Уравнение движения центра масс системы имеет вид. Движение центра масс системы. Энергия системы частиц

Центр масс. Уравнение движения центра масс. Сам закон: Тела действуют друг на друга с силами имеющими одинаковую природу направленными вдоль одной и той же прямой равными по модулю и противоположными по направлению: Центр масс это геометрическая точка характеризующая движение тела или системы частиц как целого. Определение Положение центра масс центра инерции в классической механике определяется следующим образом: где радиусвектор центра масс радиусвектор iй точки системы масса iй точки.

7.Третий закон Ньютона. Центр масс. Уравнение движения центра масс.

Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия.

Сам закон:

Тела действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению:

Центр масс — это геометрическая точка, характеризующая движение тела или системы частиц как целого.

Определение

Положение центра масс (центра инерции) в классической механике определяется следующим образом:

где — радиус-вектор центра масс, — радиус-вектор i -й точки системы,

— масса i -й точки.

.

Это уравнение движения центра масс системы материальных точек с массой, равной массе всей системы, к которой приложена сумма всех внешних сил (главный вектор внешних сил) или теорема о движении центра масс.


А также другие работы, которые могут Вас заинтересовать

22476. КЛАССИФИКАЦИЯ СИСТЕМ ПЕРСОНАЛЬНОГО РАДИОВЫЗОВА, ПЕЙДЖЕРЫ, РЕПИТЕРЫ, ОСНОВНЫЕ ПРОТОКОЛЫ ПЕРЕДАЧИ ИНФОРМАЦИИ. 1.21 MB
КЛАССИФИКАЦИЯ СИСТЕМ ПЕРСОНАЛЬНОГО РАДИОВЫЗОВА ПЕЙДЖЕРЫ РЕПИТЕРЫ ОСНОВНЫЕ ПРОТОКОЛЫ ПЕРЕДАЧИ ИНФОРМАЦИИ. Цель работы Изучить классификацию систем персонального радиовызова пейджеры репитеры основные протоколы передачи информации. Ознакомиться с основными протоколами передачи информации в СПРВ. При этом для передачи вызова абоненту использовалось последовательное тональное кодирование адреса обеспечивающее возможность обслуживания до нескольких десятков тысяч пользователей.
22477. ИЗУЧЕНИЕ МЕТОДОВ КОДИРОВАНИЯ РЕЧЕВЫХ СИГНАЛОВ В СТАНДАРТЕ ТЕТRА ТРАНКИНГОВЫХ СЕТЕЙ 961.5 KB
Задание Ознакомиться с общим описанием алгоритма кодирования речевого сигнала. Изучить особенности канального кодирования для различных логических каналов. Oбщее описание алгоритма кодирования речевого сигнала СЕLР Для кодирования информационного уплотнения речевых сигналов в стандарте ТЕТRА используется кодер с линейным предсказанием и многоимпульсным возбуждением от кода СЕLР Соdе Ехсited Linear Ргеdiction.
22478. СИСТЕМА СОТОВОЙ СВЯЗИ СТАНДАРТА GSM-900 109.5 KB
Цель работы Изучить основные технические характеристики функциональное построение и интерфейсы принятые в цифровой сотовой системе подвижной радиосвязи стандарта GSM. Задание Ознакомиться с общими характеристиками стандарта GSM. Краткая теория Стандарт GSM Global System for Mobile communications тесно связан со всеми современными стандартами цифровых сетей в первую очередь с ISDN и IN Intelligent Network.

МЕХАНИЧЕСКАЯ СИСТЕМА – это произвольный заранее выбранный набор материальных тел, поведение которых анализируется.

В дальнейшем будет использоваться следующее правило: В МАТЕМАТИЧЕСКИХ ВЫКЛАДКАХ ХАРКТЕРИСТИКИ МАТЕРИАЛЬНЫХ ТОЧЕК В ОТЛИЧИЕ ОТ ХАРАКТЕРИСТИК МАТЕРИАЛЬНЫХ ТЕЛ, БУДУТ ИМЕТЬ ИНДЕКС.

МАССА ТЕЛА – это сумма масс всех материальных точек, составляющих данное тело

ВНЕШНИЕ СИЛЫ – это силы взаимодействия материальных точек, включенных в механическую систему и не включенных.

ВНУТРЕННИЕ СИЛЫ – это силы взаимодействия материальных точек, включенных в механическую систему.

