Знакопеременные ряды. Числовые ряды: определения, свойства, признаки сходимости, примеры, решения Признаки схождения рядов

Контрольная работа для заочного отделения

Данко, П. Е. Высшая математика в упражнениях и задачах: в 2 ч. / П.Е. Данко, А. Г. Попов, Т. Я. Кожевникова. - 5-е изд., испр. - М.: Высшая школа.Ч.1.-1998.-304с.

Бермант А.Ф., Араманович И.Г. Краткий курс математического анализа. -12-е издание. – СПб.: Лань, 2005.- 736 с

Б.М. Владимирский, А.Б. Горстко, Я.М. Ерусалимский. Математика: общий курс. – СПб.: Изд-во «Лань», 2002. – 954 с.

Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. - 5-е изд., стереотип. - М.: Наука, 1978. - 632с.

Демидович Б.П. Краткий курс высшей матетматики: Учебное пособие для вузов - M.: OOO «Издательство Астрель»: OOO «Издательство АСТ», 2001. - 656с.

Пискунов Н.С. Дифференциальные и интегральные исчисления: Учеб. для втузов. В 2-ч т. Т.II: - М.: Интеграл–Пресс, 2004. -544 с.

Введение.

Выполнять контрольную работу следует строго по графику. Каждый студент выполняет контрольную работу под вариантом, номер которого совпадает с его порядковым номером в групповом журнале. Решение задач нужно предоставить в письменном виде на отдельных листах (формата А 4, в скрепленном виде). Сдавать работу можно как в печатном, так и в письменном виде. Выполняя к.р. , студент должен переписать условие соответствующей задачи, написать подробное решение, выделив ответ. Там, где это необходимо, дать краткие пояснения по ходу решения.

«ЧИСЛОВЫЕ и ФУНКЦИОНАЛЬНЫЕ РЯДЫ»

Числовые ряды. Достаточные признаки их сходимости

Пусть u 1 , u 2 , u 3 , … , u n , …, где u n = f (n ), –– бесконечная числовая последовательность. Выражение u 1 + u 2 + u 3 + … + u n + … называется бесконечным числовым рядом , а числа u 1 , u 2 , u 3 , … , u n , … –– членами ряда; u n = f (n ) называется общим членом . Ряд часто записывают в виде .

Сумму первых n членов числового ряда обозначают через S n и называют n частичной суммой ряда :

Ряд называется сходящимся , если его n -я частичная сумма S n при неограниченном возрастании n стремится к конечному пределу, т.е. если . Число S называют суммой ряда . Если же n -я частичная сумма ряда при не стремится к конечному пределу, то ряд называют расходящимся .

Ряд , составленный из членов любой убывающей геометрической прогрессии, является сходящимся и имеет сумму .

Ряд , называемый гармоническим , расходится.

Необходимый признак сходимости. Если ряд сходится, то , т.е. при предел общего члена сходящегося ряда равен нулю.

Таким образом, если , то ряд расходится.

Перечислим важнейшие признаки сходимости и расходимости рядов с положительными членами.


Первый признак сравнения. Пусть даны два ряда

причем каждый член ряда (1) не превосходит соответствующего члена ряда (2), т.е. . Тогда если сходится ряд (2), то сходится и ряд (1); если расходится ряд (1), то расходится и ряд (2).

Этот признак остается в силе, если неравенства выполняются не при всех n , а лишь начиная с некоторого номера n = N .

Второй признак сравнения. Если существует конечный отличный от нуля предел , то ряды и одновременно сходятся или расходятся.

Радикальный признак Коши. Если для ряда

существует , то этот ряд сходится при , расходится при .

Признак Даламбера. Если для ряда существует , то этот ряд сходится при , расходится при .

Интегральный признак Коши. Если f (x ) при –– непрерывная положительная и монотонно убывающая функция, то ряд , где сходится или расходится в зависимости от того, сходится или расходится интеграл .

Рассмотрим теперь ряды, члены которых имеют чередующиеся знаки, т.е. ряды вида , где .

Признак сходимости знакочередующегося ряда (признак Лейбница). Знакочередующийся ряд сходится, если абсолютные величины его членов монотонно убывают, а общий член стремится к нулю. То есть, если выполняются следующие два условия: 1) и 2) .

Возьмем n -ю частичную сумму сходящегося знакочередующегося ряда, для которого выполняется признак Лейбница:

Пусть –– n -й остаток ряда. Его можно записать как разность между суммой ряда S и n -й частичной суммой S n , т.е. . Нетрудно видеть, что

Величина оценивается с помощью неравенства .

Остановимся теперь на некоторых свойствах знакопеременных рядов (т.е. знакочередующихся рядов и рядов с произвольным чередованием знаков своих членов).

Знакопеременный ряд сходится, если сходится ряд .

В этом случае исходный ряд называется абсолютно сходящимся .

Сходящийся ряд называется условно сходящимся , если ряд расходится.

Пример 1. Исследовать сходимость ряда

Решение. Данный ряд составлен из членов бесконечно убывающей геометрической прогрессии и поэтому сходится. Найдем его сумму. Здесь , (знаменатель прогрессии). Следовательно,

Пример 2. Исследовать сходимость ряда .

Решение. Данный ряд получен из гармонического отбрасыванием первых десяти членов. Следовательно, он расходится.

Пример 3. Исследовать сходимость ряда . , –– ряд сходится.

Определение числового ряда и его сходимости.

Необходимый признак сходимости

Пусть – бесконечная последовательность чисел.

Определение. Выражение

, (1)

или, что то же самое, , называется числовым рядом , а числа https://pandia.ru/text/79/302/images/image005_146.gif" width="53" height="31">членами ряда. Член с произвольным номером называется n -м, или общим членом ряда .

Само по себе выражение (1) никакого определенного числового смысла не имеет, потому что, вычисляя сумму, мы каждый раз имеем дело лишь с конечным числом слагаемых. Определить смысл этого выражения наиболее естественно следующим образом.

Пусть дан ряд (1).

Определение. Сумма n первых членов ряда

называется n -й частичной суммой ряда. Образуем последовательность частичных сумм:

font-size:14.0pt">С неограниченным увеличением числа n в сумме учитывается все большее число членов ряда. Поэтому разумно дать такое определение.

Определение. Если при существует конечный предел последовательности частичных сумм https://pandia.ru/text/79/302/images/image011_76.gif" width="103" height="41"> называется его суммой .

Если последовательность https://pandia.ru/text/79/302/images/image013_77.gif" width="80" height="31">, 2) если колеблющаяся. В обоих случаях говорят, что ряд суммы не имеет.

