Примеры относительной траектории движения тела. Относительность движения: основные положения. Относительность пути, траектории и скорости

1. Относительность движения состоит в том, что при изучении движения в системах отсчета, движущихся равномерно и прямолинейно относительно принятой неподвижной системы отсчета, все расчеты можно проводить по тем же формулам и уравнениям, как если бы движение подвижной системы отсчета относительно неподвижной отсутствовало.

2. Как в примере с лодкой движутся вода и берег относительно лодки?

2. Представим, что наблюдатель расположился в лодке в точке О’. Проведем через эту точку систему координат X"O"Y". Ось X" направим вдоль берега, ось Y" - перпендикулярно течению реки. Наблюдатель в лодке видит, что берег относительно его системы координат совершает перемещение

двигаясь в направлении противоположном положительному направлению оси

а вода движется относительно лодки совершая перемещение


3. Комбайн, убирающий в поле хлеб, движется относительно земли со скоростью 2,5 км/ч и, не останавливаясь, ссыпает зерно в автомашину. Относительно какого тела отсчета автомашина движется и относительно какого покоится?

3. Относительно комбайна автомашина покоится, а относительно земли движется со скоростью комбайна.

Из всех многообразных форм движения материи этот вид движения является самым простым.

Например: перемещение стрелки часов по циферблату, идут люди, колышутся ветки деревьев, порхают бабочки, летит самолет и т.д.

Определение положения тела в любой момент времени является основной задачей механики.

Движение тела, при котором все точки движутся одинаково, называется поступательным.

 Материальная точка – это физическое тело, размерами которого в данных условиях движения можно пренебречь, считая, что вся его масса сосредоточенны в одной точке.

 Траектория – это линия которую описывает материальная точка при своем движении.

 Путь – это длина траектории движения материальной точки.

 Перемещение – это направленный отрезок прямой (вектор), соединяющий начальное положение тела с его последующим положением.

 Система отсчета – это: тело отсчета, связанная с ним система координат, а также прибор для отсчета времени.

Важная особенность мех. движения – его относительность.

Относительность движения – это перемещение и скорость тела относительно разных систем отсчета различны (например, человек и поезд). Скорость тела относительно неподвижной системы координат равна геометрической сумме скоростей тела относительно подвижной системы и скорости подвижной системы координат относительно неподвижной. (V 1 – скорость человека в поезде, V 0 - скорость поезда, то V=V 1 +V 0).

Классический закон сложения скоростей формулируется следующим образом: скорость движения материальной точки по отношению к системе отсчета, принимаемой за неподвижную, равна векторной сумме скоростей движения точки в подвижной системе и скорости движения подвижной системы относительно неподвижной.

Характеристики механического движения свя­заны между собой основными кинематическими уравнениями.

s = v 0 t + at 2 / 2;

v = v 0 + at .

Предположим, что тело движется без уско­рения (самолет на маршруте), его скорость в течение продолжительного времени не меняется, а = 0, тогда кинематические уравнения будут иметь вид: v = const , s = vt .

Движение, при котором скорость тела не ме­няется, т. е. тело за любые равные промежутки вре­мени перемещается на одну и ту же величину, назы­ваютравномерным прямолинейным движением.

Во время старта скорость ракеты быстро воз­растает, т. е. ускорение а > О , а == const.

В этом случае кинематические уравнения вы­глядят так: v = V 0 + at , s = V 0 t + at 2 / 2.

При таком движении скорость и ускорение имеют одинаковые направления, причем скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называютравноуско­ренным.

При торможении автомобиля скорость умень­шается одинаково за любые равные промежутки вре­мени, ускорение меньше нуля; так как скорость уменьшается, то уравнения принимают вид: v = v 0 + at , s = v 0 t - at 2 / 2 . Такое движение называют равнозамедленным.

