Третий закон Менделя. Условия независимого наследования и комбинирования неаллельных генов. Цитологические основы и универсальность законов Менделя. Менделирующие признаки человека. Законы менделя При каких условиях соблюдается первый закон менделя

Законы Менделя - принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя . Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет» .

Энциклопедичный YouTube

    1 / 5

    ✪ Первый и второй законы Менделя. Естествознание 3.2

    ✪ Третий закон Менделя. Естествознание 3.3

    ✪ Урок биологии №20. Грегор Мендель и его Первый закон.

    ✪ Первый и второй законы Менделя супердоходчиво

    ✪ 1 закон Менделя. Закон доминирования.Подготовка к ЕГЭ и ОГЭ по биологии

    Субтитры

Предшественники Менделя

В начале XIX века Дж. Госс (John Goss ), экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении .

Таким образом, к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении (все гибриды первого поколения похожи друг на друга), расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников, указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений. Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя .

Методы и ход работы Менделя

  • Мендель изучал, как наследуются отдельные признаки.
  • Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два чётко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования .
  • Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме - самоопылитель , но на нём легко проводить искусственную гибридизацию.
  • Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей .

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Понятие гомозиготности было введено позднее У. Бэтсоном в 1902 году .

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования . Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот .

Скрещиванием организмов двух чистых линий , различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание .

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Объяснение

Закон чистоты гамет - в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Закон независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) - при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам, и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом (нуклеопротеидных структур в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи) гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в 1909 г. В.Иогансеном).
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой - от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3: 1 по фенотипу и 1: 2: 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.
  5. Родительские организмы принадлежат к чистым линиям, то есть действительно гомозиготны по изучаемому гену (АА и аа).
  6. Признак действительно моногенный

Условия выполнения закона независимого наследования

  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).

Условия выполнения закона чистоты гамет

  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Третий закон Менделя, закон независимого комбинирования .

Изучение Менделем наследования од­ной пары аллелей дало возможность установить ряд важных генетических закономерностей: явление доми­нирования, неизменность рецессивных аллелей у гибри­дов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты , т. е. содержат только один ген из аллельной пары. Одна­ко организмы различаются по многим генам. Устано­вить закономерности наследования двух пар альтерна­тивных признаков и более можно путем дигибридного или полигибридного скрещивания.

Для дигибридного скрещивания Мендель взял гомо­зиготные растения гороха, отличающиеся по двум ге­нам - окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки - желтая окраска (А) и гладкая форма (В) семян. Каж­дое растение образует один сорт гамет по изучаемым аллелям:

При слиянии гамет все потомство будет единообразным:

При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген А может попасть в одну гамету с геном В или с геном b . Точно так же ген а может оказаться в одной гамете с геном В или с геном b . Поэтому у гибрида образуются четыре типа гамет: АВ, Ав, аВ, ав. Во время оплодотворения каждая из четырех типов гамет одного организма слу­чайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали - гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет - смотрите рисунок ниже.

Легко подсчитать, что по фенотипу потомство делит­ся на 4 группы: 9 желтых гладких, 3 желтых морщини­стых, 3 зеленых гладких, 1 желтая морщинистая. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещива­нии, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по прави­лам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают раз­личные комбинации генов.

Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том слу­чае, если пары аллельных генов расположены в разных парах гомологичных хромосом:

Теперь можно сформулировать третий закон Менде­ля : при скрещивании двух гомозиготных особей, отлича­ющихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.


Законы Менделя служат основой для анализа рас­щепления в более сложных случаях: при различиях осо­бей по трем, четырем парам признаков и более.

Если родительские формы различаются по одной паре признаков, то во втором поколении наблюдается расщепление в отношении 3:1, для дигибридного скре­щивания это будет (3:1) 2 , для тригибридного - (3:1) 3 и т. д. Можно рассчитать также число типов гамет, образующихся у гибридов.

Законы Менделя

Переоткрытие законов Менделя Гуго де Фризом в Голландии, Карлом Корренсом в Германии и Эрихом Чермаком в Австрии произошло лишь в 1900 году. В это же время были подняты архивы и найдены старые работы Менделя.

