Константа скорости реакции. Скорость химической реакции и факторы, на нее влияющие Значение константы скорости химической реакции зависит от

Рис. 40. Зависимость величины обратной концентрации реагента от времени для реакции второго порядка

Рис. 39. Зависимость логарифма концентрации реагента от времени протекания для реакции первого порядка

Рис. 38. Изменение концентрации исходного вещества от времени в реакции первого порядка

Рис. 37. Изменение концентрации исходного вещества от времени в реакции нулевого порядка

Математически данная линейная зависимость запишется следующим образом

где k - константа скорости, С 0 - начальная молярная концентрация реагента, С - концентрация в момент времени t.

Из неё можно вывести формулу для расчёта константы скорости химической реакции нулевого порядка.

Константа скорости нулевого порядка измеряется в моль/л? с (моль · л -1 · с -1).

Время полупревращения для реакции нулевого порядка пропорционально концентрации исходного вещества

Для реакций первого порядка кинетическая кривая в координатах С,t носит экспоненциальный характер и выглядит следующим образом (рис. 38) Математически данная кривая описывается следующим уравнением

С = С 0 e - kt

На практике для реакций первого порядка кинетическую кривую чаще всего строят в координатах lnC, t. В этом случае наблюдается линейная зависимость lnС от времени (рис. 39)

ln С = lnС 0 - kt

ln С

Соответственно, величину константы скорости и время полупревращения можно рассчитать по следующим формулам

k = ln или k = 2,303lg

(при переходе от десятичного логарифма к натуральному).

Константа скорости реакции первого порядка имеет размерность t -1 , т.е. 1/с и не зависит от единиц измерения концентрации. Она показывает долю, которую составляют молекулы, вступившие в реакцию за единицу времени, от общего числа молекул реагента в системе. Таким образом, в реакциях первого порядка за одинаковые промежутки времени расходуются одинаковы доли взятого количества исходного вещества.

Второй отличительной особенностью реакций первого порядка является то, что t ½ для них не зависит от начальной концентрации реагента, а определяется только константой скорости.

Вид уравнения зависимости концентрации от времени для реакций второго порядка рассмотрим только для простейшего случая, когда в элементарном акте участвуют 2 одинаковые молекулы, или молекулы разных веществ, но начальные концентрации их (С 0) равны. При этом линейная зависимость наблюдается в координатах 1/С, t (рис. 40). Математическое уравнение этой зависимости запишется следующим образом

и измеряется в л?с -1 ?моль -1 , т.е. ее численное значение зависит от того, в каких единицах измеряется концентрация вещества.


Период полупревращения реакций второго порядка обратно пропорционален начальной концентрации реагента

Это связано с тем, что скорость реакций второго порядка в сильной мере зависит от числа столкновений между молекулами реагирующих веществ в единицу времени, которое, в свою очередь, пропорционально числу молекул в единице объема, т.е. концентрации вещества. Таким образом, чем больше концентрация вещества в системе, тем чаще сталкиваются молекулы между собой и тем за меньший промежуток времени половина их успеет прореагировать.

Реакции третьего порядка, как уже было сказано ранее, встречаются крайне редко и не представляют практического интереса. Поэтому в связи с этим мы их не будем рассматривать.

· Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения

концентраций реагентов.

Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.

Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

· Зако́н де́йствующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при

равновесии, а также зависимость скорости химической реакции от концентрации исходных веществ.

Энергия активации химической реакции. Активные молекулы. Активированный комплекс.

· Энергия активации в химии - минимальное количество энергии, которое требуется сообщить системе (в химии

выражается в джоулях на моль), чтобы произошла реакция. Термин введён Сванте Августом Аррениусом в 1889. Типичное обозначение энергии реакции Ea.

В химической модели, известной как Теория активных соударений (ТАС), есть три условия, необходимых для того, чтобы произошла реакция:

- Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция.

- Молекулы должны обладать необходимой энергией (энергией активации). В процессе химической реакции взаимодействующие молекулы должны пройти через промежуточное состояние, которое может обладать большей энергией. То есть молекулы должны преодолеть энергетический барьер; если этого не произойдёт, реакция не начнётся.

Молекулы должны быть правильно ориентированы относительно друг друга.

При низкой (для определённой реакции) температуре большинство молекул обладают энергией меньшей, чем энергия активации, и неспособны преодолеть энергетический барьер. Однако в веществе всегда найдутся отдельные молекулы, энергия которых значительно выше средней. Даже при низких температурах большинство реакций продолжают идти. Увеличение температуры позволяет увеличить долю молекул, обладающих достаточной энергией, чтобы преодолеть энергетический барьер. Таким образом повышается скорость реакции.