2.Каждый может легко разделить тела на твер­дые и жидкие. Однако это деление будет только по внешним признакам. Для того чтобы выяснить, ка­кими же свойствами обладают твердые тела, будем их нагревать. Одни тела начнут гореть (дерево, уголь) - это органические вещества. Другие будут размягчаться (смола) даже при невысоких темпера­турах - это аморфные. Третьи будут изменять свое состояние при нагревании так, как показано на гра­фике (рис. 12). Это и есть кристаллические тела. Та­кое поведение кристаллических тел при нагревании объясняется их внутренним строением.Кристалли­ческие тела - это такие тела, атомы и молекулы которых расположены в определенном порядке, и этот порядок сохраняется на достаточно большом расстоянии. Пространственное периодическое распо­ложение атомов или ионов в кристалле называют кристаллической решеткой. Точки кристаллической решетки, в которых расположены атомы или ионы, называютузлами кристаллической решетки. Кристаллические тела бывают монокристал­лами и поликристаллами.Монокристалл обладает единой кристаллической решеткой во всем объеме. Анизотропия монокристаллов заключается в зависимости их физических свойств от направления. Поликристалл представляет собой соединение мел­ких, различным образом ориентированных монокри­сталлов (зерен) и не обладает анизотропией свойств.

Большинство твердых тел имеют поликристалличе­ское строение (минералы, сплавы, керамика).

Основными свойствами кристаллических тел являются: определенность температуры плавления, упругость, прочность, зависимость свойств от поряд­ка расположения атомов, т. е. от типа кристалли­ческой решетки.

Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объему этого вещества. В отличие от кри­сталлических веществ аморфные веществаизотроп­ны. Это значит, что свойства одинаковы по всем на­правлениям. Переход из аморфного состояния в жидкое происходит постепенно, отсутствует опреде­ленная температура плавления. Аморфные тела не обладают упругостью, они пластичны. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. п.

Упругость - свойство тел восстанавливать свою форму и объем после прекращения действия внешних сил или других причин, вызвавших дефор­мацию тел. Для упругих деформаций справедлив за­кон Гука, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям, где - механическое на­пряжение,

- относительное удлинение, Е - мо­дуль Юнга (модуль упругости). Упругость обусловле­на взаимодействием и тепловым движением частиц, из которых состоит вещество.

Пластичность - свойство твердых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные де­формации после того, как действие этих сил прекра­тится

ОПРЕДЕЛЕНИЕ

Относительность движения проявляется в том, что поведение любого движущегося тела может быть определено только по отношению к какому-то другому телу, которое называют телом отсчета.

Тело отсчета и система координат

Тело отсчета выбирают произвольно. Следует отметить, что движущееся тело и тело отсчета равноправны. Каждое из них при расчете движения в случае необходимости можно рассматривать или как тело отсчета, или как тело движущееся. Например, человек стоит на Земле и наблюдает, как по дороге едет автомобиль. Человек неподвижен относительно Земли и считает Землю телом отсчета, самолет и автомобиль в этом случае тела движущиеся. Однако, пассажир автомобиля, который говорит, что дорога убегает из-под колес, тоже прав. Он считает телом отсчета автомобиль (он неподвижен относительно автомобиля), Земля при этом – тело движущееся.

Чтобы фиксировать изменение положение тела в пространстве, с телом отсчета нужно связать систему координат. Система координат – это способ задания положения объекта в пространстве.

При решении физических задач наиболее распространенной является декартова прямоугольная система координат с тремя взаимно перпендикулярными прямолинейными осями – абсциссой (), ординатой () и аппликатой (). Масштабной единицей измерения длины в СИ является метр.

При ориентировании на местности пользуются полярной системой координат. По карте определяют расстояние до нужного населенного пункта. Направление движения определяют по азимуту, т.е. углу, который составляет нулевое направление с линией, соединяющей человека с нужным пунктом. Таким образом, в полярной системе координат координатами являются расстояние и угол .

В географии, астрономии и при расчетах движений спутников и космических кораблей положение всех тел определяется относительно центра Земли в сферической системе координат. Для определения положения точки в пространстве в сферической системе координат задают расстояние до начала отсчета и углы и — углы, которые составляет радиус-вектор с плоскостью нулевого гринвичского меридиана (долгота) и плоскостью экватора (широта).

Система отсчета

Система координат, тело отсчета, с которым она связана, и прибор для измерения времени образуют систему отсчета, относительно которой рассматривается движение тела.

При решении любой задачи о движении прежде всего должна быть указана та система отсчета, в которой будет рассматриваться движение.

При рассмотрении движения относительно подвижной системы отсчета справедлив классический закон сложения скоростей: скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной:

Примеры решения задач по теме «Относительность движения»

ПРИМЕР

Задание Самолет движется относительно воздуха со скоростью 50 м/с. Скорость ветра относительно земли 15 м/с. Какова скорость самолета относительно земли, если он движется по ветру? против ветра? перпендикулярно направлению ветра?
Решение В данном случае скорость — скорость самолета относительно земли (неподвижной системы отсчета), относительная скорость самолета — это скорость самолета относительно воздуха (подвижной системы отсчета), скорость подвижной системы отсчета относительно неподвижной — это скорость ветра относительно земли.

