Что такое противолежащие углы в трапеции. Полезные свойства трапеции. Свойства трапеции, вписанной в окружность

- (греч. trapezion). 1) в геометрии четырехугольник, у которого две стороны параллельны, а две нет. 2) фигура, приспособленная для гимнастических упражнений. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТРАПЕЦИЯ… … Словарь иностранных слов русского языка

Трапеция - Трапеция. ТРАПЕЦИЯ (от греческого trapezion, буквально столик), выпуклый четырехугольник, в котором две стороны параллельны (основания трапеции). Площадь трапеции равна произведению полусуммы оснований (средней линии) на высоту. … Иллюстрированный энциклопедический словарь

трапеция - четырехугольник, снаряд, перекладина Словарь русских синонимов. трапеция сущ., кол во синонимов: 3 перекладина (21) … Словарь синонимов

ТРАПЕЦИЯ - (от греческого trapezion, буквально столик), выпуклый четырехугольник, в котором две стороны параллельны (основания трапеции). Площадь трапеции равна произведению полусуммы оснований (средней линии) на высоту … Современная энциклопедия

ТРАПЕЦИЯ - (от греч. trapezion букв. столик), четырехугольник, в котором две противоположные стороны, называемые основаниями трапеции, параллельны (на рисунке АD и ВС), а другие две непараллельны. Расстояние между основаниями называют высотой трапеции (на… … Большой Энциклопедический словарь

ТРАПЕЦИЯ - ТРАПЕЦИЯ, четырехугольная плоская фигура, в которой две противоположные стороны параллельны. Площадь трапеции равна полусумме параллельных сторон, умноженной на длину перпендикуляра между ними … Научно-технический энциклопедический словарь

ТРАПЕЦИЯ - ТРАПЕЦИЯ, трапеции, жен. (от греч. trapeza стол). 1. Четырехугольник с двумя параллельными и двумя непараллельными сторонами (мат.). 2. Гимнастический снаряд, состоящий из перекладины, подвешенной на двух веревках (спорт.). Акробатические… … Толковый словарь Ушакова

ТРАПЕЦИЯ - ТРАПЕЦИЯ, и, жен. 1. Четырёхугольник с двумя параллельными и двумя непараллельными сторонами. Основания трапеции (её параллельные стороны). 2. Цирковой или гимнастический снаряд перекладина, подвешенная на двух тросах. Толковый словарь Ожегова. С … Толковый словарь Ожегова

ТРАПЕЦИЯ - жен., геом. четвероугольник с неравными сторонами, из коих две опостенны (паралельны). Трапецоид, подобный четвероугольник, у которого все стороны идут врознь. Трапецоэдр, тело, ограненное трапециями. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

ТРАПЕЦИЯ - (Trapeze), США, 1956, 105 мин. Мелодрама. Начинающий акробат Тино Орсини поступает в цирковую труппу, где работает Майк Риббл, известный в прошлом воздушный гимнаст. Когда то Майк выступал вместе с отцом Тино. Молодой Орсини хочет, чтобы Майк… … Энциклопедия кино

Трапеция - четырехугольник, две стороны которого параллельны, а дведругие стороны не параллельны. Расстояние между параллельными сторонаминаз. высотою Т. Если параллельные стороны и высота содержат а, b и hметров, то площадь Т. содержит квадратных метровЭнциклопедия Брокгауза и Ефрона

Книги

  • Комплект таблиц. Геометрия. 8 класс. 15 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 15 листов. Многоугольники.… Купить за 3828 руб
  • Комплект таблиц. Математика. Многоугольники (7 таблиц) , . Учебный альбом из 7 листов. Выпуклые и невыпуклые многоугольники. Четырехугольники. Параллелограмм и трапеция. Признаки и свойства параллелограмма. Прямоугольник. Ромб. Квадрат. Площадь…

Многоугольник - часть плоскости, ограниченная замкнутой ломаной линией. Углы у многоугольника обозначаются точками вершин ломаной. Вершины углов многоугольника и вершины многоугольника - это совпадающие точки.

Определение. Параллелограмм - это четырехугольник, у которого противолежащие стороны параллельны.

