Лазеры. Виды лазеров. Спонтанное и индуцированное излучение. Свойства лазерного излучения. Индуцированные и спонтанные переходы Излучение лазера является спонтанным или индуцированным

Лазер - устройство, генерирующее когерентные электромагнитные волны за счет вынужденного излучения микрочастиц среды, в котором создана высокая степень возбуждения одного из энергетических уровней.

Л.А.З.Е.Р. - с англ. усиление света с помощью вынужденного излучения.

Оптический квантовый генератор, превращает энергию накачки в энергию когерентного монохроматического поляризованного узкого направления. Эйнштейн ввел понятие вынужденного излучения. В1939 г. к выводу о возможности усиления света при прохождении через вещество пришел русский ученый Фабрикант.

Условия для работы. Принцип.

  • - вынужденное излучение. При взаимодействии фотона с возбужденной молекулой происходит усиление света. Число вынужденных переходов зависит от числа падающих в секунду фотонов и числа возбужденных электронов.
  • - инверсная населенность энергетических уровней - состояние, когда на более высоком энергетическом уровне находится больше частиц, чем на более низком. Активная среда - среда, приведенная в состояние инверсной населенности. Создать ИН можно только выведя из состояния ТД равновесия (методы накачки)
  • 1) оптическая накачка прозрачных активных сред использует импульсы света от внешнего источника.
  • 2) электроразрядная накачка газовых активных сред использует электрический заряд.
  • 3) инжекционная накачка полупроводниковых активных сред использует эл. ток.
  • 4) химическая накачка активной среды из смеси газов использует энергию хим. реакций между компонентами смеси.

Устройство лазера:

  • 1) рабочее тело - среда, которая внешним воздействием приводится в активное состояние
  • 2) система накачки - устройство для приведения рабочего тела в активное состояние
  • 3) оптический резонатор - два плоских зеркала, обращенных друг к другу. За счет многократного отражения происходит лавинообразное излучение фотонов. Когда интенсивность достигает определенной величины, начинается генерация лазерного излучения.

Особенности лазерного излучения:

  • 1) высокая монохроматичность
  • 2) когерентность - постоянство разности фаз фотонов
  • 3) высокая интенсивность до 1014-1016 Вт/кВ.см.
  • 4) коллимированность
  • 5) поляризованность - ЛИ только в одной плоскости.
  • 6) высокая мощность до 10 (в 5 ст) Вт.

Рубиновый лазер.

Рабочее тело - окись Al + 0,05% окись хрома, система накачки - оптическая, длина волны = 694,3 нм. Al имеет 2 энергетических уровня (основной и возбужденный). Т = 10 (в -8 ст) с. Хром имеет 3 энерг.уровня (основной, возбужденный, промежуточный), Т = 10 (в -3ст) с. Al передает свою энергию атомам хрома, помогает возбуждаться. Хром - активная среда.

Гелий-неоновый лазер.

Рабочее тело - смесь газов гелия и неона в соотношении 10: 1. Давление 150 Па. Атомы неона - излучающие, гелия - вспомогательные. Система накачки - эл. разряд. Длина волны = 632,8 нм.

Поглощая фотон, атом переходит с более низкого энергетического уровня на более высокий. При самопроизвольном переходе на более низкий уровень атом испускает фотон. Для атомов конкретного химического элемента разрешены только совершенно определённые переходы между энергетическими уровнями. В следствие этого атомы поглощают только те фотоны, энергия которых в точности соответствует энергии перехода атома с одного энергетического уровня на другой. Визуально это проявляется в существовании для каждого химического элемента индивидуальных спектров поглощения, содержащих определённый набор цветных полос.

Фотон, испускаемый атомом при переходе на более низкий энергетический уровень, так же обладает совершенно определённой энергией, соответствующей разности энергий между энергетическими уровнями. По этой причине атомы способны излучать световые волны только определённых частот. Этот эффект наглядно проявляется при работе люминесцентных ламп, часто используемых в уличной рекламе. Полость такой лампы заполнена каким-либо инертным газом, атомы которого возбуждаются ультрафиолетовым излучением, которое возникает при пропускании электрического тока через специальный слой, покрывающий внутреннюю поверхность оболочки лампы. Возвращаясь в основное состояние атомы газа дают свечение определённого цвета. Так, например, неон даёт красное свечение, а аргон - зелёное.