Направим ось по направлению ветра.

Запишем закон сложения скоростей в векторном виде:

В проекции на ось это равенство перепишется в виде:

Подставив в формулу численные значения, вычислим скорость самолета относительно земли:

В данном случае пользуемся системой координат , направив координатные оси, как показано на рисунке.

Складываем вектора и по правилу сложения векторов. Скорость самолета относительно земли:

Слова «тело движется» не имеют определенного смысла, так как нужно сказать, по отношению к каким телам или относительно какой системы отсчета это движение рассматривается. Приведем несколько примеров.

Пассажиры движущегося поезда неподвижны относительно стен вагона. И те же пассажиры движутся в системе отсчета, связанной с Землей. Поднимается лифт. Стоящий на его полу чемодан покоится относительно стен лифта и человека, находящегося в лифте. Но он движется относительно Земли и дома.

Эти примеры доказывают относительность движения и, в частности, относительность понятия скорости. Скорость одного и того же тела различна в разных системах отсчета.

Представьте себе пассажира в движущемся равномерно относительно поверхности Земли вагоне, выпускающего из рук мяч. Он видит, как мяч падает относительно вагона вертикально вниз с ускорением g . Свяжем с вагоном систему координат X 1 О 1 Y 1 (рис. 1). В этой системе координат за время падения мяч пройдет путь AD = h , и пассажир отметит, что мяч упал вертикально вниз и в момент удара о пол его скорость υ 1 .

Рис. 1

Ну а что увидит наблюдатель, стоящий на неподвижной платформе, с которой связана система координат XOY ? Он заметит (представим себе, что стены вагона прозрачны), что траекторией мяча является парабола AD , и мяч упал на пол со скоростью υ 2 , направленной под углом к горизонту (см. рис. 1).

Итак, мы отмечаем, что наблюдатели в системах координат X 1 О 1 Y 1 и XOY обнаруживают различные по форме траектории, скорости и пройденные пути при движении одного тела - мяча.

Надо отчетливо представлять себе, что все кинематические понятия: траектория, координаты, путь, перемещение, скорость имеют определенную форму или численные значения в одной выбранной системе отсчета. При переходе от одной системы отсчета к другой указанные величины могут измениться . В этом и состоит относительность движения, и в этом смысле механическое движение всегда относительно.

Связь координат точки в системах отсчета, движущихся друг относительно друга, описывается преобразованиями Галилея . Преобразования всех других кинематических величин являются их следствиями.

Пример . Человек идет по плоту, плывущему по реке. Известны и скорость человека относительно плота, и скорость плота относительно берега .

В примере идет речь о скорости человека относительно плота и скорости плота относительно берега. Поэтому одну систему отсчета K свяжем с берегом - это неподвижная система отсчета , вторую К 1 свяжем с плотом - это подвижная система отсчета . Введем обозначения скоростей:

  • 1 вариант (скорость относительно систем)

υ - скорость К

υ 1 - скорость этого же тела относительно подвижной системы отсчета K

u - скорость подвижной системы К К

$\vec{\upsilon }=\vec{u}+\vec{\upsilon }_{1} .\; \; \; (1)$

  • ”2 вариант

υ тон - скорость тела относительно неподвижной системы отсчета К (скорость человека относительно Земли);

υ топ - скорость этого же тела относительно подвижной системы отсчета K 1 (скорость человека относительно плота);

υ с - скорость подвижной системы К 1 относительно неподвижной системы К (скорость плота относительно Земли). Тогда

$\vec{\upsilon }_{тон} =\vec{\upsilon }_{c} +\vec{\upsilon }_{топ} .\; \; \; (2)$

  • 3 вариант

υ а (абсолютная скорость ) - скорость тела относительно неподвижной системы отсчета К (скорость человека относительно Земли);

υ от (относительная скорость ) - скорость этого же тела относительно подвижной системы отсчета K 1 (скорость человека относительно плота);

υ п (переносная скорость ) - скорость подвижной системы К 1 относительно неподвижной системы К (скорость плота относительно Земли). Тогда