Свойства параллелограмма

1. Противолежащие стороны равны.
На рис. 11 AB = CD ; BC = AD .

2. Противолежащие углы равны (два острых и два тупых угла).
На рис. 11 ∠A = ∠C ; ∠B = ∠D .

3 Диагонали (отрезки прямой, соединяющие две противолежащие вершины) пересекаются и точкой пересечения делятся пополам.

На рис. 11 отрезки AO = OC ; BO = OD .

Определение. Трапеция - это четырехугольник, у которого две противолежащие стороны параллельны, а две другие - нет.

Параллельные стороны называются ее основаниями , а две другие стороны - боковыми сторонами .

Виды трапеций

1. Трапеция , у которой боковые стороны не равны,
называется разносторонней (рис. 12).

2. Трапеция, у которой боковые стороны равны, называется равнобокой (рис. 13).

3. Трапеция, у которой одна боковая сторона составляет прямой угол с основаниями, называется прямоугольной (рис. 14).

Отрезок, соединяющий середины боковых сторон трапеции (рис. 15), называется средней линией трапеции (MN ). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Трапецию можно назвать усеченным треугольником (рис. 17), поэтому и названия трапеций сходны с названиями треугольников (треугольники бывают разносторонние, равнобедренные, прямоугольные).

Площадь параллелограмма и трапеции

Правило. Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.

Трапеция — это четырехугольник, имеющий две параллельные стороны, являющиеся основаниями и две не параллельные стороны, являющиеся боковыми сторонами.

Также встречаются такие названия, как равнобокая или равнобочная .

— это трапеция, у которой углы при боковой стороне прямые.

Элементы трапеции

a, b — основания трапеции (a параллельно b ),

m, n — боковые стороны трапеции,

d 1 , d 2 — диагонали трапеции,

h — высота трапеции (отрезок, соединяющий основания и при этом перпендикулярен им),

MN — средняя линия (отрезок, соединяющий середины боковых сторон).

Площадь трапеции

  1. Через полусумму оснований a, b и высоту h : S = \frac{a + b}{2}\cdot h
  2. Через среднюю линию MN и высоту h : S = MN\cdot h
  3. Через диагонали d 1 , d 2 и угол (\sin \varphi ) между ними: S = \frac{d_{1} d_{2} \sin \varphi}{2}

Свойства трапеции

Средняя линия трапеции

Средняя линия параллельна основаниям, равна их полусумме и разделяет каждый отрезок с концами, находящимися на прямых, которые содержат основания, (к примеру, высоту фигуры) пополам:

MN || a, MN || b, MN = \frac{a + b}{2}

Сумма углов трапеции

Сумма углов трапеции , прилежащих к каждой боковой стороне, равна 180^{\circ} :

\alpha + \beta = 180^{\circ}

\gamma + \delta =180^{\circ}

Равновеликие треугольники трапеции

Равновеликими , то есть имеющими равные площади, являются отрезки диагоналей и треугольники AOB и DOC , образованные боковыми сторонами.

Подобие образованных треугольников трапеции

Подобными треугольниками являются AOD и COB , которые образованы своими основаниями и отрезками диагоналей.

\triangle AOD \sim \triangle COB

Коэффициент подобия k находится по формуле:

k = \frac{AD}{BC}

Причем отношение площадей этих треугольников равно k^{2} .

Отношение длин отрезков и оснований

Каждый отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции, поделен этой точкой в отношении:

\frac{OX}{OY} = \frac{BC}{AD}

Это будет являться справедливым и для высоты с самими диагоналями.

В материалах различных контрольных работ и экзаменов очень часто встречаются задачи на трапецию , решение которых требует знания ее свойств.

Выясним, какими же интересными и полезными для решения задач свойствами обладает трапеция.

После изучения свойства средней линии трапеции можно сформулировать и доказать свойство отрезка, соединяющего середины диагоналей трапеции . Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.

MO – средняя линия треугольника ABC и равна 1/2ВС (рис. 1).

MQ – средняя линия треугольника ABD и равна 1/2АD.

Тогда OQ = MQ – MO, следовательно, OQ = 1/2AD – 1/2BC = 1/2(AD – BC).