· Активные радикалы , согласно одной из теорий старения организма, являются причиной старения. Они образуются как побочные

продукты различных химических реакций в организме и окисляют его. Поэтому от них скорее надо изьавляться. Один из способов - принимать антиоксиданты, Проблемой выпуска которых занимается фармацевтика. Так же эти активные частицы могут использоваться в качестве дезинфецирующих растворов

· Активированный комплекс , группировка атомов в решающий момент элементарного акта химической реакции. Понятием об

активированном комплексе широко пользуются в теории скоростей химических реакций.

Вероятность образования новых молекул при встрече частиц исходных веществ будет зависеть от процесса перестройки их электронных оболочек. Необходимым условием этого является возможность перекрывания электронных орбиталей атомов с разрывом старых и образованием новых связей, которая не всегда может быть реализована вследствие геометрического строения взаимодействующих частиц. Например, для того чтобы произошел элементарный акт бимолекулярной химической реакции A + B®АВ, расстояние между частицами A и B и их взаимная ориентация должны стать такими, чтобы была возможна перестройка их электронных оболочек.

Перекрывание электронных орбиталей осуществляется в процессе сближения частиц. При этом увеличиваются как энергия притяжения, так и энергия отталкивания. Изменение соотношения величин этих энергий в зависимости от расстояния между частицами может привести к возникновению энергетического барьера, преодоление которого является необходимым условием осуществления элементарного акта. Поэтому для многих реакций имеется минимальная пороговая энергия, получившая название энергии активации (Е ак), которой должны обладать встретившиеся частицы, для того чтобы произошла химическая реакция. Основным источником энергии для преодоления этого энергетического барьера является кинетическая энергия теплового движения частиц, которая зависит от температуры. Поэтому вероятность осуществления элементарного акта (константа скорости реакции) будет зависеть от температуры.

Сванте Аррениус (Arrhenius ) предложил описывать температурную зависимость константы скорости реакции уравнением

где k 0 – предэкспоненциальный множитель; Е ак – энергия активации; R –универсальная газовая постоянная; Т – температура (К).

На практике для большинства реакций в небольшом температурном интервале предэкспоненциальный множитель и энергия активации считаются постоянными величинами, не зависящими от температуры.

Теория элементарных химических реакций определяет физический смысл этих констант и позволяет рассчитывать их величины. Существуют две основные модели описания элементарного акта реакции:теория активных соударений и теория переходного состояния.

Теория активных соударений.

Применение молекулярно-кинетической теории газов к описанию элементарной химической реакции позволило создать теорию активных соударений, в которой раскрывается физический смысл предэкспоненциального множителя в уравнении Аррениуса.

Согласно этой теории скорость бимолекулярной химической реакции определяется числом столкновений молекул за единицу времени, причем не все столкновения приводят к образованию новой молекулы, а только те, при которых кинетическая энергия исходных частиц больше энергии активации реакции. Каждое такое активное соударение приводит к осуществлению элементарного акта.

При протекании элементарной бимолекулярной химической реакции A + B ® AB при температуре Т общее число столкновений молекул A и B в газе может быть рассчитано по уравнению

,

где z – число соударений в единице объема в единицу времени; n i – число частиц в единице объема; – сечение упругого соударения частиц с эффективными радиусами r i ; – средняя относительная скорость движения частиц; – средняя молекулярная масса частиц А и В; k – постоянная Больцмана. Таким образом, .

При переходе от числа частиц к числу молей соответствующих веществ в единице объема (молярные концентрации) получаем

,

где R =N A – универсальная газовая постоянная; N A – число Авогадро; С i – молярная концентрация.

Пример . Определим общее число столкновений молекул H 2 и Cl 2 в 1 см 3 смеси равных объемов газов при нормальных условиях.

Число частиц H 2 и Cl 2 в 1 см 3 1/см 3 .

Относительная скорость частиц см/с.

Сечение упругого соударения молекул s=1,1×10 -14 см 2 .

Число соударений частиц H 2 и Cl 2 в 1 см 3 за 1 секунду равно: .

Поскольку к образованию новых молекул приводят только активные соударения, общее число соударений необходимо умножить на функцию f (E aк), определяющую долю соударений частиц, обладающих энергией большей, чем энергия активации Е ак:

z a = z ×f (E aк).

Функцию f (E aк) можно получить из закона распределения Максвелла - Больцмана. Доля молекул с энергией Е большей, чем энергия активации E ак (E >E ак), равна:

,

где n 0 – общее число молекул в системе; n E >E ак – число молекул, обладающих кинетической энергией большей, чем энергия активации.