ТЕОРЕМА Д1 . Сумма внутренних сил механической системы всегда равна нулю .

Доказательство . Согласно аксиоме Д5, для любой пары материальных точек механической системы сумма сил их взаимодействия всегда равна нулю. Но все взаимодействующие точки принадлежат системе и, следовательно, любой из внутренних сил всегда найдется противодействующая внутренняя сила. Следовательно, полная сумма всех внутренних сил обязательно равна нулю. Ч.т.д.

ТЕОРЕМА Д2 .Сумма моментов внутренних сил механической системы всегда равна нулю .

Доказательство . Согласно аксиоме Д5, каждой внутренней силе найдется противодействующая внутренняя сила. Поскольку линии действия этих сил совпадают, то их плечи относительно любой точки пространства будут одинаковы и, следовательно, их моменты, относительно выбранной точки пространства по величине одинаковы, но знаки имеют разные, так как силы направлены противоположно. Следовательно, полная сумма моментов всех внутренних сил обязательно равна нулю. Ч.т.д.

ТЕОРЕМА Д3 .Произведение массы всей механической системы на ускорение ее центра масс равняется сумме всех внешних сил, действующих на систему.

Доказательство . Рассмотрим произвольную механическую систему, состоящую из конечного числа материальных тел. На основании аксиомы Д2 каждое тело можем разбить на конечное число материальных точек. Пусть всего получено n таких точек. Для каждой такой точки на основании аксиомы Д4 можно составить уравнение движения

Учитывая, что (КИНЕМАТИКА стр. 3), а также разбив все силы, действующие на i -ю точку, на внешние и внутренние, получим из предыдущего равенства

Если просуммировать уравнения движения всех точек системы, получим

Используя коммутативность операций суммирования и дифференцирования (фактически знаки суммирования и дифференцирования можно менять местами), получим

(40)

Выражение, полученное в скобках, может быть представлено через координату центра масс системы (СТАТИКА стр. 15)

где m – масса всей системы;

Радиус-вектор центра масс системы.

Как следует из теоремы Д1, последнее слагаемое в выражении (40) обращается в ноль, поэтому

или , ч.т.д. (41)

Следствие . Центр масс механической системы движется таким образом, как если бы он был материальной точкой, обладающей всей массой системы и к которой приведены все внешние силы .

Движение механической системы в отсутствие внешних сил

Теорема Д4. Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении, то центр масс системы в этом направлении будет двигаться с постоянной скоростью.

Доказательство Х совпадала с направлением, в котором внешние силы уравновешены, т.е. сумма проекций внешних сил на ось Х равна нулю

Тогда, согласно теореме Д3

Так как , следовательно

Если проинтегрировать последнее выражение, то получим

ТЕОРЕМА Д5 . Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении и в начальный момент система покоилась, то центр масс системы остается неподвижен все время движения.

Доказательство . Повторив рассуждения, приведенные в доказательстве предыдущей теоремы, получим, что скорость центра масс должна остаться такой же, какой она была в начальный момент, т.е. нулевой

Проинтегрировав это выражение, получим

ТЕОРЕМА Д6 . Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении и в начальный момент система покоилась, то сумма произведений масс каждого из тел системы на абсолютное смещение его собственного центра масс в том же направлении равна нулю.

Доказательство . Выберем систему координат таким образом, чтобы ось Х совпадала с направлением, в котором внешние силы уравновешены или отсутствуют (F 1 , F 2 , …, F k на рис. 3), т.е. сумма проекций внешних сил на ось Х равна нулю

Дифференциальные уравнения движения системы

Рассмотрим систему, состоящую из $n$ материальных точек. Выделим какую-нибудь точку системы с массой $m_{k}.$ Обозначим равнодействующую всех приложенных к точке внешних сил (и активных, и реакций связей) через $\overline{F}_{k}^{e} $, а равнодействующую всех внутренних сил -- через $\overline{F}_{k}^{l} $. Если точка имеет при этом ускорение $\overline{a_{k} }$, то по основному закону динамики:

Аналогичный результат получим для любой точки. Следовательно, для всей системы будет:

Уравнения (1) представляют собой дифференциальные уравнения движения системы в векторной форме.

Проектируя равенства (1) на координатные оси, получим уравнения движения системы в дифференциальной форме в проекциях на эти оси.

Однако при решении многих конкретных задач необходимость находить закон движения каждой из точек системы не возникает, а бывает достаточно найти характеристики, определяющие движение всей системы в целом.