При решении многих задач на трапецию одним из основных приемов является проведение в ней двух высот.

Рассмотрим следующую задачу .

Пусть BT – высота равнобедренной трапеции ABCD с основаниями BC и AD, причем BC = a, AD = b. Найти длины отрезков AT и TD.

Решение.

Решение задачи не вызывает затруднения (рис. 2) , но оно позволяет получить свойство высоты равнобедренной трапеции, проведенной из вершины тупого угла : высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований.

При изучении свойств трапеции нужно обратить внимание на такое свойство, как подобие. Так, например, диагонали трапеции разбивают ее на четыре треугольника, причем треугольники, прилежащие к основаниям, подобны, а треугольники, прилежащие к боковым сторонам, равновелики. Это утверждение можно назвать свойством треугольников, на которые разбивается трапеция ее диагоналями . Причем первая часть утверждения доказывается очень легко через признак подобия треугольников по двум углам. Докажем вторую часть утверждения.

Треугольники BOC и COD имеют общую высоту (рис. 3) , если принять за их основания отрезки BO и OD. Тогда S BOC /S COD = BO/OD = k. Следовательно, S COD = 1/k · S BOC .

Аналогично, треугольники BOC и АОВ имеют общую высоту, если принять за их основания отрезки CO и OA. Тогда S BOC /S AOB = CO/OA = k и S А O В = 1/k · S BOC .

Из этих двух предложений следует, что S COD = S А O В.

Не будем останавливаться на сформулированном утверждении, а найдем связь между площадями треугольников, на которые разбивается трапеция ее диагоналями . Для этого решим следующую задачу.

Пусть точка O – точка пересечения диагоналей трапеции АBCD с основаниями BC и AD. Известно, что площади треугольников BOC и AOD равны соответственно S 1 и S 2 . Найти площадь трапеции.

Так как S COD = S А O В, то S АВС D = S 1 + S 2 + 2S COD .

Из подобия треугольников BОC и AOD следует, что ВО/OD = √(S₁/S 2).

Следовательно, S₁/S COD = BO/OD = √(S₁/S 2), а значит S COD = √(S 1 · S 2).

Тогда S АВС D = S 1 + S 2 + 2√(S 1 · S 2) = (√S 1 + √S 2) 2 .

С использованием подобия доказывается и свойство отрезка, проходящего через точку пересечения диагоналей трапеции параллельно основаниям .

Рассмотрим задачу :

Пусть точка O – точка пересечения диагоналей трапеции ABCD с основаниями BC и AD. BC = a, AD = b. Найти длину отрезка PK, проходящего через точку пересечения диагоналей трапеции параллельно основаниям. На какие отрезки делится PK точкой О (рис. 4)?

Из подобия треугольников AOD и BOC следует, что АO/OС = AD/BC = b/a.

Из подобия треугольников AOР и ACB следует, что АO/AС = PO/BC = b/(a + b).

Отсюда PO = BC · b / (a + b) = ab/(a + b).

Аналогично, из подобия треугольников DOK и DBC, следует, что OK = ab/(a + b).

Отсюда PO = OK и PK = 2ab/(a + b).

Итак, доказанное свойство можно сформулировать так: отрезок, параллельный основаниям трапеции, проходящий через точку пересечения диагоналей и соединяющий две точки на боковых сторонах, делится точкой пересечения диагоналей пополам. Его длина есть среднее гармоническое оснований трапеции.

Следующее свойство четырех точек : в трапеции точка пересечения диагоналей, точка пересечения продолжения боковых сторон, середины оснований трапеции лежат на одной линии.

Треугольники BSC и ASD подобны (рис. 5) и в каждом из них медианы ST и SG делят угол при вершине S на одинаковые части. Следовательно, точки S, T и G лежат на одной прямой.

Точно так же на одной прямой расположены точки T, O и G. Это следует из подобия треугольников BOC и AOD.

Значит, все четыре точки S, T, O и G лежат на одной прямой.

Так же можно найти длину отрезка разбивающего трапецию на две подобных.

