The percentage composition of air in the earth's atmosphere. Atmosphere, its composition and structure. Atmospheric functions. The movement of air masses in the atmosphere

Page 7 of 10

Oxygen in the Earth's atmosphere.

Oxygen plays a very important role in the life of our planet. It is used by living organisms for respiration, is part of organic matter (proteins, fats, carbohydrates). The ozone layer of the atmosphere (O 3) delays life-threatening solar radiation.

The oxygen content in the composition of the Earth's atmosphere is approximately 21%. It is the second most abundant gas in the atmosphere after nitrogen. It is found in the atmosphere in the form of O 2 molecules. However, in the upper layers of the atmosphere, oxygen is decomposed into atoms (the process of dissociation), and at an altitude of about 200 km, the ratio of atomic oxygen to molecular oxygen becomes approximately 1:10.

In the upper layers of the Earth's atmosphere, under the influence of solar radiation, ozone (O 3) is formed. The ozone layer of the atmosphere protects living organisms from harmful ultraviolet radiation.

Evolution of the oxygen content in the Earth's atmosphere.

At the very beginning of the development of the Earth, there was very little free oxygen in the atmosphere. It appeared in the upper atmosphere in the process of photodissociation of carbon dioxide and water. But practically all the oxygen formed was spent on the oxidation of other gases and was absorbed by the earth's crust.

At a certain stage in the development of the Earth, its carbon dioxide atmosphere turned into nitrogen-oxygen. The oxygen content in the atmosphere began to grow rapidly with the advent of autotrophic photosynthetic organisms in the ocean. The increase in oxygen in the atmosphere led to the oxidation of many components of the biosphere. At first, oxygen in the Precambrian seas was absorbed by ferrous iron, but after the content of dissolved iron in the oceans decreased significantly, oxygen began to accumulate in the hydrosphere, and then in the Earth's atmosphere.

The role of the biochemical processes of the living matter of the biosphere in the formation of oxygen has been increasing. With the advent of vegetation cover on the continents, the modern stage in the development of the Earth's atmosphere began. A constant content of free oxygen has been established in the Earth's atmosphere.

At present, the amount of oxygen in the Earth's atmosphere is balanced in such a way that the amount of oxygen produced is equal to the amount of oxygen absorbed. The decrease in oxygen in the atmosphere as a result of the processes of respiration, decay and combustion is compensated for by oxygen released during photosynthesis.

The oxygen cycle in nature.

Geochemical oxygen cycle connects the gas and liquid shells with the earth's crust.

Its highlights:

  • release of free oxygen during photosynthesis
  • oxidation of chemical elements,
  • the entry of extremely oxidized compounds into the deep zones of the earth's crust and their partial recovery, including due to carbon compounds,
  • removal of carbon monoxide and water to the surface of the earth's crust and
  • their involvement in the reaction of photosynthesis.

Rice. 1. Scheme of the oxygen cycle in unbound form.


This was the article Oxygen in the composition of the Earth's atmosphere - the content in the atmosphere is 21%. ". Read further: "Carbon dioxide in the Earth's atmosphere. »

Articles on the topic "Atmosphere of the Earth":

  • The impact of the Earth's atmosphere on the human body with increasing altitude.

- the air shell of the globe that rotates with the Earth. The upper boundary of the atmosphere is conventionally carried out at altitudes of 150-200 km. The lower boundary is the surface of the Earth.

Atmospheric air is a mixture of gases. Most of its volume in the surface air layer is nitrogen (78%) and oxygen (21%). In addition, the air contains inert gases (argon, helium, neon, etc.), carbon dioxide (0.03), water vapor, and various solid particles (dust, soot, salt crystals).

The air is colorless, and the color of the sky is explained by the peculiarities of the scattering of light waves.

The atmosphere consists of several layers: troposphere, stratosphere, mesosphere and thermosphere.

The bottom layer of air is called troposphere. At different latitudes, its power is not the same. The troposphere repeats the shape of the planet and participates together with the Earth in axial rotation. At the equator, the thickness of the atmosphere varies from 10 to 20 km. At the equator it is greater, and at the poles it is less. The troposphere is characterized by the maximum density of air, 4/5 of the mass of the entire atmosphere is concentrated in it. The troposphere determines weather conditions: various air masses form here, clouds and precipitation form, and intense horizontal and vertical air movement occurs.

Above the troposphere, up to an altitude of 50 km, is located stratosphere. It is characterized by a lower density of air, there is no water vapor in it. In the lower part of the stratosphere at altitudes of about 25 km. there is an "ozone screen" - a layer of the atmosphere with a high concentration of ozone, which absorbs ultraviolet radiation, which is fatal to organisms.

At an altitude of 50 to 80-90 km extends mesosphere. As the altitude increases, the temperature decreases with an average vertical gradient of (0.25-0.3)° / 100 m, and the air density decreases. The main energy process is radiant heat transfer. The glow of the atmosphere is due to complex photochemical processes involving radicals, vibrationally excited molecules.

Thermosphere located at an altitude of 80-90 to 800 km. The air density here is minimal, the degree of air ionization is very high. The temperature changes depending on the activity of the Sun. Due to the large number of charged particles, auroras and magnetic storms are observed here.

The atmosphere is of great importance for the nature of the Earth. Without oxygen, living organisms cannot breathe. Its ozone layer protects all living things from harmful ultraviolet rays. The atmosphere smooths out temperature fluctuations: the Earth's surface does not get supercooled at night and does not overheat during the day. In dense layers of atmospheric air, not reaching the surface of the planet, meteorites burn out from thorns.

The atmosphere interacts with all the shells of the earth. With its help, the exchange of heat and moisture between the ocean and land. Without the atmosphere there would be no clouds, precipitation, winds.

Human activities have a significant adverse effect on the atmosphere. Air pollution occurs, which leads to an increase in the concentration of carbon monoxide (CO 2). And this contributes to global warming and enhances the "greenhouse effect". The ozone layer of the Earth is being destroyed due to industrial waste and transport.

The atmosphere needs to be protected. In developed countries, a set of measures is being taken to protect atmospheric air from pollution.

Do you have any questions? Want to know more about the atmosphere?
To get the help of a tutor - register.

site, with full or partial copying of the material, a link to the source is required.

Earth's atmosphere

Atmosphere(from. other Greekἀτμός - steam and σφαῖρα - ball) - gas shell ( geosphere) surrounding the planet Land. Its inner surface is covered hydrosphere and partially bark, the outer one borders on the near-Earth part of outer space.