Энергия активации реальных реакций, протекающих не слишком быстро и не слишком медленно, составляет величину порядка Е ак ~ 50÷100 кДж/моль. С учетом этого при температурах близких к стандартным доля молекул, имеющих энергию больше, чем энергия активации, составляет величину порядка ~10 -9 ÷10 -18 , т. е. доля столкновений частиц, приводящих к их взаимодействию, достаточно мала.

Таким образом, число активных соударений в зависимости от температуры равно:

.

Для многих реакций важна геометрия столкновений. Сталкивающиеся активные молекулы должны быть соответствующим образом ориентированы относительно друг друга, чтобы обеспечить возможность осуществления элементарного акта взаимодействия. Геометрия столкновения учитывается множителем р , получившим название стерического фактора . Тогда число активных соударений с учетом стерического фактора (z а * ) будет равно: z а * =p z а.

Поскольку каждое активное соударение приводит к образованию новой молекулы, то число активных соударений в единице объема в единицу времени (z а * ) соответствует, по определению скорости химической реакции, числу элементарных актов взаимодействия в единицу времени в единице объема. Таким образом, z а * = v ,

.

Согласно закону действующих масс, скорость химической реакции A + B ® AB равна: . Следовательно, константа скорости реакции k будет определяться выражением

или ,

где –предэкспоненциальный множитель.

Произведение сечения упругих столкновений (s) на среднюю скорость движения молекул () представляет собой частотный фактор (z 0):

.

Величина z 0 пропорциональна числу столкновений молекул в единице объема в единицу времени (числу соударений при единичных концентрациях частиц). Частотный фактор слабо зависит от температуры и может считаться величиной постоянной, которая может быть вычислена из молекулярно-кинетической теории газов.

Стерический фактор р учитывает ориентацию частиц в пространстве в момент столкновения по отношению друг к другу. При благоприятной ориентации для образования новых молекул р »1, при неблагоприятной ориентации р <1. Таким образом, k 0 =p×z 0 .

Теория активных соударений не позволяет рассчитать величину энергии активации. Дальнейшее развитие теории элементарных реакций связано с привлечением квантово-механического описания перестройки системы химических связей в молекулах реагирующих веществ.

Теория переходного состояния.

В элементарном акте химической реакции участвуют частицы исходных веществ, которые в ходе реакции превращаются в частицы продуктов. Этот переход осуществляется, как было отмечено ранее, через образование промежуточной нестабильной частицы, включающей в себя все атомы взаимодействующих частиц, объединенные общей системой химических связей. В процессе этого превращения изменяются расстояния между ядрами атомов, входящих в частицы. В модели адиабатического приближения каждому взаимному расположению ядер атомов соответствует одно определенное значение энергии, т. е. энергия системы будет определяться взаимным расположением атомов. Зависимость потенциальной энергии системы взаимодействующих частиц от их координат можно рассматривать как поверхность в многомерном пространстве – поверхность потенциальной энергии. Наиболее наглядно эту поверхность можно проиллюстрировать на примере бимолекулярной реакции АВ + С ® А + ВС, в элементарном акте которой принимают участие три атома.

В общем случае энергия трех взаимодействующих атомов зависит от расстояния между ними (r AB и r BC ) и угла a. В элементарном акте угол a полагают постоянным (угол подлета частицы С к частице АВ), например, при столкновении частиц АВ и С по направлению линии связи a=180° (рис.6.1). В этом случае поверхность потенциальной энергии будет функцией двух переменных E (r AB , r BC ). Построенная в декартовой системе координат поверхность потенциальной энергии показана на рис.6.2, а .


Рис. 6‑1 Пространственное расположение трех атомов при протекании элементарного акта бимолекулярной реакции АВ + С ® А + ВС (столкновении частиц по направлению линии связи a=180°).

В исходном состоянии энергия системы минимальна по отношению к расположению атомов в молекуле АВ (определяется r AB ) и слабо зависит от другой координаты(r BC ). На диаграмме (рис.6.2, а )этому состоянию соответствует долина исходных веществ . В конечном состоянии энергия системы минимальна по отношению к расположению атомов в молекуле ВС (r BC ) и слабо зависит от другой координаты (r AB ). На диаграмме этому состоянию соответствует долина продуктов . Элементарный акт химической реакции представляет собой переход системы из долины исходных веществ с долину продуктов. Энергетически выгодно, чтобы этот переход осуществлялся через точки минимумов на поверхности потенциальной энергии.