Пример 1. Рассмотрим ряд, составленный из членов геометрической прогрессии:

, (2)

где – называется первым членом прогрессии, а font-size:14.0pt"> Частичная сумма этого ряда при font-size:14.0pt">font-size:14.0pt">Отсюда:

1) если , то

font-size:14.0pt">т. е. ряд геометрической прогрессии сходится и его сумма .

В частности, если , ряд сходится и его сумма .

При https://pandia.ru/text/79/302/images/image026_42.gif" width="307" height="59 src="> также сходится и его сумма .

2) если , то , т. е. ряд (2) расходится.

3) если , то ряд (2) принимает вид font-size:14.0pt"> и , т. е. ряд расходится (при font-size:18.0pt">) .


4) если https://pandia.ru/text/79/302/images/image036_32.gif" width="265" height="37"> . Для этого ряда

https://pandia.ru/text/79/302/images/image038_28.gif" width="253" height="31 src=">,

т. е..gif" width="67" height="41"> не существует, следовательно, ряд также расходится (при ) .

Вычисление суммы ряда непосредственно по определению очень неудобно из-за трудности явного вычисления частичных сумм font-size:14.0pt"> и нахождения предела их последовательности. Но, если установлено, что ряд сходится, его сумму можно вычислить приближенно, т. к. из определения предела последовательности следует, что при достаточно больших . Поэтому при исследовании рядов достаточно

1) знать приемы, позволяющие констатировать сходимость ряда без нахождения его суммы;

2) уметь определить font-size:14.0pt">.gif" width="16 height=24" height="24"> с определенной точностью.

Сходимость числовых рядов устанавливается с помощью теорем, которые называются признаками сходимости.

Необходимый признак сходимости

Если ряд сходится, то его общий член стремится к нулю, т. е. font-size:14.0pt">.gif" width="61 height=63" height="63"> расходится.

Пример 2. Доказать, что ряд 0 " style="border-collapse:collapse">

;

;

;

.

Решение.

А) https://pandia.ru/text/79/302/images/image051_28.gif" width="176" height="81 src="> расходится.

и поэтому ряд расходится. При решении использовался второй замечательный

предел: (подробнее см. ).

В) font-size:14.0pt">, т. е. последовательность

– бесконечно

малая. Так как при font-size:14.0pt">~ (см. ), то ~ .

Учитывая это, получим:

значит, ряд расходится.

Г) font-size:14.0pt">,

следовательно, ряд расходится.

Условие является необходимым, но не достаточным условием сходимости ряда: существует множество рядов, для которых , но которые тем не менее расходятся.

Пример 3. Исследовать сходимость ряда font-size:14.0pt"> Решение. Заметим, что https://pandia.ru/text/79/302/images/image066_20.gif" width="119" height="59 src=">, т. е. необходимое условие сходимости выполнено. Частичная сумма

left">

– раз

поэтому font-size:14.0pt">, а это значит, что ряд расходится по определению.

Достаточные признаки сходимости знакоположительных рядов

Пусть . Тогда ряд font-size:14.0pt"> Признак сравнения

Пусть и – знакоположительные ряды. Если для всех выполняется неравенство , то из сходимости ряда следует сходимость ряда , а из расходимости ряда https://pandia.ru/text/79/302/images/image074_19.gif" width="55" height="60">.

Этот признак остается в силе, если неравенство https://pandia.ru/text/79/302/images/image072_18.gif" width="60" height="24">, а лишь начиная с некоторого номера . Его можно проинтерпретировать следующим образом: если больший ряд сходится, то меньший тем более сходится; если расходится меньший ряд, то больший также расходится.

Пример 4. Исследовать сходимость ряда 0 " style="margin-left:50.4pt;border-collapse:collapse">

;

Решение.

А) Заметим, что font-size:14.0pt"> для всех . Ряд с общим членом

сходится, т. к. является рядом геометрической прогрессии со знаменателем (см. пример 1), поэтому данный ряд сходится по признаку сравнения.

Б) Сравним ряд с рядом ..gif" width="91" height="29 src=">.gif" width="87" height="59"> расходится, значит, данный ряд также расходится.

Несмотря на простоту формулировки признака сравнения, на практике более удобна следующая теорема, являющаяся его следствием.

Предельный признак сравнения

Пусть https://pandia.ru/text/79/302/images/image071_17.gif" width="53" height="60 src="> – знакоположительные ряды. Если существует конечный и не равный нулю предел , то оба ряда и

одновременно сходятся или одновременно расходятся.

В качестве ряда, используемого для сравнения с данным, часто выбирают ряд вида . Такой ряд называется рядом Дирихле . В примерах 3 и 4 было показано, что ряд Дирихле с и расходится. Можно пока-


зать, что ряд font-size:14.0pt"> .

Если , то ряд называется гармоническим . Гармонический ряд расходится.

Пример 5. Исследовать на сходимость ряд с помощью предельного признака сравнения, если

;

;

;

Решение. а) Так как при достаточно больших https://pandia.ru/text/79/302/images/image101_9.gif" width="31" height="23 src=">, а

~ , то ~ font-size:14.0pt">сравнения с данным гармонический ряд font-size:14.0pt">, т. е. .

font-size:14.0pt"> Поскольку предел конечен и отличен от нуля и гармонический ряд расходится, то расходится и данный ряд.

Б) При достаточно больших https://pandia.ru/text/79/302/images/image109_10.gif" width="111" height="31 src=">.gif" width="129" height="31 src=">.gif" width="132" height="64 src="> – общий член ряда, с которым будем сравнивать данный:

Font-size:14.0pt">Ряд сходится (ряд Дирихле с font-size:16.0pt">) , поэтому данный ряд также сходится.

В) , поэтому бесконечно малую font-size:14.0pt"> можно

заменить на эквивалентную ей при величину (https://pandia.ru/text/79/302/images/image058_20.gif" width="13" height="21 src="> при font-size: 20.0pt">) . ;

;

;

г )

;

.

1

В данной теме рассмотрим некие критерии, с помощью которых можно сделать выбор между необходимым признаком сходимости ряда, признаками Д"Аламбера и Коши, а также признаками сравнения. Напомню, что признаки сравнения, а также интегральный и радикальный признаки Коши применяются лишь для положительных числовых рядов (т.е. рядов, общий член которых не меньше нуля, $u_n≥ 0$). Признак Д"Аламбера применяется для строго положительных рядов ($u_n > 0$).

Выбор признака, с помощью которого можно проверить сходимость числового ряда, - в общем случае задача непростая. Однако для тех рядов, которые используются в стандартных типовых расчётах и контрольных работах, можно дать некие общие рекомендации. Эти рекомендации я запишу в таблицу.

Пару слов насчёт самой таблицы. Второй столбец описывает сферу применения того или иного признака сходимости в большинстве стандартных контрольных работ. Третий столбец иллюстрирует информацию второго столбца наглядными примерами (все эти примеры решены в соответствующих темах). Четвёртый столбец содержит примеры рядов, которые несколько выбиваются из общей схемы или же встречаются в стандартных контрольных работах не так уж часто.