The totality of sections of physics and chemistry that study the atmosphere is commonly called atmospheric physics. The atmosphere determines weather on the surface of the Earth, is engaged in the study of weather meteorology, and long-term variations climate - climatology.

The structure of the atmosphere

The structure of the atmosphere

Troposphere

Its upper limit is at an altitude of 8-10 km in polar, 10-12 km in temperate and 16-18 km in tropical latitudes; lower in winter than in summer. The lower, main layer of the atmosphere. It contains more than 80% of the total mass of atmospheric air and about 90% of all water vapor present in the atmosphere. highly developed in the troposphere turbulence and convection, arise clouds, develop cyclones and anticyclones. The temperature decreases with increasing height with an average vertical gradient 0.65°/100 m

For "normal conditions" at the Earth's surface are taken: density 1.2 kg/m3, barometric pressure 101.35 kPa, temperature plus 20 °C and relative humidity 50%. These conditional indicators have a purely engineering value.

Stratosphere

The layer of the atmosphere located at an altitude of 11 to 50 km. Characterized by a slight change in temperature in the 11-25 km layer (lower layer of the stratosphere) and its increase in the 25-40 km layer from -56.5 to 0.8 ° WITH(upper stratosphere or region inversions). Having reached a value of about 273 K (almost 0 ° C) at an altitude of about 40 km, the temperature remains constant up to an altitude of about 55 km. This region of constant temperature is called stratopause and is the boundary between the stratosphere and mesosphere.

Stratopause

The boundary layer of the atmosphere between the stratosphere and the mesosphere. There is a maximum in the vertical temperature distribution (about 0 °C).

Mesosphere

Earth's atmosphere

Mesosphere starts at an altitude of 50 km and extends up to 80-90 km. The temperature decreases with height with an average vertical gradient of (0.25-0.3)°/100 m. The main energy process is radiant heat transfer. Complex photochemical processes involving free radicals, vibrationally excited molecules, etc., determine the glow of the atmosphere.

Mesopause

Transitional layer between mesosphere and thermosphere. There is a minimum in the vertical temperature distribution (about -90 °C).

Karman Line

Altitude above sea level, which is conventionally accepted as the boundary between the Earth's atmosphere and space.

Thermosphere

Main article: Thermosphere

The upper limit is about 800 km. The temperature rises to altitudes of 200-300 km, where it reaches values ​​of the order of 1500 K, after which it remains almost constant up to high altitudes. Under the influence of ultraviolet and x-ray solar radiation and cosmic radiation, air ionization occurs (" auroras”) - main areas ionosphere lie inside the thermosphere. At altitudes above 300 km, atomic oxygen predominates.

Atmospheric layers up to a height of 120 km

Exosphere (scattering sphere)

Exosphere- scattering zone, the outer part of the thermosphere, located above 700 km. The gas in the exosphere is very rarefied, and hence its particles leak into interplanetary space ( dissipation).

Up to a height of 100 km, the atmosphere is a homogeneous, well-mixed mixture of gases. In higher layers, the distribution of gases in height depends on their molecular masses, the concentration of heavier gases decreases faster with distance from the Earth's surface. Due to the decrease in gas density, the temperature drops from 0 °C in the stratosphere to −110 °C in the mesosphere. However, the kinetic energy of individual particles at altitudes of 200–250 km corresponds to a temperature of ~1500 °C. Above 200 km, significant fluctuations in temperature and gas density are observed in time and space.

At an altitude of about 2000-3000 km, the exosphere gradually passes into the so-called near space vacuum, which is filled with highly rarefied particles of interplanetary gas, mainly hydrogen atoms. But this gas is only part of the interplanetary matter. The other part is composed of dust-like particles of cometary and meteoric origin. In addition to extremely rarefied dust-like particles, electromagnetic and corpuscular radiation of solar and galactic origin penetrates into this space.

The troposphere accounts for about 80% of the mass of the atmosphere, the stratosphere accounts for about 20%; the mass of the mesosphere is no more than 0.3%, the thermosphere is less than 0.05% of the total mass of the atmosphere. Based on the electrical properties in the atmosphere, the neutrosphere and ionosphere are distinguished. It is currently believed that the atmosphere extends to an altitude of 2000-3000 km.

Depending on the composition of the gas in the atmosphere, they emit homosphere and heterosphere. heterosphere - this is an area where gravity affects the separation of gases, since their mixing at such a height is negligible. Hence follows the variable composition of the heterosphere. Below it lies a well-mixed, homogeneous part of the atmosphere, called homosphere. The boundary between these layers is called turbopause, it lies at an altitude of about 120 km.

Physical properties

The thickness of the atmosphere is approximately 2000 - 3000 km from the Earth's surface. Total weight air- (5.1-5.3) × 10 18 kg. Molar mass clean dry air is 28.966. Pressure at 0 °C at sea level 101.325 kPa; critical temperature-140.7 °C; critical pressure 3.7 MPa; C p 1.0048×10 3 J/(kg K)(at 0°C), C v 0.7159×10 3 J/(kg K) (at 0 °C). Solubility of air in water at 0 °C - 0.036%, at 25 °C - 0.22%.

Physiological and other properties of the atmosphere

Already at an altitude of 5 km above sea level, an untrained person has oxygen starvation and without adaptation, human performance is significantly reduced. This is where the physiological zone of the atmosphere ends. Human breathing becomes impossible at an altitude of 15 km, although up to about 115 km the atmosphere contains oxygen.

The atmosphere provides us with the oxygen we need to breathe. However, due to the decrease in the total pressure of the atmosphere, as one rises to a height, the partial pressure of oxygen also decreases accordingly.

The human lungs constantly contain about 3 liters of alveolar air. Partial pressure oxygen in the alveolar air at normal atmospheric pressure is 110 mm Hg. Art., pressure of carbon dioxide - 40 mm Hg. Art., and water vapor - 47 mm Hg. Art. With increasing altitude, the oxygen pressure drops, and the total pressure of water vapor and carbon dioxide in the lungs remains almost constant - about 87 mm Hg. Art. The flow of oxygen into the lungs will completely stop when the pressure of the surrounding air becomes equal to this value.