Рис. 6‑2 Поверхность потенциальной энергии реакции АВ + С ® А + ВС (а) и изолинии потенциальной энергии (б)

Этот переход (путь реакции) показан стрелкой на диаграмме потенциальной поверхности, изображенной на плоскости в виде системы линий, соединяющих точки с одинаковыми значениями потенциальной энергии (рис. 6.2, б ). При движении из одной долины в другую энергия системы сначала возрастает, а затем уменьшается, система преодолевает перевал (точка P ). Слева располагается «высокое» плато, которое соответствует состоянию системы из трех отдельных атомов А, В, С (одновременно r AB и r BC ® ∞). Справа поверхность «круто» поднимается вверх, поскольку одновременное уменьшение расстояний между атомами (r AB и r BC ® 0) приводит к резкому возрастанию энергии отталкивания атомов (рис. 6.2, а ).

Состояние системы с максимальной энергией (точка P ) называется переходным состоянием , которое соответствует образованию тремя атомами короткоживущего промежуточного соединения (активированного комплекса ), обладающего повышенным запасом энергии. Таким образом, элементарная химическая реакция проходит через стадию образования активированного комплекса. Он представляет собой нестабильную молекулу, в состав которой входят все атомы исходных веществ и в которой старые химические связи еще полностью не разрушены, а новые еще полностью не образованы.

В рассматриваемой реакции система проходит через активированный комплекс (ABC) ¹:


Все параметры, относящиеся к переходному состоянию (активированному комплексу), обозначаются верхним индексом ¹.

Если ввести понятие координаты реакции (X ) – положение системы на пути перехода из начального состояния в конечное (рис.6.2, б ), то изменение энергии системы в ходе элементарного акта будет представлять собой функцию одной переменной E (X ). Вид этой зависимости представлен на энергетической диаграмме рис.6.3.

Максимум на диаграмме (точка P ) соответствует переходному состоянию. Энергия активации реакции соответствует энергии образования активированного комплекса. Это энергия, которой должны обладать частицы, для того чтобы произошел элементарный акт химической реакции.


Рис. 6‑3 Диаграмма изменения энергии системы в ходе реакции АВ+С ® А+ВС

Необходимо отметить, что теория переходного состояния базируется на ряде допущений. Элементарный акт реакции проходит через образование активированного комплекса по пути преодоления самого низкого энергетического барьера. Расчет энергии активации проводится с использованием методов квантовой механики. Считается, что активированный комплекс (ABC) ¹ представляет собой обычную молекулу, у которой одна колебательная степень свободы заменяется на поступательное движение вдоль координаты реакции (X ). Система находится все время в состоянии термодинамического равновесия. Вероятность перехода активированного комплекса в продукты реакции определяется трансмиссионным коэффициентом c, который чаще всего равен единице.

1. Основные понятия и постулаты химической кинетики

Химическая кинетика - раздел физической химии, изучающий скорости химических реакций. Основные задачи химической кинетики: 1) расчет скоростей реакций и определение кинетических кривых, т.е. зависимости концентраций реагирующих веществ от времени (прямая задача ); 2) определение механизмов реакций по кинетическим кривым (обратная задача ).

Скорость химической реакции описывает изменение концентраций реагирующих веществ в единицу времени. Для реакции

a A + b B + ...d D + e E + ...

скорость реакции определяется следующим образом:

где квадратные скобки обозначают концентрацию вещества (обычно измеряется в моль/л), t - время; a , b , d , e - стехиометрические коэффициенты в уравнении реакции.

Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры и наличия катализатора. Зависимость скорости реакции от концентрации описывается основным постулатом химической кинетики - законом действующих масс :

Скорость химической реакции в каждый момент времени пропорциональна текущим концентрациям реагирующих веществ, возведенным в некоторые степени:

,

где k - константа скорости (не зависящая от концентрации); x , y - некоторые числа, которые называют порядком реакции по веществам A и B, соответственно. Эти числа в общем случае никак не связаны с коэффициентами a и b в уравнении реакции. Сумма показателей степеней x + y называется общим порядком реакции . Порядок реакции может быть положительным или отрицательным, целым или дробным.

Большинство химических реакций состоит из нескольких стадий, называемых элементарными реакциями . Под элементарной реакцией обычно понимают единичный акт образования или разрыва химической связи, протекающий через образование переходного комплекса. Число частиц, участвующих в элементарной реакции, называют молекулярностью реакции. Элементарные реакции бывают только трех типов: мономолекулярные (A B + ...), бимолекулярные (A + B D + ...) и тримолекулярные (2A + B D + ...). Для элементарных реакций общий порядок равен молекулярности, а порядки по веществам равны коэффициентам в уравнении реакции.

ПРИМЕРЫ

Пример 1-1. Скорость образования NO в реакции 2NOBr (г) 2NO (г) + Br 2(г) равна 1.6 . 10 -4 моль/(л. с). Чему равна скорость реакции и скорость расходования NOBr?