Самопроизвольные (спонтанные) переходы атомов с более высокого энергетического уровня на более низкий носят случайный характер. Генерируемое при этом излучение не обладает свойствами лазерного излучения: параллельностью световых пучков, когерентностью (согласованностью амплитуд и фаз колебаний во времени и пространстве), монохромностью (строгой одноцветностью). Однако, ещё в 1917 году Альберт Эйнштейн предсказал существование наряду со спонтанными переходами на более низкий энергетический уровень индуцированных переходов. В последствии эта возможность была реализована в конструкции лазеров. Сущность этого явления состоит в том, что фотон светового потока, встречая на своём пути возбуждённый атом выбивает из него фотон с точно такими же характеристиками.

В результате число одинаковых фотонов удваивается. Вновь образовавшийся фотон, в свою очередь, способен генерировать ещё один фотон, выбивая его из другого возбуждённого атома. Таким образом, число одинаковых фотонов лавинообразно нарастает. Генерируемое при этом излучение характеризуется высокой степенью параллельности пучков светового потока, когерентности и монохромности, так как в нём присутствуют только те фотоны, которые обладают одинаковой энергией и направлением движением.

Спонтанное излучение.

Рассмотрим в некоторой среде два энергетических уровня 1 и2 с энергиями и ( < ).Предположим, что атом или молекула вещества находится первоначально в состоянии соответствующая уровню 2 .Поскольку < атом будет стремится перейти на уровень 1.Следовательно, из атома должна соответствующая разность энергий - .Когда эта энергия высвобождается в виде электромагнитной волны, процесс называется спонтанным излучением. При этом частота излучаемой волны опред-ся формулой (полученной Планком):

Т.о. спонтанное излучение хар-ся испусканием фотона с энергией - при переходе атома с уровня 2 на 1.(рис.)

Вероятность спонтанного излучения можно опред-ть следующим образом. Предположим,что в момент времени t на уровне 2 находится атомов в единице обьёма. Скорость перехода ( /dt)спонт. Этих атомов в следствии спонтанного излучения на низший уровень,очевидно, пропорционально .Следовательно можно написать:

( /dt)спонт. =A (2)

Множитель А представляет собой вероятность спонтанного излучения и называется коэфиц. Энштейна А.Величину =1\А называют спонтанным временем жизни. Численное значение А () зависит от конкретного перехода, участвующего в излучении.

Вынужденное излучение.

Предположим, что атом нах. на уровни 2 и на вещество падает электромагнитная волна с частотой опред-й выражением (1) - \h (т.е. с частотой равной частоте спонтанно испущенной волны).Поскольку частоты падающей волны и излучения, связанное с атомным переходом, равны друг другу, имеется конечная вероятность того, что падающая волна вызовет переход с 2→1.При этом разность энергий - выделится в виде элект-й волны, которая добавится к падающей.Это и есть явление вынужденного перехода.

Между процессами спонтанного и вынужденного излучения есть существенное отличие. В случае спонтанного излучения атом испускает электромагнитную волну,фаза которой не имеет опред-й связи с фазой волны, излучаемым другим атомом. Более того испущенная волна может иметь любое направление распространения. В случае же вынужденного излучения,поскольку процесс инициируется подающей волной, излучение любого атома добавляется к этой волне в той же фазе. Падающая волна определяет также направление распространения испущенной волны. Процесс вынужденного излучения можно описать с помощью уравнения:

( /dt)вын.= (3)

Где ( /dt)вын.- скорость перехода 2→1 за счёт вынужденного излучения,а .Как и коэ-т А определяемый выражением (2), имеет также размерность (время)^-1.Однако в отличии от А зависит не только от конкретного перехода, но и от интенсивности падающей электромагнитной волны.Точнее,для плоской волны, можно написать:

где F-плотность потока фотонов в падающей волне, -величина имеющая размерность площади (сечение вынужденного излучения) и зависящая от хар-к данного перехода.

4.Поглощение.Коэффициенты поглощения.

Предположим что атом первоначально находится на уровне 1. Если это основной уровень, то атом будет оставаться на нем до тех пор, пока на него не подействует какое-либо внешнее возмущение. Пусть на вещество попадет элетромагнитная волна с частотой , определяемой выражением: 2 - E 1 )/ h .