At an altitude of about 19-20 km, the atmospheric pressure drops to 47 mm Hg. Art. Therefore, at this height, water and interstitial fluid begin to boil in the human body. Outside the pressurized cabin at these altitudes, death occurs almost instantly. Thus, from the point of view of human physiology, "space" begins already at an altitude of 15-19 km.

Dense layers of air - the troposphere and stratosphere - protect us from the damaging effects of radiation. With sufficient rarefaction of air, at altitudes of more than 36 km, an intense effect on the body is exerted by ionizing radiation- primary cosmic rays; at altitudes of more than 40 km, the ultraviolet part of the solar spectrum, which is dangerous for humans, operates.

As we rise to an ever greater height above the Earth's surface, gradually weaken, and then completely disappear, such phenomena familiar to us observed in the lower layers of the atmosphere, such as the propagation of sound, the emergence of aerodynamic lifting force and resistance, heat transfer convection and etc.

In rarefied layers of air, propagation sound turns out to be impossible. Up to altitudes of 60-90 km, it is still possible to use air resistance and lift for controlled aerodynamic flight. But starting from altitudes of 100-130 km, concepts familiar to every pilot numbers M and sound barrier lose their meaning, there passes the conditional Karman Line beyond which begins the sphere of purely ballistic flight, which can be controlled only by using reactive forces.

At altitudes above 100 km, the atmosphere is also deprived of another remarkable property - the ability to absorb, conduct and transfer thermal energy by convection (i.e., by means of air mixing). This means that various elements of equipment, equipment of the orbital space station will not be able to be cooled from the outside in the way it is usually done on an airplane - with the help of air jets and air radiators. At such a height, as in space in general, the only way to transfer heat is thermal radiation.

Composition of the atmosphere

Composition of dry air

The Earth's atmosphere consists mainly of gases and various impurities (dust, water drops, ice crystals, sea salts, combustion products).

The concentration of gases that make up the atmosphere is almost constant, with the exception of water (H 2 O) and carbon dioxide (CO 2).

Composition of dry air

Nitrogen

Oxygen

Argon

Water

Carbon dioxide

Neon

Helium

Methane

Krypton

Hydrogen

Xenon

Nitrous oxide

In addition to the gases indicated in the table, the atmosphere contains SO 2, NH 3, CO, ozone, hydrocarbons, HCl, HF, couples hg, I 2 , and NO and many other gases in minor quantities. The troposphere constantly contains a large number of suspended solid and liquid particles ( spray can).

History of the formation of the atmosphere

According to the most common theory, the Earth's atmosphere has been in four different compositions over time. Initially, it consisted of light gases ( hydrogen and helium) captured from interplanetary space. This so-called primary atmosphere(about four billion years ago). At the next stage, active volcanic activity led to the saturation of the atmosphere with gases other than hydrogen (carbon dioxide, ammonia, steam). This is how secondary atmosphere(about three billion years before our days). This atmosphere was restorative. Further, the process of formation of the atmosphere was determined by the following factors:

    leakage of light gases (hydrogen and helium) into interplanetary space;

    chemical reactions occurring in the atmosphere under the influence of ultraviolet radiation, lightning discharges and some other factors.

Gradually, these factors led to the formation tertiary atmosphere, characterized by a much lower content of hydrogen and a much higher content of nitrogen and carbon dioxide (formed as a result of chemical reactions from ammonia and hydrocarbons).

Nitrogen

The formation of a large amount of N 2 is due to the oxidation of the ammonia-hydrogen atmosphere by molecular O 2, which began to come from the surface of the planet as a result of photosynthesis, starting from 3 billion years ago. N 2 is also released into the atmosphere as a result of the denitrification of nitrates and other nitrogen-containing compounds. Nitrogen is oxidized by ozone to NO in the upper atmosphere.

Nitrogen N 2 enters into reactions only under specific conditions (for example, during a lightning discharge). Oxidation of molecular nitrogen by ozone during electrical discharges is used in the industrial production of nitrogen fertilizers. It can be oxidized with low energy consumption and converted into a biologically active form cyanobacteria (blue-green algae) and nodule bacteria that form the rhizobial symbiosis With legumes plants, so-called. green manure.

Oxygen

The composition of the atmosphere began to change radically with the advent of living organisms, as a result photosynthesis accompanied by the release of oxygen and the absorption of carbon dioxide. Initially, oxygen was spent on the oxidation of reduced compounds - ammonia, hydrocarbons, oxide form gland contained in the oceans, etc. At the end of this stage, the oxygen content in the atmosphere began to grow. Gradually, a modern atmosphere with oxidizing properties formed. Since this caused serious and abrupt changes in many processes occurring in atmosphere, lithosphere and biosphere, this event is called Oxygen catastrophe.

During Phanerozoic the composition of the atmosphere and the oxygen content underwent changes. They correlated primarily with the rate of deposition of organic sedimentary rocks. So, during the periods of coal accumulation, the oxygen content in the atmosphere, apparently, noticeably exceeded the modern level.

Carbon dioxide

The content of CO 2 in the atmosphere depends on volcanic activity and chemical processes in the earth's shells, but most of all - on the intensity of biosynthesis and decomposition of organic matter in biosphere Earth. Almost the entire current biomass of the planet (about 2.4 × 10 12 tons ) is formed due to carbon dioxide, nitrogen and water vapor contained in the atmospheric air. Buried in ocean, v swamps and in forests organic matter becomes coal, oil and natural gas. (cm. Geochemical cycle of carbon)

noble gases

Source of inert gases - argon, helium and krypton- volcanic eruptions and decay of radioactive elements. The earth as a whole and the atmosphere in particular are depleted in inert gases compared to space. It is believed that the reason for this lies in the continuous leakage of gases into interplanetary space.

Air pollution

Recently, the evolution of the atmosphere began to be influenced by Human. The result of his activities was a constant significant increase in the content of carbon dioxide in the atmosphere due to the combustion of hydrocarbon fuels accumulated in previous geological epochs. Huge amounts of CO 2 are consumed during photosynthesis and absorbed by the world's oceans. This gas enters the atmosphere due to the decomposition of carbonate rocks and organic substances of plant and animal origin, as well as due to volcanism and human production activities. Over the past 100 years, the content of CO 2 in the atmosphere has increased by 10%, with the main part (360 billion tons) coming from fuel combustion. If the growth rate of fuel combustion continues, then in the next 50 - 60 years the amount of CO 2 in the atmosphere will double and may lead to global climate change.

