выбора средств технологического оснащения и технологии монтажа кабельной трассы.

21.11.2019

В области разработки и производства приборов КИПиА американская компания Fluke Corporation занимает одну из лидирующих позиций в мире. Она была основана в 1948 году и с этого времени постоянно развивает, совершенствует технологии в области диагностики, тестирования, анализа.

Инновации от американского разработчика

Профессиональное измерительное оборудование от мультинациональной корпорации используется при обслуживании систем обогрева, кондиционирования и вентиляции, холодильных установок, проверки качества воздуха, калибровки электрических параметров. Фирменный магазин Fluke предлагает приобрести сертифицированное оборудование от американского разработчика. Полный модельный ряд включает:
  • тепловизоры, тестеры сопротивления изоляции;
  • цифровые мультиметры;
  • анализаторы качества электрической энергии;
  • дальномеры, вибромеры, осциллографы;
  • калибраторы температуры, давления и многофункциональные аппараты;
  • визуальные пирометры и термометры.

07.11.2019

Используют уровнемер для определения уровня разных видов жидкостей в открытых и закрытых хранилищах, сосудах. С его помощью измеряют уровень вещества или расстояние до него.
Для измерения уровня жидкости используют датчики, которые отличаются по типу: радарный уровнемер , микроволновый (или волноводный), радиационный, электрический (или емкостный), механический, гидростатический, акустический.

Принципы и особенности работы радарных уровнемеров

Стандартными приборами не определить уровень химически агрессивных жидкостей. Только радарный уровнемер способен его измерить, так как не соприкасается с жидкостью при работе. К тому же радарные уровнемеры более точные по сравнению, например, с ультразвуковыми или с емкостными.