В таком случае существует конечная вероятность того, что атом перейдет на верхний уровень 2. Разность энергий E 2 - E 1 ,необходимаяя для того, чтобы атом совершил переход, берется из энергии падающей электромагнитной волны. В этом заключается процес поглащения. По аналогии с (dN 2 / dt ) вых = - W 21 N 2 вероятность поглощения W 12 определяется уравнением: dN 1 / dt = - W 12 N 1 , где N 1 – число атомов в еденице объема, которые в данный момент времени находятся на уровне 1. Кроме того, так же, как и в выражении W 21 = 21 F , можно написать: W 12 = 12 F . Здесь 12 некоторая площадь(сечение поглощения), которая зависит только от конкретного перехода. Предположим теперь, что каждому атому можно поставить в соответствие эффективное сечение поглощения фотонов а в том смысле, что если фотон попадает в это сечение, то он будет поглощен атомом. Если площадь поперечного сечения электромагнитной волны в среде обозначить черех S , то число освещенных волной атомов среды в слое толщиной dz равно N 1 Sdz и тогда полное сечение поглощения будет равно а N 1 Sdz . Следовательно, относительное изменение числа фотонов ( dF / F ) в слое толщиной dz среды равно: dF / F = - а N 1 Sdz / S . Видно, что = а , поэтому величине можно придать смысл эффективнорго сечения поглощения. Взаимодействие излучнеия с веществом можно описывать по-другому, определив коэфициент с помощью выражения: = ( N 1 N 2 ). Если N 1 > N 2 , то величина называется коэфициентом поглощения. Коэфициент поглощения можно найти как: (2 2 /3 n 0 c 0 h )( N 1 N 2 ) 2 g t ( ) . Поскольку зависит от населенностей двух уровней, это не самый подходящий параметр для описания взаимодействия в тех случаях, екогда населенности уровней изменяются как например в лазере. Однако достоинством данного параметра является то, что он может быть непосредственно измерен. Действительно, dF = - Fdz . Поэтому, отношение плотности потока фотонов, прошедшего в среду на глубину l , к плотности падающего потока фотонов равно F ( l )/ F (0)= exp (- l ) . Экспериментальные измерения этого отношения при использовании достаточно монохроматического излучения дают значение для этой конкретной длины волны падающего света. Соответствующее сечение перехода получается из выражения = ( N 1 N 2 ) , если известны неселенности N 1 и N 2 . Прибор для измерения коэфициента поглощения называется абсорбционным спектрофотометром.

Зако́н Бугера - Ламберта - Бера - физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой:

где I0 - интенсивность входящего пучка, l - толщина слоя вещества, через которое проходит свет, kλ - коэффициент поглощения (не путать с безразмерным показателем поглощения κ, который связан с kλ формулой kλ = 4πκ / λ, где λ - длина волны).

Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.

В силу правил отбора у атомов многих элементов имеются энергетические уровни, с которых электрон не может непосредственно перейти на более низкий уровень. Эти уровни называются метастабильными состояниями. Электрон может перейти на такой уровень при соударениях с другим электроном или при переходе с более высокого уровня. Продолжительность пребывания электрона в метастабильном состоянии имеет порядок 10 -–3 с, в то время как в возбужденном состоянии – 10 –8 с.

Излучение, испускаемое при самопроизвольном переходе атома из возбужденного состояния в основное, называется спонтанным излучением. Спонтанное излучение различных атомов происходит не когерентно, т.к. каждый атом начинает и заканчивает излучение независимо от других (рис.15.1а).

Излучение энергии атомом, при котором переход из метастабильного состояния в основное вызывается электромагнитным излучением соответствующей частоты называется вынужденным, или индуцированным , излучением (рис.15.1б).

Вероятность индуцированного излучения резко возрастает при совпадении частоты электромагнитного поля с собственной частотой излучения возбужденного атома. Вынужденное излучение имеет такую же частоту, фазу, поляризацию и направление распространения, как и вынуждающее излучение. Следовательно, вынужденное излучение строго когерентно с вынуждающим излучением, то есть испущенный фотон неотличим от фотона, падающего на атом. Испущенные фотоны, двигаясь в одном направлении и встречая другие возбужденные атомы, стимулируют дальнейшие индуцированные переходы, и число фотонов растет лавинообразно.

Однако наряду с вынужденным излучением возможен и кон­курирующий процесс – поглощение. В системе атомов, находящейся в термодинамическом равновесии, поглощение падающего излучения будет преобладать над вынужденным, т.е. падающее излучение при прохождении через вещество будет ослабляться.

Чтобы среда усиливала падающее на нее излучение, необходимо создать неравновесное состояние системы, при котором число атомов в возбужденных состояниях было бы больше, чем их число в основном состоянии. Такие состояния называются состояниями с инверсной заселенностью . Процесс создания неравновесного состоянии вещества (перевод системы в состояние с инверсией населенностей) называется накач­кой . Накачку можно осуществить оптическими, электрическими и другими способами. Среды с инверсными состояниями называются активными. Их можно рассматривать в качестве сред с от­рицательным коэффициентом поглощения, т.к. падающий пучок света при прохождении через эти среды будет усиливаться.