В это время научный мир уже был готов к тому, чтобы воспринять генетику . Началось ее триумфальное шествие. Проверяли справедливость законов о наследовании по Менделю (менделировании) на все новых и новых растениях и животных и получали неизменные подтверждения. Все исключения из правил быстро развивались в новые явления общей теории наследственности.

В настоящее время три основополагающих закона генетики, три закона Менделя , формулируются следующим образом.

Первый закон Менделя. Единообразие гибридов первого поколения. Все признаки организма могут быть в своем доминантном или рецессивном проявлении, которое зависит от присутствующих аллелей данного гена. У каждого организма есть два аллеля каждого гена (2n хромосом). Для проявления доминантного аллеля достаточно одной его копии, для проявления рецессивного - нужны сразу две. Так, генотипы АА и Аа у гороха дают красные цветы, и только генотип аа дает белые. Поэтому, когда мы скрещиваем красный горох с белым:

АА х аа Аа

Мы в результате скрещивания получаем все потомство первого поколения с красными цветами. Однако, не все так просто. Некоторые гены у некоторых организмов могут быть не доминантными и рецессивными, а кодоминантными . В результате такого скрещивания, например, у петунии и космеи, мы получим все первое поколение с розовыми цветами -- промежуточным проявлением красного и белого аллелей.

Второй закон Менделя. Расщепление признаков во втором поколении в отношении 3:1. При самоопылении гетерозиготных гибридов первого поколения, несущих доминантный и рецессивный аллели, во втором поколении признаки расщепляются в отношении 3:1.

Скрещивание Менделя можно показать на следующей схеме:

P: AA x aa F1: Aa x Aa F2: AA + Aa + Aa + aa

То есть одно растение F 2 несет гомозиготный доминантный генотип, два -- гетерозиготный (но в фенотипе проявляется доминантный аллель!) и одно растение гомозиготно по рецессивному аллелю. Отсюда и получается фенотипическое расщепление признака в отношении 3:1, хотя генотипическое расщепление на самом деле -- 1:2:1. В случае кодоминантного признака такое расщепление и наблюдается, например, по цвету цветов у петунии: одно растение с красными цветами, два с розовыми и одно с белыми.

Третий закон Менделя. Закон независимого наследования разных признаков

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам -- окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки -- желтая окраска (I) и гладкая форма (R) семян. Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии гамет все потомство будет единообразным: Ii Rr .

При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген I может попасть в одну гамету с геном R или с геном r. Точно так же ген i может оказаться в одной гамете с геном R или с геном r. Поэтому у гибрида образуются четыре типа гамет: IR, Ir, iR, ir . Во время оплодотворения каждая из четырех типов гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета , в которой по горизонтали выписываются гаметы одного родителя, по вертикали -- гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет.

Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 желтых гладких, 3 желтых морщинистых, 3 зеленых гладких, 1 желтая морщинистая, то есть наблюдается расщепление в отношении 9:3:3:1 . Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают различные комбинации генов.

Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных парах гомологичных хромосом.

Таким образом, третий закон Менделя формулируется так: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга.

Рецессивные летали . У Менделя получились одинаковые численные соотношения при расщеплении аллелей многих пар признаков. Это в частности подразумевало одинаковую выживаемость индивидов всех генотипов, но это может быть и не так. Бывает, что гомозигота по какому-нибудь признаку не выживает . Например, желтая окраска у мышей может быть обусловлена гетерозиготностью по Aguti yellow. При скрещивании таких гетерозигот друг с другом следовало бы ожидать расщепление по этому признаку соотношении 3:1. Однако, наблюдается расщепление 2:1, то есть 2 желтых к 1 белой (рецессивная гомозигота).

A y a x A y a 1aa + 2A y a + 1A y A y -- последний генотип не выживает.

Показано, что доминантная (по окраске) гомозигота не выживает уже на эмбриональной стадии. Этот аллель одновременно является рецессивной леталью (то есть рецессивной мутацией, приводящей к гибели организма).