Название Основное применение Примеры рядов Дополнительное применение
Необходимый признак сходимости Общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Или же могут присутствовать корни от многочленов. С помощью необходимого условия сходимости можно доказать расходимость произвольного числового ряда (не обязательно положительного). $\sum\limits_{n=1}^{\infty}\frac{3n^2+2n-1}{5n^2+7}$, $\sum\limits_{n=1}^{\infty}\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$. $\sum\limits_{n=1}^{\infty}\left(5^n\sin\frac{8}{3^n}\right)$, $\sum\limits_{n=1}^{\infty}\frac{3^n}{n^2}$, $\sum\limits_{n=1}^{\infty}\left(\frac{2n+7}{2n+3}\right)^{9n+1}$, $\sum\limits_{n=1}^{\infty}\sin n$, $\sum\limits_{n=1}^{\infty}\frac{1-\cos\frac{1}{n}}{\ln\left(1+\frac{1}{n^2}\right)}$, $\sum\limits_{n=1}^{\infty}(-1)^n\frac{17n^5+4\cos(n!)}{6n^5+2n^2-1}$.
Признаки сравнения Общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Или же вместо многочленов (или вместе с ними) могут присутствовать корни от многочленов. Для рядов такого вида приходится выбирать между необходимым признаком сходимости и признаками сравнения. Общий член ряда может содержать не только многочлен, но и некий "отвлекающий элемент", который не влияет на сходимость. Иногда, чтобы увидеть ряд для сравнения, приходится использовать эвивалентные бесконечно малые функции. $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$, $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$, $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$, $\sum\limits_{n=1}^{\infty}\frac{\arcsin\frac{7n-1}{9n}}{\sqrt{4n^2-3}}$, $\sum\limits_{n=1}^{\infty}\frac{\arctg^2\sqrt{2n^3-1}}{\sqrt{3n^5-2}}$, $\sum\limits_{n=1}^{\infty}\frac{1}{n}\sin\left(\frac{2+(-1)^n}{6}\cdot\pi\right)$, $\sum\limits_{n=1}^{\infty}\frac{2^{3n}+\cos n!}{5^{2n+1}-n}$, $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}\arctg\frac{\pi}{\sqrt{2n-1}}$, $\sum\limits_{n=1}^{\infty}\left(1-\cos\frac{7}{n}\right)$, $\sum\limits_{n=1}^{\infty}n\left(e^\frac{3}{n}-1\right)^2$, $\sum\limits_{n=1}^{\infty}\ln\frac{n^3+7}{n^3+5}$. $\sum\limits_{n=1}^{\infty}\left(\sqrt{2n+3}-\sqrt{2n-1}\right)$, $\sum\limits_{n=1}^{\infty}\frac{n^n}{7^n\cdot n!}$.
Признак Д"Аламбера В выражении общего члена ряда присутствуют многочлен (многочлен может быть и под корнем) и степень вида $a^n$ или $n!$. Или же общий член ряда содержит произведение такого вида: $3\cdot 5\cdot 7\cdot\ldots\cdot(2n+1)$. $\sum\limits_{n=1}^{\infty}\frac{5^n\cdot(3n+7)}{2n^3-1}$, $\sum\limits_{n=1}^{\infty}\frac{\sqrt{4n+5}}{(3n-2)!}$, $\sum\limits_{n=1}^{\infty}\frac{(2n+5)!}{4^{3n+2}}$, $\sum\limits_{n=1}^{\infty}\frac{n^n}{3^n\cdot n!}$, $\sum\limits_{n=1}^{\infty}\frac{6^{2n+5}\left(3n^2-1\right)}{(n+3)!}$, $\sum\limits_{n=1}^{\infty}\frac{3\cdot 5\cdot 7\cdot\ldots\cdot(2n+1)}{2\cdot 5\cdot 8\cdot\ldots\cdot(3n-1)}$, $\sum\limits_{n=1}^{\infty}\frac{1\cdot 11\cdot 21\cdot\ldots\cdot(10n-9)}{(2n-1)!!}$. $\sum\limits_{n=1}^{\infty}\frac{4n-1}{n}\sin\frac{2}{3^n}$, $\sum\limits_{n=1}^{\infty}\frac{3^{2n+1}-4}{2^{5n}(n+1)!}$, $\sum\limits_{n=1}^{\infty}\frac{\left(n!\right)^2}{2^{n^2}}$.
Радикальный признак Коши В выражении общего члена ряда все элементы возведены в степень, которую можно сократить на $n$. $\sum\limits_{n=1}^{\infty}\left(\frac{3n^2-1}{5n^2+7n}\right)^{2n}$, $\sum\limits_{n=1}^{\infty}\left(\frac{2n+3}{7n-5}\right)^{n^2}$, $\sum\limits_{n=1}^{\infty}\left(\frac{2n+1}{2n-1}\right)^{n(3n+4)}$, $\sum\limits_{n=1}^{\infty}\frac{(5n+4)^n}{7^{2n}\cdot n^n}$, $\sum\limits_{n=1}^{\infty}\left(\sin\frac{4}{n^2+2n}\right)^{\frac{n}{2}}$. $\sum\limits_{n=1}^{\infty}\frac{\left(3n^2+7\right)\cdot 5^{2n-1}}{4^n}$, $\sum\limits_{n=1}^{\infty}\frac{n^n}{7^n\cdot n!}$.

На практике часто не столь важно найти сумму ряда, как ответить на вопрос о сходимости ряда. Для этой цели используются признаки сходимости, основанные на свойствах общего члена ряда.

НЕОБХОДИМЫЙ ПРИЗНАК СХОДИМОСТИ РЯДА

ТЕОРЕМА 1 .

Если ряд сходится, то его общий член a n стремится к нулю при , т.е. .

Кратко: если ряд сходится, то его общий член стремится к нулю.

Следствие: если ,то ряд расходится.

Пример 15 .

Решение. Для этого ряда общий член и .

Следовательно, данный ряд расходится.

Пример 16 . Исследовать на сходимость ряд .

Решение. Очевидно, что общий член этого ряда, вид которого не указан ввиду громоздкости выражения, стремится к нулю при n®¥, т.е. необходимый признак сходимости ряда выполняется, однако этот ряд расходится, так как его сумма стремится к бесконечности.

ДОСТАТОЧНЫЕ ПРИЗНАКИ СХОДИМОСТИ

ЗНАКОПОЛОЖИТЕЛЬНЫХ РЯДОВ

Числовой ряд, все члены которого положительны, называется знакоположительным.

ТЕОРЕМА 2. (Первый признак сравнения).