Если трапеции ALFD и LBCF подобны (рис. 6), то a/LF = LF/b.

Отсюда LF = √(ab).

Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований .

Докажем свойство отрезка, делящего трапецию на две равновеликие .

Пусть площадь трапеции равна S (рис. 7). h 1 и h 2 – части высоты, а х – длина искомого отрезка.

Тогда S/2 = h 1 · (a + x)/2 = h 2 · (b + x)/2 и

S = (h 1 + h 2) · (a + b)/2.

Составим систему

{h 1 · (a + x) = h 2 · (b + x)
{h 1 · (a + x) = (h 1 + h 2) · (a + b)/2.

Решая данную систему, получим х = √(1/2(а 2 + b 2)).

Таким образом, длина отрезка, делящего трапецию на две равновеликие, равна√((а 2 + b 2)/2) (среднему квадратичному длин оснований).

Итак, для трапеции ABCD с основаниями AD и BC (BC = a, AD = b) доказали, что отрезок:

1) MN, соединяющий середины боковых сторон трапеции, параллелен основаниям и равен их полусумме (среднему арифметическому чисел a и b);

2) PK, проходящий через точку пересечения диагоналей трапеции параллельно основаниям, равен
2ab/(a + b) (среднему гармоническому чисел a и b);

3) LF, разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому чисел a и b, √(ab);

4) EH, делящий трапецию на две равновеликие, имеет длину √((а 2 + b 2)/2) (среднее квадратичное чисел a и b).

Признак и свойство вписанной и описанной трапеции.

Свойство вписанной трапеции: трапеция может быть вписана в окружность в том и только в том случае, когда она равнобедренная.

Свойства описанной трапеции. Около окружности можно описать трапецию тогда и только тогда, когда сумма длин оснований равна сумме длин боковых сторон.

Полезные следствия того, что в трапецию вписана окружность:

1. Высота описанной трапеции равна двум радиусам вписанной окружности.

2. Боковая сторона описанной трапеции видна из центра вписанной окружности под прямым углом.

Первое очевидно. Для доказательства второго следствия необходимо установить, что угол COD прямой, что так же не составляет большого труда. Зато знание этого следствия позволяет при решении задач использовать прямоугольный треугольник.

Конкретизируем следствия для равнобедренной описанной трапеции :

Высота равнобедренной описанной трапеции есть среднее геометрическое оснований трапеции
h = 2r = √(ab).

Рассмотренные свойства позволят более глубоко познать трапецию и обеспечат успешность в решении задач на применение ее свойств.

Остались вопросы? Не знаете, как решать задачи на трапецию?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Рассмотрим несколько направлений решения задач, в которых трапеция вписана в окружность.

Когда трапецию можно вписать в окружность? Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противолежащих углов равна 180º. Отсюда следует, что вписать в окружность можно только равнобокую трапецию .

Радиус окружности, описанной около трапеции, можно найти как радиус окружности, описанной около из одного из двух треугольников, на которые трапецию делит ее диагональ.

Где находится центр окружности, описанной около трапеции? Это зависит от угла между диагональю трапеции и ее боковой стороной.

Если диагональ трапеции перпендикулярна ее боковой стороне, то центр окружности, описанной около трапеции, лежит на середине ее большего основания. Радиус описанной около трапеции окружности в этом случае равен половине ее большего основания:

Если диагональ трапеции образует с боковой стороной острый угол, центр окружности, описанной около трапеции лежит внутри трапеции.

Если диагональ трапеции образует с боковой стороной тупой угол, центр описанной около трапеции окружности лежит вне трапеции, за большим основанием.

Радиус описанной около трапеции окружности можно найти по следствию из теоремы синусов. Из треугольника ACD

Из треугольника ABC

Другой вариант найти радиус описанной окружности —

Синусы угла D и угла CAD можно найти, например, из прямоугольных треугольников CFD и ACF:

При решении задач на трапецию, вписанную в окружность, можно также использовать то, что вписанный угол равен половине соответствующего ему центрального угла. Например,

Кстати, использовать углы COD и CAD можно и для нахождения площади трапеции. По формуле нахождения площади четырехугольника через его диагонали