Полулетали . Нарушение менделевского расщепления часто происходит потому, что некоторые гены являются полулеталями -- жизнеспособность гамет или зигот с такими аллелями снижена на 10-50%, что приводит к нарушению расщепления 3:1.

Влияние внешней среды. Проявление некоторых генов может сильно зависеть от условий среды. Например, некоторые аллели проявляются фенотипически только при определенной температуре на определенной фазе развития организма. Это тоже может приводить к нарушениям менделевского расщепления.

Гены-модификаторы и полигены . Кроме основного гена , контролирующего данный признак, в генотипе может быть еще несколько генов-модификаторов , модифицирующих проявление основного гена. Некоторые признаки могут определяться не одним геном, а целым комплексом генов, каждый из которых вносит свой вклад в проявление признака. Такой признак принято называть полигенным . Все это тоже вносит нарушения в расщепление 3:1.

наследственность гибрид скрещивание мендель

I закон Менделя. Закон единообразия гибридов первого поколения

При скрещивании гомозиготных особей, отличающихся по одной паре альтернативных (взаимоисключающих) признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Скрещивали растения гороха с желтыми (доминантный признак) и зелеными (рецессивный признак) семенами. Образование гамет сопровождается мейозом. Каждое растение образует один сорт гамет. Из каждой гомологичной пары хромосом в гаметы отходят по одной хромосоме с одним из аллельных генов (А или а). После оплодотворения парность гомологичных хромосом восстанавливается, образуются гибриды. Все растения будут иметь семена только желтого цвета (фенотип), гетерозиготны по генотипу Аа. Это происходит при полном доминировании.

Гибрид Аа имеет один ген А от одного родителя, а второй ген - а - от другого родителя (рис. 73).

Гаплоидные гаметы (G), в отличие от диплоидных организмов, обводят кружочком.

В результате скрещивания получаются гибриды первого поколения, обозначаемые F 1 .

Для записи скрещиваний применяют специальную таблицу, предложенную английским генетиком Пеннетом и называемую решеткой Пеннета.

По горизонтали выписывают гаметы отцовской особи, по вертикали - материнской. В местах пересечений записывают геноти-

Рис. 73. Наследование при моногибридном скрещивании.

I - скрещивание двух сортов гороха с желтыми и зелеными семенами (Р); II

Цитологические основы I и II законов Менделя.

F 1 - гетерозиготы (Аа), F 2 - расщепление по генотипу 1 АА: 2 Аа: 1 аа.

пы потомков. В таблице число клеток зависит от числа типов гамет, образуемых скрещиваемыми особями.

II закон Менделя. Закон расщепления гибридов первого поколения

При скрещивании гибридов первого поколения между собой во втором поколении появляются особи как с доминантными, так и с рецессивными признаками и происходит расщепление по фенотипу в соотношении 3:1 (три доминантных фенотипа и один рецессивный) и 1:2:1 по генотипу (см. рис. 73). Такое расщепление возможно при полном доминировании.

Гипотеза «чистоты» гамет

Закон расщепления можно объяснить гипотезой «чистоты» гамет.

Явление несмешивания аллелей альтернативных признаков в гаметах гетерозиготного организма (гибрида) Мендель назвал ги- потезой «чистоты» гамет. За каждый признак отвечают два аллельных гена (Аа). При образовании гибридов аллельные гены не смешиваются, а остаются в неизмененном виде.

Гибриды Аа в результате мейоза образуют два типа гамет. В каждую гамету идет одна из пары гомологичных хромосом с ал- лельным геном А или аллельным геном а. Гаметы чисты от другого аллельного гена. При оплодотворении восстанавливается гомологичность хромосом и аллельность генов, проявляется рецессивный признак (зеленый цвет горошин), ген которого в гибридном организме не проявлял своего действия. Признаки развиваются в результате взаимодействия генов.

Неполное доминирование

При неполном доминировании гетерозиготные особи имеют собственный фенотип, и признак носит промежуточный характер.

При скрещивании растений ночной красавицы с красными и белыми цветками в первом поколении появляются особи с розовой окраской. При скрещивании гибридов первого поколения (розовые цветки) расщепление в потомстве по генотипу и фенотипу совпадает (рис. 74).