Впервые на возможность получения сред, в которых свет может усиливаться за счет вынужденного излучения, указал в 1939 г. российский физик В.А.Фабрикант. Он экс­периментально обнаружил вынужденное излучение паров ртути, возбужденных при электрическом разряде. Открытие явления усиления электромагнитных волн и изоб­ретенный способ их усиления (В.А.Фабрикант, М.М.Вудынский, Ф.А.Бутаева; 1951) легли в основу квантовой электроники, положения которой позволили впоследст­вии осуществить квантовые усилители и квантовые генераторы света.

Атомы и молекулы находятся в определенных энергетических состояниях, находятся на определенных энергетических уровнях. Для того, чтобы изолированный атом изменил свое энергетическое состояние, он должен либо поглотить фотон (получить энергию) и перейти на более высокий энергетический уровень, либо излучить фотон и перейти в более низкое энергетическое состояние.

Если атом находится в возбужденном состоянии, то имеется определенная вероятность, что через некоторое время он перейдет в нижнее состояние и излучит фотон. Эта вероятность имеет две составляющие – постоянную и “переменную”.

Если в области, где находится возбужденный атом отсутствует электромагнитное поле, то процесс перехода атома в нижнее состояние, сопровождаемый излучением фотона и характеризуемый постоянной составляющей вероятности перехода, называется спонтанным излучением.

Спонтанное излучение не когерентно так как при этом различные атомы излучают независимо друг от друга. Если на атом действует внешнее электромагнитное поле с частотой, равной частоте излучаемого фотона, то процесс спонтанного перехода атома в нижнее энергетическое состояние продолжается по-прежнему, при этом фаза испускаемого атомом излучения не зависит от фазы внешнего поля.

Однако, наличие внешнего электромагнитного поля с частотой, равной частоте излучаемого фотона, побуждает атомы испускать излучение, повышает вероятность перехода атома в нижнее энергетическое состояние. В этом случае излучение атома имеет ту же частоту, направление распространения и поляризацию, что и вынуждающее внешнее излучение. Излучение атомов будет находиться в отдельном фазовом состоянии с внешним полем, то есть будет когерентным. Такой процесс излучения называется индуцированным (или вынужденным) и характеризуется “переменной” составляющей вероятности (она тем больше, чем больше плотность энергии внешнего электромагнитного поля). Поскольку на стимулирование перехода энергия электромагнитного поляне расходуется, то энергия внешнего поля увеличивается на величину энергии испущенных фотонов. Эти процессы постоянно происходят вокруг нас, так как световые волны всегда взаимодействуют с веществом.

Однако одновременно протекают и обратные процессы. Атомы поглощают фотоны и становятся возбужденными, а энергия электромагнитного поля уменьшается на величину энергии поглощенных фотонов. В природе существует равновесие между процессами испускания и поглощения, следовательно, в среднем в окружающей нас природе нет процесса усиления электромагнитного поля.



Пусть имеем двухуровневую систему.

Схема переходов в двухуровневой системе

N2 – число атомов в единице объема в возбужденном состоянии 2. N1 – в невозбужденном состоянии 1.

dN2 = - A21 N2 dt,

число атомов в единице объема, покинувших состояние 2. A21 – вероятность спонтанного перехода отдельного атома из состояния 2 в состояние 1. Проинтегрировав, получим

N2 = N20 eA21t,

где N20 – число атомов в состоянии 2 в момент времени t = 0 . Интенсивность спонтанного излучения Ic равна

Ic = (hμ21 dN2) / dt = hμ21 A21 N2 = hμ21 A21 N20 e – A21t,

Интенсивность спонтанного излучения убывает по экспоненциальному закону.

Число атомов, покидающих состояние 2 за время от t до t +dt , равно A21 N2dt , то есть это число атомов, которое прожило время t в состоянии 2. Отсюда среднее время жизни τ атома в состоянии 2 равно

τ = (1 / N20) 21 N2 tdt = A21 e-A21t

dt = (1 / A21)τ = 1 / A21

Ic = hμ21 A21 N20 e – A21t = (hμ21 N20 / τ) · e

Вероятностью индуцированного перехода W21 2 – 1 пропорционально спектральной плотности энергии электромагнитного поля ρν на частоте перехода, то есть

W21 = B21 ρν,

B21 – коэффициент Эйнштейна индуцированного излучения.