Пусть даны два знакоположительных ряда:

a 1 +a 2 +a 3 +...+a n +...= (17)

b 1 +b 2 +b 3 +...+b n +...= , (18)

причем, начиная с некоторого номера N , для любого n >N выполняется неравенство a n £ b n . Тогда:

1) из сходимости ряда (“большего”) следует сходимость ряда (“меньшего”);

2) из расходимости ряда (“меньшего”) следует расходимость ряда (“большего”).

Схематическая запись первого признака сравнения:

a n £ b n

сход.сход.

расх.®расх.

Для применения этого признака часто используют такие ряды-эталоны, сходимость или расходимость которых известна заранее, например:

1) ¾ геометрический, (он сходится при и расходится при );


2) - гармонический (он расходится);

3) - ряд Дирихле (он сходится при a>1 и расходится при a£1).

Рассмотрим на конкретном примере схему исследования знакоположительного ряда на сходимость с помощью первого признака сравнения.

Пример 17 .

Решение. Шаг 1. Проверим знакоположительность ряда: .

Шаг 2. Проверим выполнение необходимого признака сходимости ряда: . Так как , то .

(Если вычисление предела вызывает трудности, то этот шаг можно пропустить.)

Шаг 3. Используем первый признак сравнения. Подберем для данного ряда ряд-эталон. Так как , то в качестве эталона можно взять ряд , т.е. ряд Дирихле. Этот ряд сходится, так как показатель степени a= >1. Следовательно, согласно первому признаку сравнения сходится и исследуемый ряд.

Пример 18 . Исследовать ряд на сходимость.

Решение. 1.Данный ряд знакоположительный, так как для n =1,2,3,... .


2.Необходимый признак сходимости ряда выполняется, ибо

3.Подберем ряд-эталон. Так как , то в качестве эталона можно взять геометрический ряд (). Этот ряд сходится, следовательно сходится и исследуемый ряд.

ТЕОРЕМА 3. (Второй признак сравнения)

Если для знакоположительных рядов и существует отличный от нуля конечный предел ,то ряды сходятся или расходятся одновременно.

Если a n ®0 при n®¥ (необходимый признак сходимости), то из условия , следует, что a n и b n – бесконечно малые одного порядка малости (эквивалентные при l=1). Следовательно, если дан ряд , где a n ®0 при n ®0, то для этого ряда можно брать ряд-эталон, где общий член b n имеет тот же порядок малости, что и общий член данного ряда.

Пример19 . Исследовать на сходимость ряд

Решение. Данный ряд знакоположительный, так как для любого nÎN.

Так как ~ ~ , то возьмем в качестве ряда-эталона гармонический расходящийся ряд . Поскольку предел отношения общих членов a n и конечен и отличен от нуля (он равен 1), то на основании второго признака сравнения данный ряд расходится.

ТЕОРЕМА 4. (Признак Даламбера)

Если для знакоположительного ряда существует конечный предел , то ряд сходится при l<1 и расходится при l>1.

Замечания:

1) Если l=1, теорема 4 не дает ответа на вопрос о сходимости ряда и поэтому необходимо использовать другие признаки сходимости.

2) Признак Даламбера удобен на практике тогда, когда общий член ряда содержит показательную функцию или факториал.

Пример 20 . Исследовать на сходимость ряд по признаку Даламбера.

Замечания:

1) Если l=1, теорема 5 не дает ответа на вопрос о сходимости ряда, поэтому необходимо использовать другие признаки сравнения.

2) Если l=¥ , то ряд расходится.

Пример 22 . Исследовать на сходимость ряд .

Решение. Данный ряд знакоположительный, так как для любого nÎN . Опуская проверку выполнимости необходимого признака сходимости ряда, сразу воспользуемся теоремой 5. Так как , то по признаку Коши данный ряд расходится.

ТЕОРЕМА 6. (Интегральный признак Коши )

Пусть функция f(x) непрерывна, неотрицательна и не возрастает для всех x³m, где m - некоторое неотрицательное число. Тогда числовой ряд

сходится, если сходится несобственный интеграл

Данная статья представляет собой структурированную и подробную информацию, которая может пригодиться во время разбора упражнений и задач. Мы рассмотрим тему числовых рядов.

Данная статья начинается с основных определений и понятий. Далее мы стандартные варианты и изучим основные формулы. Для того, чтобы закрепить материал, в статье приведены основные примеры и задачи.

Базовые тезисы

Для начала представим систему: a 1 , a 2 . . . , a n , . . . , где a k ∈ R , k = 1 , 2 . . . .

Для примера, возьмем такие числа, как: 6 , 3 , - 3 2 , 3 4 , 3 8 , - 3 16 , . . . .

Определение 1

Числовой ряд – это сумма членов ∑ a k k = 1 ∞ = a 1 + a 2 + . . . + a n + . . . .

Чтобы лучше понять определение, рассмотрим данный случай, в котором q = - 0 . 5: 8 - 4 + 2 - 1 + 1 2 - 1 4 + . . . = ∑ k = 1 ∞ (- 16) · - 1 2 k .

Определение 2

a k является общим или k –ым членом ряда.

Он выглядит примерно таким образом - 16 · - 1 2 k .

Определение 3

Частичная сумма ряда выглядит примерно таким образом S n = a 1 + a 2 + . . . + a n , в которой n –любое число. S n является n -ой суммой ряда.

Например, ∑ k = 1 ∞ (- 16) · - 1 2 k есть S 4 = 8 - 4 + 2 - 1 = 5 .

S 1 , S 2 , . . . , S n , . . . образуют бесконечную последовательность числового ряда.

Для ряда n –ая сумму находится по формуле S n = a 1 · (1 - q n) 1 - q = 8 · 1 - - 1 2 n 1 - - 1 2 = 16 3 · 1 - - 1 2 n . Используем следующую последовательность частичных сумм: 8 , 4 , 6 , 5 , . . . , 16 3 · 1 - - 1 2 n , . . . .

Определение 4

Ряд ∑ k = 1 ∞ a k является сходящимся тогда, когда последовательность обладает конечным пределом S = lim S n n → + ∞ . Если предела нет или последовательность бесконечна, то ряд ∑ k = 1 ∞ a k называется расходящимся.

Определение 5

Суммой сходящегося ряда ∑ k = 1 ∞ a k является предел последовательности ∑ k = 1 ∞ a k = lim S n n → + ∞ = S .

В данном примере lim S n n → + ∞ = lim 16 3 т → + ∞ · 1 - 1 2 n = 16 3 · lim n → + ∞ 1 - - 1 2 n = 16 3 , ряд ∑ k = 1 ∞ (- 16) · - 1 2 k сходится. Сумма равна 16 3: ∑ k = 1 ∞ (- 16) · - 1 2 k = 16 3 .