Рис. 74. Наследование при неполном доминировании у растения ночной красавицы.

Свойством неполного доминирования обладает ген, вызывающий серповидноклеточную анемию у человека.

Анализирующее скрещивание

Рецессивный признак (зеленый горох) проявляется только в гомозиготном состоянии. Гомозиготные (желтый горох) и гетерозиготные (желтый горох) особи с доминантными признаками по фенотипу не отличаются друг от друга, но имеют разные генотипы. Их генотипы можно установить, скрестив с особями с известным генотипом. Такой особью может быть зеленый горох, имеющий гомозиготный рецессивный признак. Это скрещивание называют анализирующимися. Если в результате скрещивания все потомство будет единообразным, то исследуемая особь гомозиготна.

Если произойдет расщепление, то особь гетерозиготна. Потомство гетерозиготной особи дает расщепление в соотноше- нии 1:1.

III закон Менделя. Закон независимого комбинирования признаков (рис. 75). Организмы отличаются друг от друга по нескольким признакам.

Скрещивание особей, отличающихся по двум признакам, называют дигибридным, а по многим - полигибридным.

При скрещивании гомозиготных особей, отличающихся по двум парам альтернативных признаков, во втором поколении происходит независимое комбинирование признаков.

В результате дигибридного скрещивания все первое поколение единообразно. Во втором поколении происходит расщепление по фенотипу в соотношении 9:3:3:1.

Например, если скрестить горох с желтыми семенами и гладкой поверхностью (доминантный признак) с горохом с зелеными семенами и морщинистой поверхностью (рецессивный признак), то все первое поколение будет единообразным (желтые и гладкие семена).

При скрещивании гибридов между собой во втором поколении появились особи с признаками, которых не было у исходных форм (желтые морщинистые и зеленые гладкие семена). Эти признаки наследуются независимо друг от друга.

Дигетерозиготная особь образовывала 4 типа гамет

Для удобства подсчета особей, получившихся во втором поколении после скрещивания гибридов, пользуются решеткой Пеннета.

Рис. 75. Независимое распределение признаков при дигибридном скрещивании. А, В, а, b - доминантные и рецессивные аллели, контролирующие развитие двух признаков. G - половые клетки родителей; F 1 - гибриды первого поколения; F 2 - гибриды второго поколения.

В результате мейоза в каждую гамету отойдет по одному из аллельных генов из гомологичной пары хромосом.

Образуется 4 типа гамет. Расщепление после скрещивания в соотношении 9:3:3:1 (9 особей с двумя доминантными признаками, 1 особь с двумя рецессивными признаками, 3 особи с одним доминантным, а другим рецессивным признаками, 3 особи с доминантным и рецессивным признаками).

Появление особей с доминантными и рецессивными признаками возможно потому, что гены, отвечающие за цвет и форму горошин, находятся в различных негомологичных хромосомах.

Каждая пара аллельных генов распределяется независимо от другой пары, и поэтому гены могут комбинироваться независимо.

Гетерозиготная особь по «n» парам признаков образует 2 n типов гамет.

Вопросы для самоконтроля

1. Как формулируется I закон Менделя?

2. Горох с какими семенами скрещивал Мендель?

3. Растения с какими семенами получились в результате скрещивания?

4. Как формулируется II закон Менделя?

5. Растения с какими признаками получились в результате скрещивания гибридов первого поколения?

6. В каком числовом соотношении происходит расщепление?

7. Как можно объяснить закон расщепления?

8. Как объяснить гипотезу «чистоты» гамет?

9. Как объяснить неполное доминирование признаков? 10.Какое расщепление по фенотипу и генотипу происходит

после скрещивания гибридов первого поколения?

11.Когда производят анализирующее скрещивание?

12. Как производят анализирующее скрещивание?

13.Какое скрещивание называют дигибридным?

14. В каких хромосомах находятся гены, отвечающие за цвет и форму горошин?

15. Как формулируется III закон Менделя?

16. Какое расщепление по фенотипу происходит в первом поколении?