$\vec{\upsilon }_{a} =\vec{\upsilon }_{от} +\vec{\upsilon }_{n} .\; \; \; (3)$

  • 4 вариант

υ 1 или υ чел - скорость первого тела относительно неподвижной системы отсчета К (скорость человека относительно Земли);

υ 2 или υ пл - скорость второго тела относительно неподвижной системы отсчета К (скорость плота относительно Земли);

υ 1/2 или υ чел/пл - скорость первого тела относительно второго (скорость человека относительно плота );

υ 2/1 или υ пл/чел - скорость второго тела относительно первого (скорость плота относительно человека ). Тогда

$\left|\begin{array}{c} {\vec{\upsilon }_{1} =\vec{\upsilon }_{2} +\vec{\upsilon }_{1/2} ,\; \; \, \, \vec{\upsilon }_{2} =\vec{\upsilon }_{1} +\vec{\upsilon }_{2/1} ;} \\ {} \\ {\vec{\upsilon }_{чел} =\vec{\upsilon }_{пл} +\vec{\upsilon }_{чел/пл} ,\; \; \, \, \vec{\upsilon }_{пл} =\vec{\upsilon }_{чел} +\vec{\upsilon }_{пл/чел} .} \end{array}\right. \; \; \; (4)$

Формулы (1-4) можно записать и для перемещений Δr , и для ускорений a :

$\begin{array}{c} {\Delta \vec{r}_{тон} =\Delta \vec{r}_{c} +\Delta \vec{r}_{топ} ,\; \; \; \Delta \vec{r}_{a} =\Delta \vec{r}_{от} +\Delta \vec{п}_{?} ,} \\ {} \\ {\Delta \vec{r}_{1} =\Delta \vec{r}_{2} +\Delta \vec{r}_{1/2} ,\; \; \, \, \Delta \vec{r}_{2} =\Delta \vec{r}_{1} +\Delta \vec{r}_{2/1} ;} \\ {} \\ {\vec{a}_{тон} =\vec{a}_{c} +\vec{a}_{топ} ,\; \; \; \vec{a}_{a} =\vec{a}_{от} +\vec{a}_{п} ,} \\ {} \\ {\vec{a}_{1} =\vec{a}_{2} +\vec{a}_{1/2} ,\; \; \, \, \vec{a}_{2} =\vec{a}_{1} +\vec{a}_{2/1} .} \end{array}$

План решения задач на относительность движения

1. Сделайте чертеж: тела изобразите в виде прямоугольников , над ними укажите направления скоростей и перемещений (если они нужны). Выберите направления осей координат.

2. Исходя из условия задачи или по ходу решения, определитесь с выбором подвижной системы отсчета (СО) и с обозначениями скоростей и перемещений.

  • Всегда начинайте с выбора подвижной СО. Если в задаче нет специальных оговорок, относительно какой СО заданы (или нужно найти) скорости и перемещения, то не принципиально, какую систему принять за подвижную СО. Удачный выбор подвижной системы существенно упрощает решение задачи.
  • Обратите внимание на то, чтобы одна и та же скорость (перемещение) обозначалась одинаково в условии, решении и на рисунке.

3. Запишите закон сложения скоростей и (или) перемещений в векторном виде:

$\vec{\upsilon }_{тон} =\vec{\upsilon }_{c} +\vec{\upsilon }_{топ} ,\; \; \, \, \Delta \vec{r}_{тон} =\Delta \vec{r}_{c} +\Delta \vec{r}_{топ} .$

  • Не забывайте и про другие варианты записи закона сложения:
$\begin{array}{c} {\vec{\upsilon }_{a} =\vec{\upsilon }_{от} +\vec{\upsilon }_{п} ,\; \; \; \Delta \vec{r}_{a} =\Delta \vec{r}_{от} +\Delta \vec{r}_{п} ,} \\ {} \\ {\vec{\upsilon }_{1} =\vec{\upsilon }_{2} +\vec{\upsilon }_{1/2} ,\; \; \, \, \Delta \vec{r}_{1} =\Delta \vec{r}_{2} +\Delta \vec{r}_{1/2} .} \end{array}$

4. Запишите проекции закона сложения на оси 0Х и 0Y (и другие оси)

0Х : υ тон x = υ с x + υ топ x , Δr тон x = Δr с x + Δr топ x , (5-6)

0Y : υ тон y = υ с y + υ топ y , Δr тон y = Δr с y + Δr топ y , (7-8)

  • Другие варианты:
0Х : υ a x = υ от x + υ п x , Δr а x = Δr от x + Δr п x ,

υ 1x = υ 2x + υ 1/2x , Δr 1x = Δr 2x + Δr 1/2x ,

0Y : υ a y = υ от y + υ п y , Δr а y = Δr от y + Δr п y ,

υ 1y = υ 2y + υ 1/2y , Δr 1y = Δr 2y + Δr 1/2y .