Пример 1

В качестве примера расходящегося ряда можно привести сумму геометрической прогрессии со знаменателем большем, чем единица: 1 + 2 + 4 + 8 + . . . + 2 n - 1 + . . . = ∑ k = 1 ∞ 2 k - 1 .

n -ая частичная сумма определяется выражением S n = a 1 · (1 - q n) 1 - q = 1 · (1 - 2 n) 1 - 2 = 2 n - 1 , а предел частичных сумм бесконечен: lim n → + ∞ S n = lim n → + ∞ (2 n - 1) = + ∞ .

Еще одим примером расходящегося числового ряда является сумма вида ∑ k = 1 ∞ 5 = 5 + 5 + . . . . В этом случае n -ая частичная сумма может быть вычислена как S n = 5 n . Предел частичных сумм бесконечен lim n → + ∞ S n = lim n → + ∞ 5 n = + ∞ .

Определение 6

Сумма подобного вида как ∑ k = 1 ∞ = 1 + 1 2 + 1 3 + . . . + 1 n + . . . – это гармонический числовой ряд.

Определение 7

Сумма ∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + . . . + 1 n s + . . . , где s –действительное число, является обобщенно гармоническим числовым рядом.

Определения, рассмотренные выше, помогут вам для решения большинства примеров и задач.

Для того, чтобы дополнить определения, необходимо доказать определенные уравнения.

  1. ∑ k = 1 ∞ 1 k – расходящийся.

Действуем методом от обратного. Если он сходится, то предел конечен. Можно записать уравнение как lim n → + ∞ S n = S и lim n → + ∞ S 2 n = S . После определенных действий мы получаем равенство l i m n → + ∞ (S 2 n - S n) = 0 .

Напротив,

S 2 n - S n = 1 + 1 2 + 1 3 + . . . + 1 n + 1 n + 1 + 1 n + 2 + . . . + 1 2 n - - 1 + 1 2 + 1 3 + . . . + 1 n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n

Справедливы следующие неравенства 1 n + 1 > 1 2 n , 1 n + 1 > 1 2 n , . . . , 1 2 n - 1 > 1 2 n . Получаем, что S 2 n - S n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n > 1 2 n + 1 2 n + . . . + 1 2 n = n 2 n = 1 2 . Выражение S 2 n - S n > 1 2 указывает на то, что lim n → + ∞ (S 2 n - S n) = 0 не достигается. Ряд расходящийся.

  1. b 1 + b 1 q + b 1 q 2 + . . . + b 1 q n + . . . = ∑ k = 1 ∞ b 1 q k - 1

Необходимо подтвердить, что сумма последовательности чисел сходится при q < 1 , и расходится при q ≥ 1 .

Согласно приведенным выше определениям, сумма n членов определяется согласно формуле S n = b 1 · (q n - 1) q - 1 .

Если q < 1 верно

lim n → + ∞ S n = lim n → + ∞ b 1 · q n - 1 q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · 0 - 1 q - 1 = b 1 q - 1

Мы доказали, что числовой ряд сходится.

При q = 1 b 1 + b 1 + b 1 + . . . ∑ k = 1 ∞ b 1 . Суммы можно отыскать с использованием формулы S n = b 1 · n , предел бесконечен lim n → + ∞ S n = lim n → + ∞ b 1 · n = ∞ . В представленном варианте ряд расходится.

Если q = - 1 , то ряд выглядит как b 1 - b 1 + b 1 - . . . = ∑ k = 1 ∞ b 1 (- 1) k + 1 . Частичные суммы выглядят как S n = b 1 для нечетных n , и S n = 0 для четных n . Рассмотрев данный случай, мы удостоверимся, что предела нет и ряд является расходящимся.

При q > 1 справедливо lim n → + ∞ S n = lim n → + ∞ b 1 · (q n - 1) q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · ∞ - 1 q - 1 = ∞

Мы доказали, что числовой ряд расходится.

  1. Ряд ∑ k = 1 ∞ 1 k s сходится, если s > 1 и расходится, если s ≤ 1 .

Для s = 1 получаем ∑ k = 1 ∞ 1 k , ряд расходится.

При s < 1 получаем 1 k s ≥ 1 k для k , натурального числа. Так как ряд является расходящимся ∑ k = 1 ∞ 1 k , то предела нет. Следуя этому, последовательность ∑ k = 1 ∞ 1 k s неограниченна. Делаем вывод, что выбранный ряд расходится при s < 1 .

Необходимо предоставить доказательства, что ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 .

Представим S 2 n - 1 - S n - 1:

S 2 n - 1 - S n - 1 = 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s + 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s - - 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s

Допустим, что 1 (n + 1) s < 1 n s , 1 (n + 2) s < 1 n s , . . . , 1 (2 n - 1) s < 1 n s , тогда S 2 n - 1 - S n - 1 = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s < < 1 n s + 1 n s + . . . + 1 n s = n n s = 1 n s - 1

Представим уравнение для чисел, которые являются натуральными и четными n = 2: S 2 n - 1 - S n - 1 = S 3 - S 1 = 1 2 s + 1 3 s < 1 2 s - 1 n = 4: S 2 n - 1 - S n - 1 = S 7 - S 3 = 1 4 s + 1 5 s + 1 6 s + 1 7 s < 1 4 s - 1 = 1 2 s - 1 2 n = 8: S 2 n - 1 - S n - 1 = S 15 - S 7 = 1 8 s + 1 9 s + . . . + 1 15 s < 1 8 s - 1 = 1 2 s - 1 3 . . .

Получаем:

∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + 1 4 s + . . . + 1 7 s + 1 8 s + . . . + 1 15 s + . . . = = 1 + S 3 - S 1 + S 7 - S 3 + S 15 + S 7 + . . . < < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . .

Выражение 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . – это сумма геометрической прогрессии q = 1 2 s - 1 . Согласно исходным данным при s > 1 , то 0 < q < 1 . Получаем, ∑ k = 1 ∞ < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . = 1 1 - q = 1 1 - 1 2 s - 1 . Последовательность ряда при s > 1 увеличивается и ограничивается сверху 1 1 - 1 2 s - 1 . Представим, что есть предел и ряд является сходящимся ∑ k = 1 ∞ 1 k s .

Определение 8

Ряд ∑ k = 1 ∞ a k знакоположителен в том случае , если его члены > 0 a k > 0 , k = 1 , 2 , . . . .

Ряд ∑ k = 1 ∞ b k знакочередующийся , если знаки чисел отличаются. Данный пример представлен как ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k · a k или ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k + 1 · a k , где a k > 0 , k = 1 , 2 , . . . .

Ряд ∑ k = 1 ∞ b k знакопеременный , так как в нем множество чисел, отрицательных и положительных.

Второй вариант ряд – это частный случай третьего варианта.