Теорема о движении центра масс системы

Для определения характера движения системы требуется знать закон движения ее центра масс. Центром масс или центром инерции системы называется такая воображаемая точка, радиус-вектор $R$которой выражается через радиус векторы $r_{1} ,r_{2} ,...$материальных точек по формуле:

$R=\frac{m_{1} r_{1} +m_{2} r_{2} +...+m_{n} r_{n} }{m} $, (2)

где $m=m_{1} +m_{2} +...+m_{n} $ - общая масса всей системы.

Чтобы найти этот закон, обратимся к уравнениям движения системы (1) и сложим почленно их левые и правые части. Тогда получим:

$\sum m_{k} \overline{a}_{k} =\sum \overline{F}_{k}^{e} +\sum \overline{F}_{k}^{l} $. (3)

Из формулы (2) имеем:

Беря вторую производную по времени, получаем:

$\sum m_{k} \overline{a}_{k} =M\overline{a}_{c} $, (4)

где $\overline{a}_{c} $- ускорение центра масс системы.

Так как по свойству внутренних сил в системе $\sum \overline{F}_{k}^{l} =0$, получим окончательно из равенства (3), учтя (4):

$M\overline{a}_{c} =\sum \overline{F}_{k}^{e} $. (5)

Уравнение (5) выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил или центр масс системы движется как материальная точка , масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Проецируя обе части равенства (5) на координатные оси, получим:

$M\ddot{x}_{c} =\sum \overline{F}_{kx}^{e} $, $M\ddot{y}_{c} =\sum \overline{F}_{ky}^{e} $, $M\ddot{z}_{c} =\sum \overline{F}_{kz}^{e} $. (6)

Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Значение теоремы состоит в следующем:

Теорема

  • Поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных случаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс и допустимо по условиям задачи не принимать во внимание вращательную часть движения тела;
  • Теорема позволяет исключать из рассмотрения все наперед неизвестные внутренние силы. В этом ее практическая ценность.

Пример

Металлическое кольцо, подвешенное на нити к оси центробежной машины равномерно вращается с угловой скоростью $\omega $. Нить составляет угол $\alpha $с осью. Найти расстояние от центра кольца до оси вращения.

\[\omega \] \[\alpha \]

На нашу систему действует сила тяжести $\overline{N}$ $\overline{N}$ $\alpha \alpha$, сила натяжения нити и центростремительное ускорение.

Запишем второй закон Ньютона для нашей системы:

Спроецируем обе части на оси x и y:

\[\left\{ \begin{array}{c} N\sin \alpha =ma; \\ N\cos \alpha =mg; \end{array} \right.(4)\]

Разделив одно уравнение на другое, получим:

Так как $a=\frac{v^{2} }{R} ;$$v=\omega R$, находим искомое расстояние:

Ответ: $R=\frac{gtg\alpha }{\omega ^{2} } $

По специальной договоренности с редколлегией и редакцией журнала «Квант»

При решении механических задач неоценимую помощь может оказать использование понятия центра масс системы материальных точек. Одни задачи просто невозможно решить, не прибегая к этому понятию, решение других с его помощью может стать гораздо проще и нагляднее.

Перед тем как обсуждать конкретные задачи, напомним основные свойства центра масс и проиллюстрируем их примерами.

Центром масс (центром инерции) системы материальных точек назовем точку, характеризующую распределение масс в системе, координаты которой определяются формулами

Здесь m i - массы материальных точек, образующих систему, x i , y i , z i - координаты этих точек. Читатели, знакомые с понятием радиуса-вектора, предпочтут векторную запись:

(1)

Пример 1 . Найдем положение центра масс, простейшей системы, состоящей из двух точек, массы которых m 1 и m 2 и расстояние между ними l (рис. 1).

Направив ось X от первой точки ко второй, получим, что расстояние от первой точки до центра масс (т.е. координата центра масс) равно а расстояние от центра масс до второй точки равно т.е. отношение расстояний обратно отношению масс. Значит, в этом случае положение центра масс совпадает с центром тяжести.

Обсудим некоторые свойства центра масс, что, как нам кажется, наполнит физическим содержанием приведенное выше несколько формальное определение этого понятия.

1) Положение центра масс не изменится, если какую-то часть системы заменить одной точкой с массой, равной массе этой подсистемы, и находящейся в ее центре масс.