Fuel combustion is the main source of both pollutant gases ( SO, NO, SO 2 ). Sulfur dioxide is oxidized by atmospheric oxygen to SO 3 in the upper atmosphere, which in turn interacts with water vapor and ammonia, and the resulting sulfuric acid (H 2 SO 4 ) and ammonium sulfate ((NH 4 ) 2 SO 4 ) return to the surface of the Earth in the form of a so-called. acid rain. Usage internal combustion engines leads to significant air pollution with nitrogen oxides, hydrocarbons and lead compounds ( tetraethyl lead Pb(CH 3 CH 2 ) 4 ) ).

Aerosol pollution of the atmosphere is caused both by natural causes (volcanic eruption, dust storms, entrainment of sea water droplets and plant pollen, etc.) and by human economic activity (mining of ores and building materials, fuel combustion, cement production, etc.). Intense large-scale removal of solid particles into the atmosphere is one of the possible causes of climate change on the planet.

At sea level 1013.25 hPa (about 760 mmHg). The average global air temperature at the Earth's surface is 15°C, while the temperature varies from about 57°C in subtropical deserts to -89°C in Antarctica. Air density and pressure decrease with height according to a law close to exponential.

The structure of the atmosphere. Vertically, the atmosphere has a layered structure, determined mainly by the features of the vertical temperature distribution (figure), which depends on the geographical location, season, time of day, and so on. The lower layer of the atmosphere - the troposphere - is characterized by a drop in temperature with height (by about 6 ° C per 1 km), its height is from 8-10 km in polar latitudes to 16-18 km in the tropics. Due to the rapid decrease in air density with height, about 80% of the total mass of the atmosphere is in the troposphere. Above the troposphere is the stratosphere - a layer that is characterized in general by an increase in temperature with height. The transition layer between the troposphere and stratosphere is called the tropopause. In the lower stratosphere, up to a level of about 20 km, the temperature changes little with height (the so-called isothermal region) and often even slightly decreases. Higher, the temperature rises due to the absorption of solar UV radiation by ozone, slowly at first, and faster from a level of 34-36 km. The upper boundary of the stratosphere - the stratopause - is located at an altitude of 50-55 km, corresponding to the maximum temperature (260-270 K). The layer of the atmosphere, located at an altitude of 55-85 km, where the temperature drops again with height, is called the mesosphere, at its upper boundary - the mesopause - the temperature reaches 150-160 K in summer, and 200-230 K in winter. The thermosphere begins above the mesopause - a layer, characterized by a rapid increase in temperature, reaching values ​​of 800-1200 K at an altitude of 250 km. The corpuscular and X-ray radiation of the Sun is absorbed in the thermosphere, meteors are slowed down and burned out, therefore it performs the function of the Earth's protective layer. Even higher is the exosphere, from where atmospheric gases are dissipated into world space due to dissipation and where a gradual transition from the atmosphere to interplanetary space takes place.

Composition of the atmosphere. Up to a height of about 100 km, the atmosphere is practically homogeneous in chemical composition and the average molecular weight of air (about 29) is constant in it. Near the Earth's surface, the atmosphere consists of nitrogen (about 78.1% by volume) and oxygen (about 20.9%), and also contains small amounts of argon, carbon dioxide (carbon dioxide), neon, and other constant and variable components (see Air ).

In addition, the atmosphere contains small amounts of ozone, nitrogen oxides, ammonia, radon, etc. The relative content of the main components of the air is constant over time and uniform in different geographical areas. The content of water vapor and ozone is variable in space and time; despite the low content, their role in atmospheric processes is very significant.

Above 100-110 km, the dissociation of oxygen, carbon dioxide and water vapor molecules occurs, so the molecular weight of air decreases. At an altitude of about 1000 km, light gases - helium and hydrogen - begin to predominate, and even higher, the Earth's atmosphere gradually turns into interplanetary gas.

The most important variable component of the atmosphere is water vapor, which enters the atmosphere through evaporation from the surface of water and moist soil, as well as through transpiration by plants. The relative content of water vapor varies near the earth's surface from 2.6% in the tropics to 0.2% in the polar latitudes. With height, it quickly falls, decreasing by half already at a height of 1.5-2 km. The vertical column of the atmosphere at temperate latitudes contains about 1.7 cm of the “precipitated water layer”. When water vapor condenses, clouds form, from which atmospheric precipitation falls in the form of rain, hail, and snow.

An important component of atmospheric air is ozone, 90% concentrated in the stratosphere (between 10 and 50 km), about 10% of it is in the troposphere. Ozone provides absorption of hard UV radiation (with a wavelength of less than 290 nm), and this is its protective role for the biosphere. The values ​​of the total ozone content vary depending on the latitude and season within the range from 0.22 to 0.45 cm (the thickness of the ozone layer at a pressure p = 1 atm and a temperature T = 0°C). In the ozone holes observed in spring in Antarctica since the early 1980s, the ozone content can drop to 0.07 cm. grows at high latitudes. A significant variable component of the atmosphere is carbon dioxide, the content of which in the atmosphere has increased by 35% over the past 200 years, which is mainly explained by the anthropogenic factor. Its latitudinal and seasonal variability is observed, associated with plant photosynthesis and solubility in sea water (according to Henry's law, the solubility of gas in water decreases with increasing temperature).

An important role in the formation of the planet's climate is played by atmospheric aerosol - solid and liquid particles suspended in the air ranging in size from several nm to tens of microns. There are aerosols of natural and anthropogenic origin. Aerosol is formed in the process of gas-phase reactions from the products of plant life and human economic activity, volcanic eruptions, as a result of dust being lifted by the wind from the surface of the planet, especially from its desert regions, and is also formed from cosmic dust entering the upper atmosphere. Most of the aerosol is concentrated in the troposphere; aerosol from volcanic eruptions forms the so-called Junge layer at an altitude of about 20 km. The largest amount of anthropogenic aerosol enters the atmosphere as a result of the operation of vehicles and thermal power plants, chemical industries, fuel combustion, etc. Therefore, in some areas the composition of the atmosphere differs markedly from ordinary air, which required the creation of a special service for monitoring and controlling the level of atmospheric air pollution.