Приведем примеры для каждого случая соответственно:

6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . . 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . .

Для третьего варианта также можно определить абсолютную и условную сходимость.

Определение 9

Знакочередующийся ряд ∑ k = 1 ∞ b k абсолютно сходится в том случае, когда ∑ k = 1 ∞ b k также считается сходящимся.

Подробно разберем несколько характерных вариантов

Пример 2

Если ряды 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . и 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . . определяются как сходящиеся, то верно считать, что 6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . .

Определение 10

Знакопеременный ряд ∑ k = 1 ∞ b k считается условно сходящимся в том случае, если ∑ k = 1 ∞ b k – расходящийся, а ряд ∑ k = 1 ∞ b k считается сходящимся.

Пример 3

Подробно разберем вариант ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . . Ряд ∑ k = 1 ∞ (- 1) k + 1 k = ∑ k = 1 ∞ 1 k , который состоит из абсолютных величин, определяется как расходящийся. Этот вариант считается сходящимся, так как это легко определить. Из данного примера мы узнаем, что ряд ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . будет считаться условно сходящимся.

Особенности сходящихся рядов

Проанализируем свойства для определенных случаев

  1. Если ∑ k = 1 ∞ a k будет сходится, то и ряд ∑ k = m + 1 ∞ a k также признается сходящимся. Можно отметить, что ряд без m членов также считается сходящимся. В случае, если мы добавляем к ∑ k = m + 1 ∞ a k несколько чисел, то получившийся результат также будет сходящимся.
  2. Если ∑ k = 1 ∞ a k сходится и сумма = S , то сходится и ряд ∑ k = 1 ∞ A · a k , ∑ k = 1 ∞ A · a k = A · S , где A –постоянная.
  3. Если ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k являются сходящимися, суммы A и B тоже, то и ряды ∑ k = 1 ∞ a k + b k и ∑ k = 1 ∞ a k - b k также сходятся. Суммы будут равняться A + B и A - B соответственно.
Пример 4

Определить, что ряд сходится ∑ k = 1 ∞ 2 3 k · k 3 .

Изменим выражение ∑ k = 1 ∞ 2 3 k · k 3 = ∑ k = 1 ∞ 2 3 · 1 k 4 3 . Ряд ∑ k = 1 ∞ 1 k 4 3 считается сходящимся, так как ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . В соответствии со вторым свойством, ∑ k = 1 ∞ 2 3 · 1 k 4 3 .

Пример 5

Определить, сходится ли ряд ∑ n = 1 ∞ 3 + n n 5 2 .

Преобразуем изначальный вариант ∑ n = 1 ∞ 3 + n n 5 2 = ∑ n = 1 ∞ 3 n 5 2 + n n 2 = ∑ n = 1 ∞ 3 n 5 2 + ∑ n = 1 ∞ 1 n 2 .

Получаем сумму ∑ n = 1 ∞ 3 n 5 2 и ∑ n = 1 ∞ 1 n 2 . Каждый ряд признается сходящимся согласно свойству. Так, как ряды сходятся, то исходный вариант тоже.

Пример 6

Вычислить, сходится ли ряд 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . и вычислить сумму.

Разложим исходный вариант:

1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = = 1 + 1 2 + 1 4 + 1 8 + . . . - 2 · 3 + 1 + 1 3 + 1 9 + . . . = = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2

Каждый ряд сходится, так как является одним из членов числовой последовательности. Согласно третьему свойству, мы можем вычислить, что исходный вариант также является сходящимся. Вычисляем сумму: Первый член ряда ∑ k = 1 ∞ 1 2 k - 1 = 1 , а знаменатель = 0 . 5 , за этим следует, ∑ k = 1 ∞ 1 2 k - 1 = 1 1 - 0 . 5 = 2 . Первый член ∑ k = 1 ∞ 1 3 k - 2 = 3 , а знаменатель убывающей числовой последовательности = 1 3 . Получаем: ∑ k = 1 ∞ 1 3 k - 2 = 3 1 - 1 3 = 9 2 .

Используем выражения, полученные выше, для того, чтобы определить сумму 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2 = 2 - 2 · 9 2 = - 7

Необходимое условие для определения, является ли ряд сходящимся

Определение 11

Если ряд ∑ k = 1 ∞ a k является сходящимся, то предел его k -ого члена = 0: lim k → + ∞ a k = 0 .

Если мы проверим любой вариант, то нужно не забывать о непременном условии. Если оно не выполняется, то ряд расходится. Если lim k → + ∞ a k ≠ 0 , то ряд расходящийся.

Следует уточнить, что условие важно, но не достаточно. Если равенство lim k → + ∞ a k = 0 выполняется, то это не гарантирует, что ∑ k = 1 ∞ a k является сходящимся.

Приведем пример. Для гармонического ряда ∑ k = 1 ∞ 1 k условие выполняется lim k → + ∞ 1 k = 0 , но ряд все равно расходится.

Пример 7

Определить сходимость ∑ n = 1 ∞ n 2 1 + n .

Проверим исходное выражение на выполнение условия lim n → + ∞ n 2 1 + n = lim n → + ∞ n 2 n 2 1 n 2 + 1 n = lim n → + ∞ 1 1 n 2 + 1 n = 1 + 0 + 0 = + ∞ ≠ 0

Предел n -ого члена не равен 0 . Мы доказали, что данный ряд расходится.

Как определить сходимость знакоположительного ряда.

Если постоянно пользоваться указанными признаками, придется постоянно вычислять пределы. Данный раздел поможет избежать сложностей во время решения примеров и задач. Для того, чтобы определить сходимость знакоположительного ряда, существует определенное условие.

Для сходимости знакоположительного ∑ k = 1 ∞ a k , a k > 0 ∀ k = 1 , 2 , 3 , . . . нужно определять ограниченную последовательность сумм.

Как сравнивать ряды

Существует несколько признаков сравнения рядов. Мы сравниваем ряд, сходимость которого предлагается определить, с тем рядом, сходимость которого известна.

Первый признак

∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные ряды. Неравенство a k ≤ b k справедливо для k = 1, 2, 3, ... Из этого следует, что из ряда ∑ k = 1 ∞ b k мы можем получить ∑ k = 1 ∞ a k . Так как ∑ k = 1 ∞ a k расходится, то ряд ∑ k = 1 ∞ b k можно определить как расходящийся.

Данное правило постоянно используется для решения уравнений и является серьезным аргументом, которое поможет определить сходимость. Сложности могут состоять в том, что подобрать подходящий пример для сравнения можно найти далеко не в каждом случае. Довольно часто ряд выбирается по принципу, согласно которому показатель k -ого члена будет равняться результату вычитания показателей степеней числителя и знаменателя k -ого члена ряда. Допустим, что a k = k 2 + 3 4 k 2 + 5 , разность будет равна 2 – 3 = - 1 . В данном случае можно определить, что для сравнения необходим ряд с k -ым членом b k = k - 1 = 1 k , который является гармоническим.