17. Какое расщепление происходит по фенотипу во втором поколении?

18.Что используют для удобства подсчета особей, получившихся после скрещивания гибридов?

19.Как можно объяснить появление особей с признаками, которых не было раньше?

Ключевые слова темы «Законы Менделя»

аллельность анемия

взаимодействие

гаметы

ген

генотип

гетерозигота

гибрид

гипотеза «чистоты» гамет

гомозигота

гомологичность

горох

горошина

действие

дигибрид

доминирование

единообразие

закон

мейоз

образование окраска

оплодотворение

особь

парность

поверхность

подсчет

поколение

полигибрид

потомство

появление

признак

растение

расщепление

решетка Пеннета

родители

свойство

семена

скрещивание

слияние

соотношение

сорт

удобство

фенотип

форма

характер

цвет

цветы

Множественный аллелизм

К числу аллельных генов могут относиться не два, а большее число генов. Это множественные аллели. Они возникают вслед- ствие мутации (замены или утраты нуклеотида в молекуле ДНК). Примером множественных аллелей могут быть гены, отвечающие за группы крови у человека: I A , I B , I 0 . Гены I A и I B доминантны по отношению к гену I 0 . В генотипе всегда присутствуют только два гена из серии аллелей. Гены I 0 I 0 определяют I группу крови, гены I A I A , I A I O - II группу, I B I B , I B I 0 - III группу, I A I B - IV группу.

Взаимодействие генов

Между геном и признаком существует сложная связь. Один ген может отвечать за развитие одного признака.

Гены отвечают за синтез белков, которые катализируют определенные биохимические реакции, в результате чего проявляются определенные признаки.

Один ген может отвечать за развитие нескольких признаков, проявляя плейотропное действие. Выраженность плейотропного действия гена зависит от биохимической реакции, которую ката- лизирует фермент, синтезируемый под контролем данного гена.

За развитие одного признака могут отвечать несколько генов - это полимерное действие гена.

Проявление признаков - результат взаимодействия различных биохимических реакций. Эти взаимодействия могут быть связаны с аллельными и неаллельными генами.

Взаимодействие аллельных генов.

Взаимодействие генов, находящихся в одной аллельной паре, происходит по типу:

. полного доминирования;

. неполного доминирования;

. кодоминирования;

. сверхдоминирования.

При полном доминировании действие одного (доминантного) гена полностью подавляет действие другого (рецессивного). При скрещивании в первом поколении проявляется доминантный признак (например желтый цвет горошин).

При неполном доминировании происходит ослабление действия доминантного аллеля в присутствии рецессивного. Гете- розиготные особи, полученные в результате скрещивания, имеют собственный генотип. Например, при скрещивании растений ночной красавицы с красными и белыми цветками появляются розовые.

При кодоминировании проявляется действие обоих генов при одновременном их присутствии. В результате проявляется новый признак.

Например, IV группа крови (I A I B) у человека формируется при взаимодействии генов I A и I B . По отдельности ген I A определяет II группу крови, а I B - III группу крови.

При сверхдоминировании у доминантного аллеля в гетерозиготном состоянии отмечается более сильное проявление признака, чем в гомозиготном.

Взаимодействие неаллельных генов

На один признак организма очень часто могут влиять несколько пар неаллельных генов.

Взаимодействие неаллельных генов происходит по типу:

. комплементарности;

. эпистаза;

. полимерии.

Комплементарное действие проявляется при одновременном присутствии в генотипе организмов двух доминантных неаллельных генов. Каждый из доминантных генов может проявляться самостоятельно, если другой находится в рецессивном состоянии, но их совместное присутствие в доминантном состоянии в зиготе обусловливает новое состояние признака.

Пример. Скрещивали два сорта душистого горошка с белыми цветками. Все гибриды первого поколения имели красные цветки. Окрас- ка цветков зависит от двух взаимодействующих генов А и В.

Белки (ферменты), синтезированные на основе генов А и В, катализируют биохимические реакции, которые приводят к прояв- лению признака (красная окраска цветков).