Решение . По определению, скорость реакции равна:

Моль/(л. с).

Из этого же определения следует, что скорость расходования NOBr равна скорости образования NO с обратным знаком:

моль/(л. с).

Пример 1-2. В реакции 2-го порядка A + B D начальные концентрации веществ A и B равны, соответственно, 2.0 моль/л и 3.0 моль/л. Скорость реакции равна 1.2 . 10 -3 моль/(л. с) при [A] = 1.5 моль/л. Рассчитайте константу скорости и скорость реакции при [B] = 1.5 моль/л.

Решение . По закону действующих масс, в любой момент времени скорость реакции равна:

.

К моменту времени, когда [A] = 1.5 моль/л, прореагировало по 0.5 моль/л веществ A и B, поэтому [B] = 3 – 0.5 = 2.5 моль/л. Константа скорости равна:

Л/(моль. с).

К моменту времени, когда [B] = 1.5 моль/л, прореагировало по 1.5 моль/л веществ A и B, поэтому [A] = 2 – 1.5 = 0.5 моль/л. Скорость реакции равна:

Моль/(л. с).

ЗАДАЧИ

1-1. Как выражается скорость реакции синтеза аммиака 1/2 N 2 + 3/2 H 2 = NH 3 через концентрации азота и водорода? (ответ)

1-2. Как изменится скорость реакции синтеза аммиака 1/2 N 2 + 3/2 H 2 = NH 3 , если уравнение реакции записать в виде N 2 + 3H 2 = 2NH 3 ? (ответ)

1-3. Чему равен порядок элементарных реакций: а) Сl + H 2 = HCl + H; б) 2NO + Cl 2 = 2NOCl? (ответ)

1-4. Какие из перечисленных величин могут принимать а) отрицательные; б) дробные значения: скорость реакции, порядок реакции, молекулярность реакции, константа скорости, стехиометрический коэффициент? (ответ)

1-5. Зависит ли скорость реакции от концентрации продуктов реакции? (ответ)

1-6. Во сколько раз увеличится скорость газофазной элементарной реакции A = 2D при увеличении давления в 3 раза?(ответ)

1-7. Определите порядок реакции, если константа скорости имеет размерность л 2 /(моль 2 . с). (ответ)

1-8. Константа скорости газовой реакции 2-го порядка при 25 о С равна 10 3 л/(моль. с). Чему равна эта константа, если кинетическое уравнение выражено через давление в атмосферах?(ответ)

1-9. Для газофазной реакции n -го порядка nA B выразите скорость образования B через суммарное давление.(ответ)

1-10. Константы скорости прямой и обратной реакции равны 2.2 и 3.8 л/(моль. с). По какому из перечисленных ниже механизмов могут протекать эти реакции: а) A + B = D; б) A + B = 2D; в) A = B + D; г) 2A = B.(ответ)

1-11. Реакция разложения 2HI H 2 + I 2 имеет 2-й порядок с константой скорости k = 5.95 . 10 -6 л/(моль. с). Вычислите скорость реакции при давлении 1 атм и температуре 600 К. (ответ)

1-12. Скорость реакции 2-го порядка A + B D равна 2.7 . 10 -7 моль/(л. с) при концентрациях веществ A и B, соответственно, 3.0 . 10 -3 моль/л и 2.0 моль/л. Рассчитайте константу скорости.(ответ)

1-13. В реакции 2-го порядка A + B 2D начальные концентрации веществ A и B равны по 1.5 моль/л. Скорость реакции равна 2.0 . 10 -4 моль/(л. с) при [A] = 1.0 моль/л. Рассчитайте константу скорости и скорость реакции при [B] = 0.2 моль/л. (ответ)

1-14. В реакции 2-го порядка A + B 2D начальные концентрации веществ A и B равны, соответственно, 0.5 и 2.5 моль/л. Во сколько раз скорость реакции при [A] = 0.1 моль/л меньше начальной скорости? (ответ)

1-15. Скорость газофазной реакции описывается уравнением w = k . [A] 2 . [B]. При каком соотношении между концентрациями А и В начальная скорость реакции будет максимальна при фиксированном суммарном давлении? (ответ)

2. Кинетика простых реакций

В данном разделе мы составим на основе закона действующих масс и решим кинетические уравнения для необратимых реакций целого порядка.

Реакции 0-го порядка. Скорость этих реакций не зависит от концентрации:

,

где [A] - концентрация исходного вещества. Нулевой порядок встречается в гетерогенных и фотохимических реакциях.

Реакции 1-го порядка. В реакциях типа A B скорость прямо пропорциональна концентрации:

.