Atmospheric evolution. The modern atmosphere is apparently of secondary origin: it was formed from the gases released by the solid shell of the Earth after the formation of the planet was completed about 4.5 billion years ago. During the geological history of the Earth, the atmosphere has undergone significant changes in its composition under the influence of a number of factors: dissipation (volatilization) of gases, mainly lighter ones, into outer space; release of gases from the lithosphere as a result of volcanic activity; chemical reactions between the components of the atmosphere and the rocks that make up the earth's crust; photochemical reactions in the atmosphere itself under the influence of solar UV radiation; accretion (capture) of the matter of the interplanetary medium (for example, meteoric matter). The development of the atmosphere is closely connected with geological and geochemical processes, and for the last 3-4 billion years also with the activity of the biosphere. A significant part of the gases that make up the modern atmosphere (nitrogen, carbon dioxide, water vapor) arose during volcanic activity and intrusion, which carried them out from the depths of the Earth. Oxygen appeared in appreciable quantities about 2 billion years ago as a result of the activity of photosynthetic organisms that originally originated in the surface waters of the ocean.

Based on the data on the chemical composition of carbonate deposits, estimates of the amount of carbon dioxide and oxygen in the atmosphere of the geological past were obtained. During the Phanerozoic (the last 570 million years of the Earth's history), the amount of carbon dioxide in the atmosphere varied widely in accordance with the level of volcanic activity, ocean temperature and photosynthesis. Most of this time, the concentration of carbon dioxide in the atmosphere was significantly higher than the current one (up to 10 times). The amount of oxygen in the atmosphere of the Phanerozoic changed significantly, and the tendency to increase it prevailed. In the Precambrian atmosphere, the mass of carbon dioxide was, as a rule, greater, and the mass of oxygen, less than in the atmosphere of the Phanerozoic. Fluctuations in the amount of carbon dioxide have had a significant impact on the climate in the past, increasing the greenhouse effect with an increase in the concentration of carbon dioxide, due to which the climate during the main part of the Phanerozoic was much warmer than in the modern era.

atmosphere and life. Without an atmosphere, Earth would be a dead planet. Organic life proceeds in close interaction with the atmosphere and its associated climate and weather. Insignificant in mass compared to the planet as a whole (about a millionth part), the atmosphere is a sine qua non for all life forms. Oxygen, nitrogen, water vapor, carbon dioxide, and ozone are the most important atmospheric gases for the life of organisms. When carbon dioxide is absorbed by photosynthetic plants, organic matter is created, which is used as an energy source by the vast majority of living beings, including humans. Oxygen is necessary for the existence of aerobic organisms, for which the energy supply is provided by the oxidation reactions of organic matter. Nitrogen, assimilated by some microorganisms (nitrogen fixers), is necessary for the mineral nutrition of plants. Ozone, which absorbs the Sun's harsh UV radiation, significantly attenuates this life-threatening portion of the sun's radiation. Condensation of water vapor in the atmosphere, the formation of clouds and the subsequent precipitation of precipitation supply water to land, without which no form of life is possible. The vital activity of organisms in the hydrosphere is largely determined by the amount and chemical composition of atmospheric gases dissolved in water. Since the chemical composition of the atmosphere significantly depends on the activities of organisms, the biosphere and atmosphere can be considered as part of a single system, the maintenance and evolution of which (see Biogeochemical cycles) was of great importance for changing the composition of the atmosphere throughout the history of the Earth as a planet.

Radiation, heat and water balances of the atmosphere. Solar radiation is practically the only source of energy for all physical processes in the atmosphere. The main feature of the radiation regime of the atmosphere is the so-called greenhouse effect: the atmosphere transmits solar radiation to the earth's surface quite well, but actively absorbs the thermal long-wave radiation of the earth's surface, part of which returns to the surface in the form of counter radiation that compensates for the radiative heat loss of the earth's surface (see Atmospheric radiation ). In the absence of an atmosphere, the average temperature of the earth's surface would be -18°C, in reality it is 15°C. Incoming solar radiation is partially (about 20%) absorbed into the atmosphere (mainly by water vapor, water droplets, carbon dioxide, ozone and aerosols), and is also scattered (about 7%) by aerosol particles and density fluctuations (Rayleigh scattering). The total radiation, reaching the earth's surface, is partially (about 23%) reflected from it. The reflectance is determined by the reflectivity of the underlying surface, the so-called albedo. On average, the Earth's albedo for the integral solar radiation flux is close to 30%. It varies from a few percent (dry soil and black soil) to 70-90% for freshly fallen snow. The radiative heat exchange between the earth's surface and the atmosphere essentially depends on the albedo and is determined by the effective radiation of the earth's surface and the counter-radiation of the atmosphere absorbed by it. The algebraic sum of radiation fluxes entering the earth's atmosphere from outer space and leaving it back is called the radiation balance.

Transformations of solar radiation after its absorption by the atmosphere and the earth's surface determine the heat balance of the Earth as a planet. The main source of heat for the atmosphere is the earth's surface; heat from it is transferred not only in the form of long-wave radiation, but also by convection, and is also released during the condensation of water vapor. The shares of these heat inflows are on average 20%, 7% and 23%, respectively. About 20% of heat is also added here due to the absorption of direct solar radiation. The flux of solar radiation per unit of time through a single area perpendicular to the sun's rays and located outside the atmosphere at an average distance from the Earth to the Sun (the so-called solar constant) is 1367 W / m 2, the changes are 1-2 W / m 2 depending on cycle of solar activity. With a planetary albedo of about 30%, the time-average global influx of solar energy to the planet is 239 W/m 2 . Since the Earth as a planet emits the same amount of energy into space on average, then, according to the Stefan-Boltzmann law, the effective temperature of the outgoing thermal long-wave radiation is 255 K (-18°C). At the same time, the average temperature of the earth's surface is 15°C. The 33°C difference is due to the greenhouse effect.

The water balance of the atmosphere as a whole corresponds to the equality of the amount of moisture evaporated from the surface of the Earth, the amount of precipitation falling on the earth's surface. The atmosphere over the oceans receives more moisture from evaporation processes than over land, and loses 90% in the form of precipitation. Excess water vapor over the oceans is carried to the continents by air currents. The amount of water vapor transported into the atmosphere from the oceans to the continents is equal to the volume of river flow that flows into the oceans.

air movement. The Earth has a spherical shape, so much less solar radiation comes to its high latitudes than to the tropics. As a result, large temperature contrasts arise between latitudes. The relative position of the oceans and continents also significantly affects the distribution of temperature. Due to the large mass of ocean waters and the high heat capacity of water, seasonal fluctuations in ocean surface temperature are much less than those of land. In this regard, in the middle and high latitudes, the air temperature over the oceans is noticeably lower in summer than over the continents, and higher in winter.