Для того, чтобы закрепить полученный материал, детально рассмотрим пару типичных вариантов.

Пример 8

Определить, каким является ряд ∑ k = 1 ∞ 1 k - 1 2 .

Так как предел = 0 lim k → + ∞ 1 k - 1 2 = 0 , мы выполнили необходимое условие. Неравенство будет справедливым 1 k < 1 k - 1 2 для k , которые являются натуральными. Из предыдущих пунктов мы узнали, что гармонический ряд ∑ k = 1 ∞ 1 k – расходящийся. Согласно первому признаку, можно доказать, что исходный вариант является расходящимся.

Пример 9

Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 1 k 3 + 3 k - 1 .

В данном примере выполняется необходимое условие, так как lim k → + ∞ 1 k 3 + 3 k - 1 = 0 . Представляем в виде неравенства 1 k 3 + 3 k - 1 < 1 k 3 для любого значения k . Ряд ∑ k = 1 ∞ 1 k 3 является сходящимся, так как гармонический ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . Согласно первому признаку, мы можем сделать вывод, что числовой ряд является сходящимся.

Пример 10

Определить, является каким является ряд ∑ k = 3 ∞ 1 k ln (ln k) . lim k → + ∞ 1 k ln (ln k) = 1 + ∞ + ∞ = 0 .

В данном варианте можно отметить выполнение нужного условия. Определим ряд для сравнения. Например, ∑ k = 1 ∞ 1 k s . Чтобы определить, чему равна степень, расммотрим последовательность { ln (ln k) } , k = 3 , 4 , 5 . . . . Члены последовательности ln (ln 3) , ln (ln 4) , ln (ln 5) , . . . увеличивается до бесконечности. Проанализировав уравнение, можно отметить, что, взяв в качестве значения N = 1619 , то члены последовательности > 2 . Для данной последовательности будет справедливо неравенство 1 k ln (ln k) < 1 k 2 . Ряд ∑ k = N ∞ 1 k 2 сходится согласно первому признаку, так как ряд ∑ k = 1 ∞ 1 k 2 тоже сходящийся. Отметим, что согласно первому признаку ряд ∑ k = N ∞ 1 k ln (ln k) сходящийся. Можно сделать вывод, что ряд ∑ k = 3 ∞ 1 k ln (ln k) также сходящийся.

Второй признак

Допустим, что ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные числовые ряды.

Если lim k → + ∞ a k b k ≠ ∞ , то ряд ∑ k = 1 ∞ b k сходится, и ∑ k = 1 ∞ a k сходится также.

Если lim k → + ∞ a k b k ≠ 0 , то так как ряд ∑ k = 1 ∞ b k расходится, то ∑ k = 1 ∞ a k также расходится.

Если lim k → + ∞ a k b k ≠ ∞ и lim k → + ∞ a k b k ≠ 0 , то сходимость или расходимость ряда означает сходимость или расходимость другого.

Рассмотрим ∑ k = 1 ∞ 1 k 3 + 3 k - 1 с помощью второго признака. Для сравнения ∑ k = 1 ∞ b k возьмем сходящийся ряд ∑ k = 1 ∞ 1 k 3 . Определим предел: lim k → + ∞ a k b k = lim k → + ∞ 1 k 3 + 3 k - 1 1 k 3 = lim k → + ∞ k 3 k 3 + 3 k - 1 = 1

Согласно второму признаку можно определить, что сходящийся ряд ∑ k = 1 ∞ 1 k 3 означается, что первоначальный вариант также сходится.

Пример 11

Определить, каким является ряд ∑ n = 1 ∞ k 2 + 3 4 k 3 + 5 .

Проанализируем необходимое условие lim k → ∞ k 2 + 3 4 k 3 + 5 = 0 , которое в данном варианте выполняется. Согласно второму признаку, возьмем ряд ∑ k = 1 ∞ 1 k . Ищем предел: lim k → + ∞ k 2 + 3 4 k 3 + 5 1 k = lim k → + ∞ k 3 + 3 k 4 k 3 + 5 = 1 4

Согласно приведенным выше тезисам, расходящийся ряд влечет собой расходимость исходного ряда.

Третий признак

Рассмотрим третий признак сравнения.

Допустим, что ∑ k = 1 ∞ a k и _ ∑ k = 1 ∞ b k - знакоположительные числовые ряды. Если условие выполняется для некого номера a k + 1 a k ≤ b k + 1 b k , то сходимость данного ряда ∑ k = 1 ∞ b k означает, что ряд ∑ k = 1 ∞ a k также является сходящимся. Расходящийся ряд ∑ k = 1 ∞ a k влечет за собой расходимость ∑ k = 1 ∞ b k .

Признак Даламбера

Представим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд. Если lim k → + ∞ a k + 1 a k < 1 , то ряд является сходящимся, если lim k → + ∞ a k + 1 a k > 1 , то расходящимся.

Замечание 1

Признак Даламбера справедлив в том случае, если предел бесконечен.

Если lim k → + ∞ a k + 1 a k = - ∞ , то ряд является сходящимся, если lim k → ∞ a k + 1 a k = + ∞ , то расходящимся.

Если lim k → + ∞ a k + 1 a k = 1 , то признак Даламбера не поможет и потребуется провести еще несколько исследований.

Пример 12

Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 2 k + 1 2 k по признаку Даламбера.

Необходимо проверить, выполняется ли необходимое условие сходимости. Вычислим предел, воспользовавшись правилом Лопиталя: lim k → + ∞ 2 k + 1 2 k = ∞ ∞ = lim k → + ∞ 2 k + 1 " 2 k " = lim k → + ∞ 2 2 k · ln 2 = 2 + ∞ · ln 2 = 0

Мы можем увидеть, что условие выполняется. Воспользуемся признаком Даламбера: lim k → + ∞ = lim k → + ∞ 2 (k + 1) + 1 2 k + 1 2 k + 1 2 k = 1 2 lim k → + ∞ 2 k + 3 2 k + 1 = 1 2 < 1

Ряд является сходящимся.

Пример 13

Определить, является ряд расходящимся ∑ k = 1 ∞ k k k ! .

Воспользуемся признаком Даламбера для того, чтобы определить рассходимость ряда: lim k → + ∞ a k + 1 a k = lim k → + ∞ (k + 1) k + 1 (k + 1) ! k k k ! = lim k → + ∞ (k + 1) k + 1 · k ! k k · (k + 1) ! = lim k → + ∞ (k + 1) k + 1 k k · (k + 1) = = lim k → + ∞ (k + 1) k k k = lim k → + ∞ k + 1 k k = lim k → + ∞ 1 + 1 k k = e > 1

Следовательно, ряд является расходящимся.