Эпистаз - взаимодействие, при котором один из доминантных или рецессивных неаллельных генов подавляет действие другого неаллельного гена. Ген, подавляющий действие другого, называют эпистатическим геном, или супрессором. Подавляемый ген называют гипостатическим. Эпистаз бывает доминантным и рецессивным.

Доминантный эпистаз. Примером доминантного эпистаза может быть наследование окраски оперения у кур. Доминантный ген С отвечает за окраску оперения. Доминантный неаллельный ген I подавляет развитие окраски оперения. В результате этого куры, имеющие ген С в генотипе, в присутствии гена I имеют белое оперение: IICC; IiCC; IiCc; Iicc. Куры с генотипом iicc также будут белыми, потому что эти гены находятся в рецессивном состоянии. Оперение кур с генотипом iiCC, iiCc будет окрашено. Белая окраска оперения обусловлена присутствием рецессивного аллеля гена i или наличием гена подавителя окраски I. В основе взаимодействия генов лежат биохимические связи между белками-ферментами, которые кодируются эпистатическими генами.

Рецессивный эпистаз. Рецессивным эпистазом объясняется бомбейский феномен - необычное наследование антигенов системы групп крови АВ0. Известны 4 группы крови.

В семье женщины с I группой крови (I 0 I 0) от мужчины со II группой крови (I A I A) родился ребенок с IV группой крови (I A I B), что невозможно. Оказалось, что женщина унаследовала от матери ген I B , от отца ген I 0 . Проявил действие только ген I 0 , поэтому

считалось, что женщина имеет I группу крови. Ген I B был подавлен рецессивным геном х, который находился в гомозиготном состоянии - хх.

У ребенка этой женщины подавленный ген I B проявил свое действие. Ребенок имел IV группу крови I A I B .

Полимерное действие генов связано с тем, что несколько неал- лельных генов могут отвечать за один и тот же признак, усиливая его проявление. Признаки, зависящие от полимерных генов, относят к количественным. Гены, отвечающие за развитие количественных признаков, дают суммарный эффект. Например, за пигментацию кожи у человека отвечают полимерные неаллельные гены S 1 и S 2 . В присутствии доминантных аллелей этих генов синтезируется много пигмента, в присутствии рецессивных - мало. Интенсивность окраски кожи зависит от количества пигмента, что определяется количеством доминантных генов.

От брака между мулатами S 1 s 1 S 2 s 2 рождаются дети с пигментацией кожи от светлой до темной, но вероятность рождения ребенка с белым и черным цветом кожи равна 1/16.

Многие признаки наследуются по принципу полимерии.

Вопросы для самоконтроля

1. Что такое множественные аллели?

2. Какие гены отвечают за группы крови у человека?

3. Какие группы крови есть у человека?

4. Какие связи существуют между геном и признаком?

5. Как взаимодействуют аллельные гены?

6. Как взаимодействуют неаллельные гены?

7. Как можно объяснить комплементарное действие гена?

8. Как можно объяснить эпистаз?

9. Как можно объяснить полимерное действие гена?

Ключевые слова темы «Множественные аллели и взаимодействие генов»

аллелизм аллель антигены брак

взаимодействие

генотип

гибрид

горох

горошек

группа крови

действие

дети

доминирование

женщина

замена

кодоминантность

кодоминирование

кожа

куры

мать

молекула

мулат

мутация

наличие

наследование

нуклеотиды

окраска

оперение

основа

отношение

пигмент

пигментация

плейотропия

подавитель

поколение

полимерия

признак

пример

присутствие

проявление

развитие

реакции

ребенок

результат

сверхдоминирование связь

синтез белка система

скрещивание

состояние

степень

утрата

феномен

ферменты

цвет

цветы

человек

Усовершенствование гибридиологического метода позволило Г. Менделю выявить ряд важнейших закономерностей наследования признаков у гороха, которые, как оказалось впоследствии, справедливы для всех диплоидных организмов, размножающихся половым путем.

Описывая результаты скрещиваний, сам Мендель не интерпретировал установленные им факты как некие законы. Но после их переоткрытия и подтверждения на растительных и животных объектах, эти повторяющиеся при определенных условиях явления стали называть законами наследования признаков у гибридов.