Пример 2 . Рассмотрим плоский однородный треугольник и найдем положение его центра масс. Разделим треугольник на тонкие полоски, параллельные одной из сторон, и заменим каждую полоску точкой, расположенной в ее середине. Так как все такие точки лежат на медиане треугольника, центр масс тоже должен лежать на медиане. Повторяя рассуждения для каждой из сторон, получаем, что центр масс находится на пересечении медиан.

2) Скорость центра масс можно найти, взяв производную по времени от обеих частей равенства (1):

(2)

где - импульс системы, m - полная масса системы. Видно, что скорость центра масс замкнутой системы постоянна. Значит, если связать с центром масс поступательно движущуюся систему отсчета, то она будет инерциальной.

Пример 3 . Поставим однородный стержень длиной l вертикально на гладкую плоскость (рис. 2) и отпустим. В процессе падения как горизонтальная составляющая его импульса, так и горизонтальная составляющая скорости центра масс будут оставаться равными нулю. Поэтому в момент падения центр стержня окажется в том месте, где первоначально стоял стержень, а концы стержня сместятся по горизонтали на .

3) Ускорение центра масс равно производной от его скорости по времени:

(3)

где в правой части равенства стоят только внешние силы, так как все внутренние силы сокращаются по третьему закону Ньютона. Получаем, что центр масс, движется так, как двигалась бы воображаемая точка с массой, равной массе системы, под действием результирующей внешней силы. Наверное, это самое физическое свойство центра масс.

Пример 4 . Если бросить палку, приведя ее при этом во вращение, то центр масс палки (ее середина) будет двигаться с постоянным ускорением по параболе (рис. 3).

4) Пусть система точек находится в однородном поле тяжести. Тогда суммарный момент сил тяжести относительно любой оси, проходящей через центр масс, равен нулю. Это значит, что равнодействующая сил тяжести проходит через центр масс, т.е. центр масс является также центром тяжести.

5) Потенциальная энергия системы точек в однородном поле тяжести вычисляется по формуле

где h ц - высота центра масс системы.

Пример 5 . При выкапывании в однородном фунте ямы глубиной h и разбрасывании грунта по поверхности его потенциальная энергия возрастает на , где m - масса извлеченного грунта.

6) И еще одно полезное свойство центра масс. Кинетическая энергия системы точек может быть представлена в виде суммы двух слагаемых: кинетической энергии общего поступательного движения системы, равной , и кинетической энергии E отн движения относительно системы отсчета, связанной с центром масс:

Пример 6 . Кинетическая энергия обруча, катящегося без проскальзывания по горизонтальной поверхности со скоростью υ, равна

так как относительное движение в этом случае представляет собой чистое вращение, для которого линейная скорость точек обруча равна υ (полная скорость нижней точки должна быть равна нулю).

Теперь приступим к разбору задач на использование центра масс.

Задача 1 . Однородный стержень лежит на гладкой горизонтальной поверхности. К стержню прикладывают две одинаковые по величине, но противоположные по направлению горизонтальные силы: одна сила приложена к середине стержня, другая - к его концу (рис. 4). Относительно какой точки начнет поворачиваться стержень?

На первый взгляд может показаться, что осью вращения будет точка, лежащая посередине между точками приложения сил. Однако уравнение (3) показывает, что поскольку сумма внешних сил равна нулю, то равно нулю и ускорение центра масс. Значит, центр стержня будет оставаться в покое, т.е. служить осью вращения.

Задача 2 . Тонкий однородный стержень длиной l и массой m привели в движение вдоль гладкой горизонтальной поверхности так, что он движется поступательно и одновременно вращается с угловой скоростью ω. Найдите, натяжение стержня в зависимости от расстояния x до его центра.

Перейдем в инерциальную систему отсчета, связанную с центром стержня. Рассмотрим движение куска стержня, заключенного между рассматриваемой точкой стержня (расположенной на расстоянии x от центра) и его концом (рис. 5).

Единственной внешней силой для этого куска является искомая сила натяжения F н, масса равна , а его центр масс движется по окружности радиусом с ускорением . Записывая уравнение движения центра масс выделенного куска, получим

Задача 3 . Двойная звезда состоит из двух звезд-компонентов массами m 1 и m 2 , расстояние между которыми не меняется и остается равным L . Найдите период вращения двойной звезды.

Рассмотрим движение звезд-компонентов в инерциальной системе отсчета, связанной с центром масс двойной звезды. В этой системе отсчета звезды движутся с одной и той же угловой скоростью по окружностям разных радиусов (рис. 6).