При решении кинетических уравнений часто используют следующие обозначения: начальная концентрация [A] 0 = a , текущая концентрация [A] = a - x (t ), где x (t ) - концентрация прореагировавшего вещества A. В этих обозначениях кинетическое уравнение для реакции 1-го порядка и его решение имеют вид:

Решение кинетического уравнения записывают и в другом виде, удобном для анализа порядка реакции:

.

Время, за которое распадается половина вещества A, называют периодом полураспада t 1/2 . Он определяется уравнением x (t 1/2) = a /2 и равен

Реакции 2-го порядка. В реакциях типа A + B D + ... скорость прямо пропорциональна произведению концентраций:

.

Начальные концентрации веществ: [A] 0 = a , [B] 0 = b ; текущие концентрации: [A] = a - x (t ), [B] = b - x (t ).

При решении этого уравнения различают два случая.

1) одинаковые начальные концентрации веществ A и B: a = b . Кинетическое уравнение имеет вид:

.

Решение этого уравнения записывают в различных формах:

Период полураспада веществ A и B одинаков и равен:

2) Начальные концентрации веществ A и B различны: a b . Кинетическое уравнение имеет вид:
.

Решение этого уравнения можно записать следующим образом:

Периоды полураспада веществ A и B различны: .

Реакции n-го порядка n A D + ... Кинетическое уравнение имеет вид:

.

Решение кинетического уравнения:

. (2.1)

Период полураспада вещества A обратно пропорционален (n -1)-й степени начальной концентрации:

. (2.2)

Пример 2-1. Период полураспада радиоактивного изотопа 14 C - 5730 лет. При археологических раскопках было найдено дерево, содержание 14 C в котором составляет 72% от нормального. Каков возраст дерева?
Решение. Радиоактивный распад - реакция 1-го порядка. Константа скорости равна:

Время жизни дерева можно найти из решения кинетического уравнения с учетом того, что [A] = 0.72 . [A] 0:

Пример 2-2. Установлено, что реакция 2-го порядка (один реагент) завершается на 75% за 92 мин при исходной концентрации реагента 0.24 М. Какое время потребуется, чтобы при тех же условиях концентрация реагента достигла 0.16 М?
Решение. Запишем два раза решение кинетического уравнения для реакции 2-го порядка с одним реагентом:

,

где, по условию, a = 0.24 M, t 1 = 92 мин, x 1 = 0.75 . 0.24 = 0.18 M, x 2 = 0.24 - 0.16 = 0.08 M. Поделим одно уравнение на другое:

Пример 2-3. Для элементарной реакции n A B обозначим период полураспада A через t 1/2 , а время распада A на 75% - через t 3/4 . Докажите, что отношение t 3/4 / t 1/2 не зависит от начальной концентрации, а определяется только порядком реакции n .Решение. Запишем два раза решение кинетического уравнения для реакции n -го порядка с одним реагентом:

и поделим одно выражение на другое. Постоянные величины k и a из обоих выражений сократятся, и мы получим:

.

Этот результат можно обобщить, доказав, что отношение времен, за которые степень превращения составит a и b , зависит только от порядка реакции:

.

ЗАДАЧИ

2-1. Пользуясь решением кинетического уравнения, докажите, что для реакций 1-го порядка время t x , за которое степень превращения исходного вещества достигает x , не зависит от начальной концентрации. (ответ)

2-2. Реакция первого порядка протекает на 30% за 7 мин. Через какое время реакция завершится на 99%? (ответ)

2-3. Период полураспада радиоактивного изотопа 137 Cs, который попал в атмосферу в результате Чернобыльской аварии, - 29.7 лет. Через какое время количество этого изотопа составит менее 1% от исходного? (ответ)

2-4. Период полураспада радиоактивного изотопа 90 Sr, который попадает в атмосферу при ядерных испытаниях, - 28.1 лет. Предположим, что организм новорожденного ребенка поглотил 1.00 мг этого изотопа. Сколько стронция останется в организме через а) 18 лет, б) 70 лет, если считать, что он не выводится из организма?(ответ)

2-5. Константа скорости для реакции первого порядка SO 2 Cl 2 = SO 2 + Cl 2 равна 2.2 . 10 -5 с -1 при 320 о С. Какой процент SO 2 Cl 2 разложится при выдерживании его в течение 2 ч при этой температуре?(ответ)

2-6. Константа скорости реакции 1-го порядка

2N 2 O 5(г) 4NO 2(г) + O 2(г)

при 25 о С равна 3.38 . 10 -5 с -1 . Чему равен период полураспада N 2 O 5 ? Чему будет равно давление в системе через а) 10 с, б) 10 мин, если начальное давление было равно 500 мм рт. ст. (ответ)