The uneven heating of the atmosphere in different regions of the globe causes a distribution of atmospheric pressure that is not uniform in space. At sea level, the pressure distribution is characterized by relatively low values ​​near the equator, an increase in the subtropics (high pressure belts), and a decrease in middle and high latitudes. At the same time, over the continents of extratropical latitudes, the pressure is usually increased in winter, and lowered in summer, which is associated with the temperature distribution. Under the action of a pressure gradient, the air experiences an acceleration directed from areas of high pressure to areas of low pressure, which leads to the movement of air masses. The moving air masses are also affected by the deflecting force of the Earth's rotation (the Coriolis force), the friction force, which decreases with height, and in the case of curvilinear trajectories, the centrifugal force. Of great importance is the turbulent mixing of air (see Turbulence in the atmosphere).

A complex system of air currents (general circulation of the atmosphere) is associated with the planetary distribution of pressure. In the meridional plane, on average, two or three meridional circulation cells are traced. Near the equator, heated air rises and falls in the subtropics, forming a Hadley cell. The air of the reverse Ferrell cell also descends there. At high latitudes, a direct polar cell is often traced. Meridional circulation velocities are on the order of 1 m/s or less. Due to the action of the Coriolis force, westerly winds are observed in most of the atmosphere with speeds in the middle troposphere of about 15 m/s. There are relatively stable wind systems. These include trade winds - winds blowing from high pressure belts in the subtropics to the equator with a noticeable eastern component (from east to west). Monsoons are quite stable - air currents that have a clearly pronounced seasonal character: they blow from the ocean to the mainland in summer and in the opposite direction in winter. The monsoons of the Indian Ocean are especially regular. In middle latitudes, the movement of air masses is mainly western (from west to east). This is a zone of atmospheric fronts, on which large eddies arise - cyclones and anticyclones, covering many hundreds and even thousands of kilometers. Cyclones also occur in the tropics; here they differ in smaller sizes, but very high wind speeds, reaching hurricane force (33 m/s or more), the so-called tropical cyclones. In the Atlantic and eastern Pacific they are called hurricanes, and in the western Pacific they are called typhoons. In the upper troposphere and lower stratosphere, in the areas separating the direct cell of the Hadley meridional circulation and the reverse Ferrell cell, relatively narrow, hundreds of kilometers wide, jet streams with sharply defined boundaries are often observed, within which the wind reaches 100-150 and even 200 m/ With.

Climate and weather. The difference in the amount of solar radiation coming at different latitudes to the earth's surface, which is diverse in physical properties, determines the diversity of the Earth's climates. From the equator to tropical latitudes, the air temperature near the earth's surface averages 25-30 ° C and changes little during the year. In the equatorial zone, a lot of precipitation usually falls, which creates conditions for excessive moisture there. In tropical zones, the amount of precipitation decreases and in some areas becomes very small. Here are the vast deserts of the Earth.

In subtropical and middle latitudes, air temperature varies significantly throughout the year, and the difference between summer and winter temperatures is especially large in areas of the continents remote from the oceans. Thus, in some areas of Eastern Siberia, the annual amplitude of air temperature reaches 65°С. Humidification conditions in these latitudes are very diverse, depend mainly on the regime of the general circulation of the atmosphere, and vary significantly from year to year.

In the polar latitudes, the temperature remains low throughout the year, even if there is a noticeable seasonal variation. This contributes to the widespread distribution of ice cover on the oceans and land and permafrost, occupying over 65% of Russia's area, mainly in Siberia.

Over the past decades, changes in the global climate have become more and more noticeable. The temperature rises more at high latitudes than at low latitudes; more in winter than in summer; more at night than during the day. Over the 20th century, the average annual air temperature near the earth's surface in Russia increased by 1.5-2 ° C, and in some regions of Siberia an increase of several degrees is observed. This is associated with an increase in the greenhouse effect due to an increase in the concentration of small gaseous impurities.

The weather is determined by the conditions of atmospheric circulation and the geographical location of the area, it is most stable in the tropics and most changeable in the middle and high latitudes. Most of all, the weather changes in the zones of change of air masses, due to the passage of atmospheric fronts, cyclones and anticyclones, carrying precipitation and increasing wind. Data for weather forecasting is collected from ground-based weather stations, ships and aircraft, and meteorological satellites. See also meteorology.

Optical, acoustic and electrical phenomena in the atmosphere. When electromagnetic radiation propagates in the atmosphere, as a result of refraction, absorption and scattering of light by air and various particles (aerosol, ice crystals, water drops), various optical phenomena arise: rainbow, crowns, halo, mirage, etc. Light scattering determines the apparent height of the firmament and blue color of the sky. The visibility range of objects is determined by the conditions of light propagation in the atmosphere (see Atmospheric visibility). The transparency of the atmosphere at different wavelengths determines the communication range and the possibility of detecting objects with instruments, including the possibility of astronomical observations from the Earth's surface. For studies of optical inhomogeneities in the stratosphere and mesosphere, the phenomenon of twilight plays an important role. For example, photographing twilight from spacecraft makes it possible to detect aerosol layers. Features of the propagation of electromagnetic radiation in the atmosphere determine the accuracy of methods for remote sensing of its parameters. All these questions, like many others, are studied by atmospheric optics. Refraction and scattering of radio waves determine the possibilities of radio reception (see Propagation of radio waves).

The propagation of sound in the atmosphere depends on the spatial distribution of temperature and wind speed (see Atmospheric acoustics). It is of interest for remote sensing of the atmosphere. Explosions of charges launched by rockets into the upper atmosphere provided a wealth of information about wind systems and the course of temperature in the stratosphere and mesosphere. In a stably stratified atmosphere, when the temperature falls with height more slowly than the adiabatic gradient (9.8 K/km), so-called internal waves arise. These waves can propagate upward into the stratosphere and even into the mesosphere, where they attenuate, contributing to increased wind and turbulence.