Радиус вращения звезды массой m 1 равен (см. Пример 1), а ее центростремительное ускорение создается силой притяжения к другой звезде:

Видим, что период вращения двойной звезды равен

и определяется полной массой двойной звезды, независимо от того, как она распределена между звездами-компонентами.

Задача 4 . Две точечные массы m и 2m связаны невесомой нитью длиной l и движутся по гладкой горизонтальной плоскости. В некоторый момент времени скорость массы 2m равна нулю, а скорость массы m равна υ и направлена перпендикулярно нити (рис. 7). Найдите натяжение нити и период вращения системы.

Рис. 7

Центр масс системы находится на расстоянии от массы 2m и движется со скоростью . В системе отсчета, связанной с центром масс, точка массой 2m движется по окружности радиусом со скоростью . Значит, период вращения равен (проверьте, что такой же ответ получается, если рассмотреть точку массой m ). Натяжение нити найдем из уравнения движения любой из двух точек:

Задача 5 . На гладкой горизонтальной плоскости лежат два одинаковых бруска массой m каждый, связанных легкой пружиной жесткостью k (рис. 8). Первому бруску сообщают скорость υ 0 в направлении от второго бруска. Опишите движение системы. Через какое время деформация пружины впервые достигнет максимального значения?

Центр масс системы будет перемещаться с постоянной скоростью . В системе отсчета центра масс начальная скорость каждого бруска равна , а жесткость половинной пружины, которая соединяет его с неподвижным центром масс, составляет 2k (жесткость пружины обратно пропорциональна ее длине). Период таких колебаний равен

а амплитуда колебаний каждого бруска, которую можно найти из закона сохранения энергии, составляет

В первый раз деформация станет максимальной через четверть периода, т.е. через время .

Задача 6 . Шар массой m налетает со скоростью υ на покоящийся шар массой 2m . Найдите скорости обоих шаров после упругого центрального удара.

В системе отсчета, связанной с центром масс, полный импульс двух шаров равен нулю как до, так и после coyдарения. Легко догадаться, какой ответ для конечных скоростей удовлетворяет одновременно и этому условию, и закону сохранения энергии: скорости останутся такими же, как до удара, по величине, но изменят свои направления на противоположные. Скорость центра масс системы равна . В системе центра масс первый шар движется со скоростью , а второй шар движется навстречу первому со скоростью . После удара шары будут разлетаться с такими же скоростями. Осталось вернуться в первоначальную систему отсчета. Применяя закон сложения скоростей, находим, что конечная скорость шара массой m равна и направлена назад, а скорость покоившегося раньше шара массой 2m равна и направлена вперед.

Отметим, что в системе центра масс очевидным является утверждение, что при ударе относительная скорость шаров не меняется по величине, но меняется по направлению. А так как разность скоростей при переходе в другую инерциальную систему отсчета не изменяется, можно считать, что мы вывели это важное соотношение и для первоначальной системы отсчета:

υ 1 – υ 2 = u 1 – u 2 ,

где буква υ используется для обозначения начальных скоростей, а u - для конечных. Это уравнение можно решать совместно с законом сохранения импульса вместо закона сохранения энергии (куда скорости входят во второй степени).

Задача 7 . Известно, что при упругом нецентральном ударе двух одинаковых шаров, один из которых до удара покоился, угол разлета равен 90°. Докажите это утверждение.

В системе центра масс нецентральный удар можно описать следующим образом. До удара шары сближаются с одинаковыми импульсами, после удара они разлетаются с такими же по величине, но противоположно направленными импульсами, а прямая разлета поворачивается на некоторый угол относительно прямой сближения. Чтобы перейти обратно в начальную систему отсчета, надо каждую конечную скорость сложить (векторно!) со скоростью центра масс. В случае одинаковых шаров скорость центра масс равна , где υ - скорость налетающего шара, и в системе отсчета центра масс шары сближаются и разлетаются с одинаковыми скоростями . В том, что после сложения каждой конечной скорости со скоростью центра масс получаются взаимно перпендикулярные векторы, можно убедиться из рисунка 9. А можно и просто проверить, что скалярное произведение векторов и обращается в ноль в силу того, что модули векторов равны друг другу.

Упражнения

1. Стержень массой m и длиной l шарнирно закреплен за один из концов. Стержень отклонили на некоторый угол от вертикального положения и отпустили. В момент прохождения вертикального положения скорость нижней точки равна υ. Найдите натяжение в средней точке стержня в этот момент времени.