2-7. Реакцию первого порядка проводят с различными количествами исходного вещества. Пересекутся ли в одной точке на оси абсцисс касательные к начальным участкам кинетических кривых? Ответ поясните.(ответ)

2-8. Реакция первого порядка A 2B протекает в газовой фазе. Начальное давление равно p 0 (B отсутствует). Найдите зависимость общего давления от времени. Через какое время давление увеличится в 1.5 раза по сравнению с первоначальным? Какова степень протекания реакции к этому времени? (ответ)

2-9. Реакция второго порядка 2A B протекает в газовой фазе. Начальное давление равно p 0 (B отсутствует). Найдите зависимость общего давления от времени. Через какое время давление уменьшится в 1.5 раза по сравнению с первоначальным? Какова степень протекания реакции к этому времени? (ответ)

2-10. Вещество A смешали с веществами B и C в равных концентрациях 1 моль/л. Через 1000 с осталось 50% вещества А. Сколько вещества А останется через 2000 с, если реакция имеет: а) нулевой, б) первый, в) второй, в) третий общий порядок?(ответ)

2-11. Какая из реакций - первого, второго или третьего порядка - закончится быстрее, если начальные концентрации веществ равны 1 моль/л и все константы скорости, выраженные через моль/л и с, равны 1? (ответ)

2-12. Реакция

CH 3 CH 2 NO 2 + OH - H 2 O + CH 3 CHNO 2 -

имеет второй порядок и константу скорости k = 39.1 л/(моль. мин) при 0 о С. Был приготовлен раствор, содержащий 0.004 М нитроэтана и 0.005 М NaOH. Через какое время прореагирует 90% нитроэтана?

2-13. Константа скорости рекомбинации ионов H + и ФГ - (фенилглиоксинат) в молекулу НФГ при 298 К равна k = 10 11.59 л/(моль. с). Рассчитайте время, в течение которого реакция прошла на 99.999%, если исходные концентрации обоих ионов равны 0.001 моль/л. (ответ)

2-14. Скорость окисления бутанола-1 хлорноватистой кислотой не зависит от концентрации спирта и пропорциональна 2 . За какое время реакция окисления при 298 К пройдет на 90%, если исходный раствор содержал 0.1 моль/л HClO и 1 моль/л спирта? Константа скорости реакции равна k = 24 л/(моль. мин). (ответ)

2-15. При определенной температуре 0.01 М раствор этилацетата омыляется 0.002 М раствором NaOH на 10% за 23 мин. Через сколько минут он будет омылен до такой же степени 0.005 М раствором KOH? Считайте, что данная реакция имеет второй порядок, а щелочи диссоциированы полностью.(ответ)

2-16. Реакция второго порядка A + B P проводится в растворе с начальными концентрациями [A] 0 = 0.050 моль/л и [B] 0 = 0.080 моль/л. Через 1 ч концентрация вещества А уменьшилась до 0.020 моль/л. Рассчитайте константу скорости и периоды полураспада обоих веществ.

Механизмы протекания химических превращений и их скорости изучает химическая кинетика. Химические процессы протекают во времени с различными скоростями. Какие-то происходят быстро, почти мгновенно, для протекания других требуется весьма продолжительное время.

Скорость реакции - скорость с которой расходуются реагенты (их концентрация уменьшается) или образуются продукты реакции в единице объёма.

Факторы, способные влиять на скорость химической реакции

На то, насколько быстро будет происходить химическое взаимодействие, могут повлиять следующие факторы:

  • концентрация веществ;
  • природа реагентов;
  • температура;
  • присутствие катализатора;
  • давление (для реакций в газовой среде).

Таким образом, изменяя определённые условия протекания химического процесса, можно повлиять на то, насколько быстро будет протекать процесс.

В процессе химического взаимодействия частицы реагирующих веществ сталкиваются друг с другом. Количество таких совпадений пропорционально числу частиц веществ в объёме реагирующей смеси, а значит и пропорционально молярным концентрациям реагентов.

Закон действующих масс описывает зависимость скорости реакции от молярных концентраций веществ, вступающих во взаимодействие.

Для элементарной реакции (А + В → …) данный закон выражается формулой:

υ = k ∙С A ∙С B,

где k - константа скорости; С A и С B - молярные концентрации реагентов, А и В.

Если одно из реагирующих веществ находится в твёрдом состоянии, то взаимодействие происходит на поверхности раздела фаз, в связи с этим концентрация твёрдого вещества не включается в уравнение кинетического закона действующих масс. Для понимания физического смысла константы скорости, необходимо принять С, А и С В равными 1. Тогда становится понятно, что константа скорости равна скорости реакции при концентрациях реагентов, равных единице.