The negative charge of the Earth and the electric field caused by it, the atmosphere, together with the electrically charged ionosphere and magnetosphere, create a global electrical circuit. An important role is played by the formation of clouds and lightning electricity. The danger of lightning discharges necessitated the development of methods for lightning protection of buildings, structures, power lines and communications. This phenomenon is of particular danger to aviation. Lightning discharges cause atmospheric radio interference, called atmospherics (see Whistling atmospherics). During a sharp increase in the strength of the electric field, luminous discharges are observed that arise on the points and sharp corners of objects protruding above the earth's surface, on individual peaks in the mountains, etc. (Elma lights). The atmosphere always contains a number of light and heavy ions, which vary greatly depending on the specific conditions, which determine the electrical conductivity of the atmosphere. The main air ionizers near the earth's surface are the radiation of radioactive substances contained in the earth's crust and in the atmosphere, as well as cosmic rays. See also atmospheric electricity.

Human influence on the atmosphere. Over the past centuries, there has been an increase in the concentration of greenhouse gases in the atmosphere due to human activities. The percentage of carbon dioxide increased from 2.8-10 2 two hundred years ago to 3.8-10 2 in 2005, the content of methane - from 0.7-10 1 about 300-400 years ago to 1.8-10 -4 at the beginning of the 21st century; about 20% of the increase in the greenhouse effect over the past century was given by freons, which practically did not exist in the atmosphere until the middle of the 20th century. These substances are recognized as stratospheric ozone depleters and their production is prohibited by the 1987 Montreal Protocol. The increase in carbon dioxide concentration in the atmosphere is caused by the burning of ever-increasing amounts of coal, oil, gas and other carbon fuels, as well as the deforestation, which reduces the absorption of carbon dioxide through photosynthesis. The concentration of methane increases with the growth of oil and gas production (due to its losses), as well as with the expansion of rice crops and an increase in the number of cattle. All this contributes to climate warming.

To change the weather, methods of active influence on atmospheric processes have been developed. They are used to protect agricultural plants from hail damage by dispersing special reagents in thunderclouds. There are also methods for dispelling fog at airports, protecting plants from frost, influencing clouds to increase rainfall in the right places, or to disperse clouds at times of mass events.

Study of the atmosphere. Information about the physical processes in the atmosphere is obtained primarily from meteorological observations, which are carried out by a global network of permanent meteorological stations and posts located on all continents and on many islands. Daily observations provide information about air temperature and humidity, atmospheric pressure and precipitation, cloudiness, wind, etc. Observations of solar radiation and its transformations are carried out at actinometric stations. Of great importance for the study of the atmosphere are the networks of aerological stations, where meteorological measurements are made with the help of radiosondes up to a height of 30-35 km. At a number of stations, observations are made of atmospheric ozone, electrical phenomena in the atmosphere, and the chemical composition of the air.

Data from ground stations are supplemented by observations on the oceans, where "weather ships" operate, permanently located in certain areas of the World Ocean, as well as meteorological information received from research and other ships.

In recent decades, an increasing amount of information about the atmosphere has been obtained with the help of meteorological satellites, which are equipped with instruments for photographing clouds and measuring the fluxes of ultraviolet, infrared, and microwave radiation from the Sun. Satellites make it possible to obtain information about vertical temperature profiles, cloudiness and its water content, elements of the atmospheric radiation balance, ocean surface temperature, etc. Using measurements of the refraction of radio signals from a system of navigation satellites, it is possible to determine vertical profiles of density, pressure and temperature, as well as moisture content in the atmosphere . With the help of satellites, it became possible to clarify the value of the solar constant and the planetary albedo of the Earth, build maps of the radiation balance of the Earth-atmosphere system, measure the content and variability of small atmospheric impurities, and solve many other problems of atmospheric physics and environmental monitoring.

Lit .: Budyko M. I. Climate in the past and future. L., 1980; Matveev L. T. Course of general meteorology. Physics of the atmosphere. 2nd ed. L., 1984; Budyko M. I., Ronov A. B., Yanshin A. L. History of the atmosphere. L., 1985; Khrgian A.Kh. Atmospheric Physics. M., 1986; Atmosphere: A Handbook. L., 1991; Khromov S. P., Petrosyants M. A. Meteorology and climatology. 5th ed. M., 2001.

G. S. Golitsyn, N. A. Zaitseva.

The structure and composition of the Earth's atmosphere, it must be said, were not always constant values ​​in one or another period of the development of our planet. Today, the vertical structure of this element, which has a total "thickness" of 1.5-2.0 thousand km, is represented by several main layers, including:

  1. Troposphere.
  2. tropopause.
  3. Stratosphere.
  4. Stratopause.
  5. mesosphere and mesopause.
  6. Thermosphere.
  7. exosphere.

Basic elements of the atmosphere

The troposphere is a layer in which strong vertical and horizontal movements are observed, it is here that weather, precipitation, and climatic conditions are formed. It extends for 7-8 kilometers from the surface of the planet almost everywhere, with the exception of the polar regions (there - up to 15 km). In the troposphere, there is a gradual decrease in temperature, approximately 6.4 ° C with each kilometer of altitude. This figure may differ for different latitudes and seasons.

The composition of the Earth's atmosphere in this part is represented by the following elements and their percentages:

Nitrogen - about 78 percent;

Oxygen - almost 21 percent;

Argon - about one percent;

Carbon dioxide - less than 0.05%.

Single composition up to a height of 90 kilometers

In addition, dust, water droplets, water vapor, combustion products, ice crystals, sea salts, many aerosol particles, etc. can be found here. This composition of the Earth’s atmosphere is observed up to approximately ninety kilometers in height, so the air is approximately the same in chemical composition, not only in the troposphere, but also in the upper layers. But there the atmosphere has fundamentally different physical properties. The layer that has a common chemical composition is called the homosphere.

What other elements are in the Earth's atmosphere? As a percentage (by volume, in dry air), gases such as krypton (about 1.14 x 10 -4), xenon (8.7 x 10 -7), hydrogen (5.0 x 10 -5), methane (about 1.7 x 10 - 4), nitrous oxide (5.0 x 10 -5), etc. In terms of mass percentage of the listed components, nitrous oxide and hydrogen are the most, followed by helium, krypton, etc.