Вероятность перехода 1- 2

W12 = B12 ρν,

ρν = (8πhμ321 / c3) · (1 / e -1) формула Планка.

Примечание: r" и k" - являются векторами r и k соответственно.

Один из основных выводов квантовой механики гласит, что каждая физическая система (например, электрон в атоме) может находиться только в одном из заданных энергетических состояний, - так называемых, собственных состояниях системы. С каждым состоянием (скажем, с состоянием электрона) можно связать собственную функцию


Ψ (r" , t) = U n * (r") * e -iEnt/ħ


причем | Un (r") | 2 dxdydz - вероятность нахождения электрона в некотором состоянии n в пределах элементарного объема dxdydz с центром в точке, определяемой радиус-вектором r" , Е n - энергия n -го состояния, ħ = h/2π; - постоянная Планка.

Каждому электрону в некоторой физической системе (например, в атоме или молекуле) соответствует свое состояние, т.е. своя энергия, причем эта энергия имеет дискретное значение.

На рис. 7.1 приведена схема энергетических уровней такой физической системы (на примере атома) . Обратимся к двум из уровней этой системы - 1 и 2. Уровень 1 соответствует основному состоянию физической системы, где нахождение ее наиболее вероятно. На уровень 2 система (электрон в атоме) может попасть, если ей передана некоторая энергия, равная hv = | E 2 - E 1 |.

Этот уровень 2 атома является возбужденным состоянием. Если система (атом) находится в состоянии 2 в течение времени t 0 , то существует конечная вероятность, что он перейдет в состояние 1, испустив при этом квант электромагнитной энергии hv = E 2 - E 1 . Этот процесс, происходящий без воздействия внешнего поля случайно во времени (хаотически), называется спонтанным .



Среднее число атомов, испытывающих спонтанный переход из состояния 2 в состояние 1 за одну секунду

DN 2 / dt = A 2 1 * N 2 = N 2 / (t cn) 2 1

где А 21 - скорость (вероятность) спонтанного перехода, (t cn) 21 = A 21 - 1 называется временем жизни атома в возбужденном состоянии, связанным с переходом 2→1. Спонтанные переходы происходят из любого данного состояния только в состояния, лежащие по энергии ниже (например, если атом находится в состоянии 3, то возможны прямые переходы 3→2, 3→1, а попавший на уровень 2 атом переходит спонтанно на уровень 1).


При наличии электромагнитного поля, имеющего частоту v ~ (E 2 - E 1) / h атом может совершить переход из состоянии 1 в состояние 2, поглощая при этом квант электромагнитного поля (фотон) с энергией hv. Однако, если атом в тот момент, когда он подвергается действию электромагнитного поля, уже находится в состоянии 2, то он может перейти в состояние 1 с испусканием кванта с энергией hv под воздействием этого поля. Этот переход соответствует индуцированному излучению.

Процесс индуцированного перехода от спонтанного отличает то, что для индуцированного перехода скорости переходов 2→1 и 1→2 равны, в то время как для спонтанного процесса скорость перехода 1→2, при котором энергия атома увеличивается, равна нулю.

Кроме этого, индуцированные процессы имеют и другие принципиальные особенности:

  • скорость индуцированных процессов пропорциональна интенсивности электромагнитного поля, в то время как спонтанные от поля не зависят;
  • волновой вектор k" , определяющий направление распространения индуцированного излучения, совпадает по направлению с соответствующим вектором вынуждающего поля (спонтанное излучение имеет произвольное направление распространения);
  • частота, фаза и поляризация индуцированного излучения также совпадают с частотой, фазой и поляризацией вынуждающего поля, в то время как спонтанное излучение, даже имея ту же частоту, имеет произвольную случайную фазу и поляризацию.
Таким образом, можно утверждать, что вынуждающее и индуцированное (вынужденное) излучения оказываются строго когерентными.

Рассмотрим случай, когда плоская монохроматическая волна с частотой v и интенсивностью I v распространяется через среду с объемной плотностью атомов N 2 на уровне 2 и N 1 на уровне 1.

Если ввести скорость переходов, которые индуцируются монохроматическим полем с частотой v, обозначив ее через W i (v), то можно оценить условия, при которых будет существовать индуцированное излучение.

За 1 с в объеме 1 м 3 возникает N 2 W i индуцированных переходов с уровня 2 на уровень 1 и N 1 W i переходов с 1 на 2 уровень. Таким образом, полная мощность, генерируемая в единичном объеме