Природа реагентов

Так как в процессе взаимодействия разрушаются химические связи реагирующих веществ и образуются новые связи продуктов реакции, то большую роль будет играть характер связей, участвующих в реакции соединений и строение молекул реагирующих веществ.

Площадь поверхности соприкосновения реагентов

Такая характеристика, как площадь поверхности соприкосновения твёрдых реагентов, на протекание реакции влияет, порой, довольно значительно. Измельчение твёрдого вещества позволяет увеличить площадь поверхности соприкосновения реагентов, а значит и ускорить протекание процесса. Площадь соприкосновения растворимых веществ легко увеличивается растворением вещества.

Температура реакции

При увеличении температуры энергия сталкивающихся частиц возрастёт, очевидно, что с ростом температуры и сам химический процесс будет ускоряться. Наглядным примером того, как увеличение температуры влияет на процесс взаимодействия веществ, можно считать приведённые в таблице данные.

Таблица 1. Влияние изменения температуры на скорость образования воды (О 2 +2Н 2 →2Н 2 О)

Для количественного описания того, как температура может влиять на скорость взаимодействия веществ используют правило Вант-Гоффа. Правило Вант-Гоффа состоит в том, что при повышении температуры на 10 градусов, происходит ускорение в 2−4 раза.

Математическая формула, описывающая правило Вант-Гоффа, выглядит следующим образом:

Где γ — температурный коэффициент скорости химической реакции (γ = 2−4).

Но гораздо более точно описывает температурную зависимость константы скорости уравнение Аррениуса:

Где R - универсальная газовая постоянная, А - множитель, определяемый видом реакции, Е, А - энергия активации.

Энергией активации называют такую энергию, которую должна приобрести молекула, чтобы произошло химическое превращение. То есть она является неким энергетическим барьером, который необходимо будет преодолеть сталкивающимся в реакционном объёме молекулам для перераспределения связей.

Энергия активации не зависит от внешних факторов, а зависит от природы вещества. Значение энергии активации до 40 - 50 кДж/моль позволяет веществам реагировать друг с другом довольно активно. Если же энергия активации превышает 120 кДж/моль , то вещества (при обычных температурах) будут реагировать очень медленно. Изменение температуры приводит к изменению количества активных молекул, то есть молекул, достигших энергии большей, чем энергия активации, а значит способных к химическим превращениям.

Действие катализатора

Катализатором называют вещество, способное ускорять процесс, но не входящее в состав его продуктов. Катализ (ускорение протекания химического превращения) разделяют на · гомогенный, · гетерогенный. Если реагенты и катализатор находятся в одинаковых агрегатных состояниях, то катализ называют гомогенным, если в различных, то гетерогенным. Механизмы действия катализаторов разнообразны и достаточно сложны. Кроме того, стоит отметить, что для катализаторов характерна избирательность действия. То есть один и тот же катализатор, ускоряя одну реакцию, может никак не изменять скорость другой.

Давление

Если в превращении участвуют газообразные вещества, то на скорость протекания процесса будет влиять изменение давления в системе. Это происходит потому , что для газообразных реагентов изменение давления приводит к изменению концентрации.

Экспериментальное определение скорости химической реакции

Определить быстроту протекания химического превращения экспериментально можно, получив данные о том, как в единицу времени меняется концентрация веществ, вступающих в реакцию, или продуктов. Методы получения таких данных делят на

  • химические,
  • физико-химические.

Химические методы достаточно просты, доступны и точны. С их помощью скорость определяют, непосредственно замеряя концентрацию или количество вещества реагентов или продуктов. В случае медленной реакции, для контроля за тем, как расходуется реагент отбирают пробы. После чего определяют содержание в пробе реагента. Осуществляя отбор проб через равные промежутки времени, можно получить данные об изменении количества вещества в процессе взаимодействия. Чаще всего используют такие виды анализа, как титриметрия и гравиметрия.

Если реакция протекает быстро, то чтобы отобрать пробу, её приходится останавливать. Это можно сделать с помощью охлаждения, резкого удаления катализатора , также можно произвести разбавление либо перевести один из реагентов в не реакционноспособное состояние.

Методы физико-химического анализа в современной экспериментальной кинетике используются чаще, чем химические. С их помощью можно наблюдать изменение концентраций веществ в реальном времени. При этом реакцию нет необходимости останавливать и отбирать пробы.

Физико-химические методы основываются на измерении физического свойства, зависящего от количественного содержания в системе определённого соединения и изменяющегося со временем. Например, если в реакции участвуют газы, то таким свойством может быть давление. Также измеряют электропроводность, показатель преломления, спектры поглощения веществ.