5. Найдите значения проекций каждой величины:

υ тон x = …, υ с x = …, υ топ x = …, Δr тон x = …, Δr с x = …, Δr топ x = …,

υ тон y = …, υ с y = …, υ топ y = …, Δr тон y = …, Δr с y = …, Δr топ y = …

  • Аналогично для других вариантов.

6. Подставьте полученные значения в уравнения (5) - (8).

7. Решите полученную систему уравнений.

  • Примечание . По мере наработки навыка решения таких задач, пункты 4 и 5 можно будет делать в уме, без записи в тетрадь.

Дополнения

  1. Если заданы скорости тел относительно тел, которые сейчас неподвижны, но могут двигаться (например, скорость тела в озере (нет течения) или в безветренную погоду), то такие скорости считают заданными относительно подвижной системы (относительно воды или ветра). Это собственные скорости тел, относительно неподвижной системы они могут меняться. Например, собственная скорость человека 5 км/ч. Но если человек идет против ветра, его скорость относительно земли станет меньше; если ветер дует в спину, скорость человека будет больше. Но относительно воздуха (ветра) его скорость остается равной 5 км/ч.
  2. В задачах обычно фразу «скорость тела относительно земли» (или относительно любого другого неподвижного тела), по умолчанию, заменяют на «скорость тела». Если скорость тела задана не относительно земли, то это должно быть указано в условии задачи. Например, 1) скорость самолета 700 км/ч, 2) скорость самолета в безветренную погоду 750 км/ч. В примере один, скорость 700 км/ч задана относительно земли, во втором - скорость 750 км/ч задана относительно воздуха (см. дополнение 1).
  3. В формулах, в которые входят величины с индексами, должен выполняться принцип соответствия , т.е. индексы соответствующих величин должны совпадать. Например, $t=\dfrac{\Delta r_{тон x} }{\upsilon _{тон x}} =\dfrac{\Delta r_{c x}}{\upsilon _{c x}} =\dfrac{\Delta r_{топ x}}{\upsilon _{топ x}}$.
  4. Перемещение при прямолинейном движении направлено в ту же сторону, что и скорость, поэтому знаки проекций перемещения и скорости относительно одной и той же системы отсчета совпадают.

Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Эти уравнения называются уравнениями движения . Например, в декартовых координатах х, y, z движение точки определяется уравнениями x = f 1 (t) {\displaystyle x=f_{1}(t)} , y = f 2 (t) {\displaystyle y=f_{2}(t)} , z = f 3 (t) {\displaystyle z=f_{3}(t)} .

В современной физике любое движение считается относительным, и движение тела следует рассматривать лишь по отношению к какому-либо другому телу (телу отсчёта) или системе тел. Нельзя указать, например, как движется Луна вообще, можно лишь определить её движение, например, по отношению к Земле, Солнцу, звёздам и т. п.

Другие определения

С другой стороны, ранее считалось, что существует некая «фундаментальная» система отсчёта, простота записи в которой законов природы выделяет её из всех остальных систем. Так, Ньютон считал выделенной системой отсчёта абсолютное пространство , а физики XIX века полагали что, система, относительно которой покоится эфир электродинамики Максвелла, является привилегированной, и поэтому она была названа абсолютной системой отсчёта (АСО). Окончательно предположения о существовании привилегированной системы отсчёта были отвергнуты теорией относительности . В современных представлениях никакой абсолютной системы отсчёта не существует, так как законы природы , выраженные в тензорной форме , имеют один и тот же вид во всех системах отсчёта - то есть во всех точках пространства и во все моменты времени. Это условие - локальная пространственно-временная инвариантность - является одним из проверяемых оснований физики.

Иногда абсолютной системой отсчета называют систему, связанную с реликтовым излучением , то есть инерциальную систему отсчета, в которой реликтовое излучение не имеет дипольной анизотропии .

Тело отсчёта

В физике телом отсчёта называется совокупность неподвижных относительно друг друга тел, по отношению к которым рассматривается движение (в связанной с ними