Physical properties of different atmospheric layers

The physical properties of the troposphere are closely related to its attachment to the surface of the planet. From here, the reflected solar heat in the form of infrared rays is sent back up, including the processes of thermal conduction and convection. That is why the temperature drops with distance from the earth's surface. Such a phenomenon is observed up to the height of the stratosphere (11-17 kilometers), then the temperature becomes practically unchanged up to the level of 34-35 km, and then there is again an increase in temperatures to heights of 50 kilometers (the upper boundary of the stratosphere). Between the stratosphere and the troposphere there is a thin intermediate layer of the tropopause (up to 1-2 km), where constant temperatures are observed above the equator - about minus 70 ° C and below. Above the poles, the tropopause "warms up" in summer to minus 45°C, in winter temperatures here fluctuate around -65°C.

The gas composition of the Earth's atmosphere includes such an important element as ozone. There is relatively little of it near the surface (ten to the minus sixth power of a percent), since the gas is formed under the influence of sunlight from atomic oxygen in the upper parts of the atmosphere. In particular, most of the ozone is at an altitude of about 25 km, and the entire "ozone screen" is located in areas from 7-8 km in the region of the poles, from 18 km at the equator and up to fifty kilometers in general above the surface of the planet.

Atmosphere protects from solar radiation

The composition of the air of the Earth's atmosphere plays a very important role in the preservation of life, since individual chemical elements and compositions successfully limit the access of solar radiation to the earth's surface and people, animals, and plants living on it. For example, water vapor molecules effectively absorb almost all ranges of infrared radiation, except for lengths in the range from 8 to 13 microns. Ozone, on the other hand, absorbs ultraviolet up to a wavelength of 3100 A. Without its thin layer (on average 3 mm if placed on the surface of the planet), only water at a depth of more than 10 meters and underground caves, where solar radiation does not reach, can be inhabited. .

Zero Celsius at stratopause

Between the next two levels of the atmosphere, the stratosphere and the mesosphere, there is a remarkable layer - the stratopause. It approximately corresponds to the height of ozone maxima and here a relatively comfortable temperature for humans is observed - about 0°C. Above the stratopause, in the mesosphere (begins somewhere at an altitude of 50 km and ends at an altitude of 80-90 km), there is again a drop in temperature with increasing distance from the Earth's surface (up to minus 70-80 ° C). In the mesosphere, meteors usually burn out completely.

In the thermosphere - plus 2000 K!

The chemical composition of the Earth's atmosphere in the thermosphere (begins after the mesopause from altitudes of about 85-90 to 800 km) determines the possibility of such a phenomenon as the gradual heating of layers of very rarefied "air" under the influence of solar radiation. In this part of the "air cover" of the planet, temperatures from 200 to 2000 K occur, which are obtained in connection with the ionization of oxygen (above 300 km is atomic oxygen), as well as the recombination of oxygen atoms into molecules, accompanied by the release of a large amount of heat. The thermosphere is where the auroras originate.

Above the thermosphere is the exosphere - the outer layer of the atmosphere, from which light and rapidly moving hydrogen atoms can escape into outer space. The chemical composition of the Earth's atmosphere here is represented more by individual oxygen atoms in the lower layers, helium atoms in the middle, and almost exclusively hydrogen atoms in the upper. High temperatures prevail here - about 3000 K and there is no atmospheric pressure.

How was the earth's atmosphere formed?

But, as mentioned above, the planet did not always have such a composition of the atmosphere. In total, there are three concepts of the origin of this element. The first hypothesis assumes that the atmosphere was taken in the process of accretion from a protoplanetary cloud. However, today this theory is subject to significant criticism, since such a primary atmosphere must have been destroyed by the solar "wind" from a star in our planetary system. In addition, it is assumed that volatile elements could not stay in the zone of formation of planets like the terrestrial group due to too high temperatures.

The composition of the Earth's primary atmosphere, as suggested by the second hypothesis, could be formed due to the active bombardment of the surface by asteroids and comets that arrived from the vicinity of the solar system in the early stages of development. It is quite difficult to confirm or refute this concept.

Experiment at IDG RAS

The most plausible is the third hypothesis, which believes that the atmosphere appeared as a result of the release of gases from the mantle of the earth's crust about 4 billion years ago. This concept was tested at the Institute of Geology and Geochemistry of the Russian Academy of Sciences in the course of an experiment called "Tsarev 2", when a sample of a meteoric substance was heated in a vacuum. Then, the release of gases such as H 2, CH 4, CO, H 2 O, N 2, etc. was recorded. Therefore, scientists rightly assumed that the chemical composition of the Earth's primary atmosphere included water and carbon dioxide, hydrogen fluoride vapor (HF), carbon monoxide gas (CO), hydrogen sulfide (H 2 S), nitrogen compounds, hydrogen, methane (CH 4), ammonia vapor (NH 3), argon, etc. Water vapor from the primary atmosphere participated in the formation of the hydrosphere, carbon dioxide turned out to be more in a bound state in organic matter and rocks, nitrogen passed into the composition of modern air, as well as again into sedimentary rocks and organic matter.

The composition of the Earth's primary atmosphere would not allow modern people to be in it without breathing apparatus, since there was no oxygen in the required quantities then. This element appeared in significant quantities one and a half billion years ago, as is believed, in connection with the development of the process of photosynthesis in blue-green and other algae, which are the oldest inhabitants of our planet.

Oxygen minimum

The fact that the composition of the Earth's atmosphere was initially almost anoxic is indicated by the fact that easily oxidized, but not oxidized graphite (carbon) is found in the most ancient (Katarchean) rocks. Subsequently, the so-called banded iron ores appeared, which included interlayers of enriched iron oxides, which means the appearance on the planet of a powerful source of oxygen in molecular form. But these elements came across only periodically (perhaps the same algae or other oxygen producers appeared as small islands in an anoxic desert), while the rest of the world was anaerobic. The latter is supported by the fact that easily oxidizable pyrite was found in the form of pebbles processed by the flow without traces of chemical reactions. Since flowing waters cannot be poorly aerated, the view has evolved that the pre-Cambrian atmosphere contained less than one percent oxygen of today's composition.

Revolutionary change in air composition

Approximately in the middle of the Proterozoic (1.8 billion years ago), the “oxygen revolution” took place, when the world switched to aerobic respiration, during which 38 can be obtained from one nutrient molecule (glucose), and not two (as with anaerobic respiration) units of energy. The composition of the Earth's atmosphere, in terms of oxygen, began to exceed one percent of the modern one, and an ozone layer began to appear, protecting organisms from radiation. It was from her that “hidden” under thick shells, for example, such ancient animals as trilobites. From then until our time, the content of the main "respiratory" element has gradually and slowly increased, providing a variety of development of life forms on the planet.