2. Стержень массой m и длиной l вращают в горизонтальной плоскости с угловой скоростью ω вокруг одного из его концов. Найдите зависимость натяжения стержня от расстояния x до оси вращения, если на другом конце закреплен маленький грузик массой М .

3. Найдите период колебаний для системы, описанной в задаче 5 статьи, но для брусков различных масс m 1 и m 2 .

4. Выведите известные общие формулы для упругого центрального удара двух шаров, используя переход в систему отсчета центра масс.

5. Шар массой m 1 налетает на покоящийся шар меньшей массы m 2 . Найдите максимально возможный угол отклонения налетающего шара при упругом нецентральном ударе.

1.

2.

3.

Точка С , положение которой определяется радиус-вектором:

называется центром масс системы материальных точек. Здесь m i - масса i -й частицы; r i - радиус-вектор, задающий положение этой частицы; - суммарная масса системы. (Отметим, что в однородном поле сил тяжести центр масс совпадает с центром тяжести системы.)

Продифференцировав r C по времени, найдем скорость центра масс:

где V i - скорость i -ой материальной точки, p i - ее импульс, P – импульс системы материальных точек. Из (2.18) следует, что суммарный импульс системы есть

P = mV C , (2.19)

Из (2.19) и (2.16), получим уравнение движения центра масс:

(а C – ускорение центра масс). Таким образом, из уравнения

следует, что центр масс движется так, как двигалась бы материальная точка с массой, равной массе системы, под действием результирующей всех внешних сил, приложенных к телам системы. Для замкнутой системы а C = 0. Это означает, что центр масс замкнутой системы движется прямолинейно и равномерно либо покоится .

Система отсчета, относительно которой центр масс покоится, называется системой центра масс (сокращенно ц- системой). Эта система является инерциальной.

Контрольные вопросы

1. В каких системах отсчета справедливы законы Ньютона?

2. Какие формулировки второго закона Ньютона вы знаете?

3. Чему равен вес свободно падающего тела?

4. Какой знак имеет скалярное произведение силы трения и скорости тела?

5. Чему равен импульс системы материальных точек в системе центра масс?

6. Чему равно ускорение центра масс тела, имеющего массу m и находящегося под действием сил ?

1. Пуля пробивает две примыкающие друг к другу коробки с жидкостями: вначале коробку с глицерином, затем такую же коробку с водой. Как изменится конечная скорость пули, если коробки поменять местами? Другими силами, действующими на пулю, кроме силы сопротивления жидкости F = rV , пренебречь.

2. Движение материальной точки задано уравнениями x = at 3 , y = bt.

3. Скорость материальной точки задана уравнениями u x = A ∙ sinwt ,u y = A ∙ coswt. Изменяется ли сила, действующая на точку: а) по модулю; б) по направлению?

4. Шарик, висящий на нити длиной l , после горизонтального толчка поднимается на, высоту H , не сходя с окружности. Может ли его скорость оказаться равной нулю: а) при H < l б) при H > l ?

5. Два тела массами т 1 > m 2 падают с одинаковой высоты. Силы сопротивления считать постоянными и одинаковыми для обоих тел. Сравнить время падения тел.

6. Два одинаковых бруска, связанные нитью, движутся по горизонтальной плоскости под действием горизонтальной силы F . Зависит ли сила натяжения нити: а) от массы брусков; б) от коэффициента трения брусков о плоскость?


7. Брусок массой m 1 = 1 кг покоится на бруске массой m 2 = 2 кг. На нижний брусок начала действовать горизонтальная сила, возрастающая пропорционально времени, ее модуль F = 3t (F – в Н, t – в с). В какой момент времени верхний брусок начнет проскальзывать? Коэффициент трения между брусками m = 0,1, трение между нижним бруском и опорой пренебрежимо мало. Принять g = 10 м/с 2 .

8. Два шарика а и б, подвешенные на нитях в общей точке0, равномерно движутся по круговым траекториям, лежащим в одной горизонтальной плоскости. Сравнить их угловые скорости.

9. Коническая воронка вращается с постоянной угловой скоростью w. Внутри воронки на стенке лежит тело, которое может свободно скользить вдоль образующей конуса. При вращении тело находится в равновесии относительно стенки. Является это равновесие устойчивым или неустойчивым?


Глава 3
Работа и энергия