Некоторые исследователи выделяют не три, а два закона Менделя. При этом некоторые ученые объединяют первый и второй законы, считая, что первый закон является частью второго и описывает генотипы и фенотипы потомков первого поколения (F1). Другие исследователи объединяют в один второй и третий законы, полагая, что «закон независимого комбинирования» есть в сущности «закон независимости расщепления», протекающего одновременно по разным парам аллелей. Однако в отечественной литературе речь идет о трех законах Менделя.

Крупная научная удача Менделя состояла в том, что выбранные им семь признаков определялись генами на разных хромосомах, что исключало возможное сцепленное наследование. Он обнаружил, что:

1) У гибридов первого поколения присутствует признак только одной родительской формы, а другой «исчезает». Это закон единообразия гибридов первого поколения.

2) Во втором поколении наблюдается расщепление: три четверти потомков имеют признак гибридов первого поколения, а четверть - «исчезнувший» в первом поколении признак. Это закон расщепления.

3) Каждая пара признаков наследуется независимо от другой пары. Это закон независимого наследования.

Разумеется, Мендель не знал, что эти положения со временем назовут первым, вторым и третьим законами Менделя.

Современная формулировка законов

Первый закон Менделя

Закон единообразия гибридов первого поколения -- при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака -- на современном языке это означает гомозиготность особей по этому признаку.

Второй закон Менделя

Закон расщепления -- при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть -- рецессивный, называется расщеплением. Следовательно, расщепление -- это распределение (рекомбинация) доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Расщепление потомства при скрещивании гетерозиготных особей объясняется тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена. Цитологическая основа расщепления признаков -- расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе (рис.4).

Рис.4.

Пример иллюстрирует скрещивание растений с гладкими и морщинистыми семенами. Изображены только две пары хромосом, в одной из этих пар находится ген, ответственный за форму семян. У растений с гладкими семенами мейоз приводит к образованию гамет с аллелем гладкости (R), а у растений с морщинистыми семенами - гамет с аллелем морщинистости (r). Гибриды первого поколения F1 имеют одну хромосому с аллелем гладкости и одну - с аллелем морщинистости. Мейоз в F1 приводит к образованию в равном числе гамет с R и с r. Случайное попарное объединение этих гамет при оплодотворении приводит в поколении F2 к появлению особей с гладкими и морщинистыми горошинами в отношении 3:1.

Третий закон Менделя

Закон независимого наследования -- при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Менделеевский закон независимого наследования можно объяснить перемещением хромосом во время мейоза (рис.5). При образовании гамет распределение между ними аллелей из данной пары гомологичных хромосом происходит независимо от распределения аллелей из других пар. Именно случайное расположение гомологичных хромосом на экваторе веретена в метафазе I мейоза и их последующее расположение в анафазе I ведет к разнообразию рекомбинаций аллелей в гаметах. Число возможных сочетаний аллелей в мужских или женских гаметах можно определить по общей формуле 2n , где n - гаплоидное число хромосом. У человека n=23, а возможное число различных сочетаний составляет 223=8 388 608.


Рис.5. Объяснение менделевского закона независимого распределения факторов (аллелей) R, r, Y, y как результата независимого расхождения разных пар гомологичных хромосом в мейозе. Скрещивание растений, отличающихся по форме и цвету семян (гладкие желтые Ч зеленые морщинистые), дает гибридные растения, у которых в хромосомах одной гомологичной пары содержатся аллели R и r, а другой гомологичной пары - аллели Y и y. В метафазе I мейоза хромосомы, полученные от каждого из родителей, могут с равной вероятностью отходить либо к одному и тому же полюсу веретена (левый рисунок), либо к разным (правый рисунок). В первом случае возникают гаметы, содержащие те же комбинации генов (YR и yr), что и у родителей, во втором случае - альтернативные сочетания генов (Yr и yR). В результате с вероятностью 1/4образуются четыре типа гамет, случайная комбинация этих типов приводит к расщеплению потомства 9:3:3:1, как это и наблюдалось Менделем.