Радикальный признак Коши

Допустим, что ∑ k = 1 ∞ a k - это знакоположительный ряд. Если lim k → + ∞ a k k < 1 , то ряд является сходящимся, если lim k → + ∞ a k k > 1 , то расходящимся.

Замечание 2

Если lim k → + ∞ a k k = 1 , то данный признак не дает никакой информации – требуется проведение дополнительного анализа.

Данный признак может быть использован в примерах, которые легко определить. Случай будет характерным тогда, когда член числового ряда – это показательно степенное выражение.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько характерных примеров.

Пример 14

Определить, является ли знакоположительный ряд ∑ k = 1 ∞ 1 (2 k + 1) k на сходящимся.

Нужное условие считается выполненным, так как lim k → + ∞ 1 (2 k + 1) k = 1 + ∞ + ∞ = 0 .

Согласно признаку, рассмотренному выше, получаем lim k → + ∞ a k k = lim k → + ∞ 1 (2 k + 1) k k = lim k → + ∞ 1 2 k + 1 = 0 < 1 . Данный ряд является сходимым.

Пример 15

Сходится ли числовой ряд ∑ k = 1 ∞ 1 3 k · 1 + 1 k k 2 .

Используем признак, описанный в предыдущем пункте lim k → + ∞ 1 3 k · 1 + 1 k k 2 k = 1 3 · lim k → + ∞ 1 + 1 k k = e 3 < 1 , следовательно, числовой ряд сходится.

Интегральный признак Коши

Допустим, что ∑ k = 1 ∞ a k является знакоположительным рядом. Необходимо обозначить функцию непрерывного аргумента y = f (x) , которая совпадает a n = f (n) . Если y = f (x) больше нуля, не прерывается и убывает на [ a ; + ∞) , где a ≥ 1

То в случае, если несобственный интеграл ∫ a + ∞ f (x) d x является сходящимся, то рассматриваемый ряд также сходится. Если же он расходится, то в рассматриваемом примере ряд тоже расходится.

При проверке убывания функции можно использовать материал, рассмотренный на предыдущих уроках.

Пример 16

Рассмотреть пример ∑ k = 2 ∞ 1 k · ln k на сходимость.

Условие сходимости ряда считается выполненным, так как lim k → + ∞ 1 k · ln k = 1 + ∞ = 0 . Рассмотрим y = 1 x · ln x . Она больше нуля, не прерывается и убывает на [ 2 ; + ∞) . Первые два пункта доподлинно известны, а вот на третьем следует остановиться подробнее. Находим производную: y " = 1 x · ln x " = x · ln x " x · ln x 2 = ln x + x · 1 x x · ln x 2 = - ln x + 1 x · ln x 2 . Она меньше нуля на [ 2 ; + ∞) . Это доказывает тезис о том, что функция является убывающей.

Собственно, функция y = 1 x · ln x соответствует признакам принципа, который мы рассматривали выше. Воспользуемся им: ∫ 2 + ∞ d x x · ln x = lim A → + ∞ ∫ 2 A d (ln x) ln x = lim A → + ∞ ln (ln x) 2 A = = lim A → + ∞ (ln (ln A) - ln (ln 2)) = ln (ln (+ ∞)) - ln (ln 2) = + ∞

Согласно полученным результатам, исходный пример расходится, так как несобственный интеграл является расходящимся.

Пример 17

Докажите сходимость ряда ∑ k = 1 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 .

Так как lim k → + ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 = 1 + ∞ = 0 , то условие считается выполненным.

Начиная с k = 4 , верное выражение 1 (10 k - 9) (ln (5 k + 8)) 3 < 1 (5 k + 8) (ln (5 k + 8)) 3 .

Если ряд ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 будет считаться сходящимся, то, согласно одному из принципов сравнения, ряд ∑ k = 4 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 также будет считаться сходящимся. Таким образом, мы сможет определить, что исходное выражение также является сходящимся.

Перейдем к доказательству ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 .

Так как функция y = 1 5 x + 8 (ln (5 x + 8)) 3 больше нуля, не прерывается и убывает на [ 4 ; + ∞) . Используем признак, описанный в предыдущем пункте:

∫ 4 + ∞ d x (5 x + 8) (l n (5 x + 8)) 3 = lim A → + ∞ ∫ 4 A d x (5 x + 8) (ln (5 x + 8)) 3 = = 1 5 · lim A → + ∞ ∫ 4 A d (ln (5 x + 8) (ln (5 x + 8)) 3 = - 1 10 · lim A → + ∞ 1 (ln (5 x + 8)) 2 | 4 A = = - 1 10 · lim A → + ∞ 1 (ln (5 · A + 8)) 2 - 1 (ln (5 · 4 + 8)) 2 = = - 1 10 · 1 + ∞ - 1 (ln 28) 2 = 1 10 · ln 28 2

В полученном сходящемся ряде, ∫ 4 + ∞ d x (5 x + 8) (ln (5 x + 8)) 3 , можно определить, что ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 также сходится.

Признак Раабе

Допустим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд.

Если lim k → + ∞ k · a k a k + 1 < 1 , то ряд расходится, если lim k → + ∞ k · a k a k + 1 - 1 > 1 , то сходится.

Данный способ определения можно использовать в том случае, если описанные выше техники не дают видимых результатов.

Исследование на абсолютную сходимость

Для исследования берем ∑ k = 1 ∞ b k . Используем знакоположительный ∑ k = 1 ∞ b k . Мы можем использовать любой из подходящих признаков, которые мы описывали выше. Если ряд ∑ k = 1 ∞ b k сходится, то исходный ряд является абсолютно сходящимся.

Пример 18

Исследовать ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 на сходимость ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 = ∑ k = 1 ∞ 1 3 k 3 + 2 k - 1 .

Условие выполняется lim k → + ∞ 1 3 k 3 + 2 k - 1 = 1 + ∞ = 0 . Используем ∑ k = 1 ∞ 1 k 3 2 и воспользуемся вторым признаком: lim k → + ∞ 1 3 k 3 + 2 k - 1 1 k 3 2 = 1 3 .

Ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 сходится. Исходный ряд также абсолютно сходящийся.

Расходимость знакопеременных рядов

Если ряд ∑ k = 1 ∞ b k – расходящийся, то соответствующий знакопеременный ряд ∑ k = 1 ∞ b k либо расходящийся, либо условно сходящийся.

Лишь признак Даламбера и радикальный признак Коши помогут сделать выводы о ∑ k = 1 ∞ b k по расходимости из модулей ∑ k = 1 ∞ b k . Ряд ∑ k = 1 ∞ b k также расходится, если не выполняется необходимое условие сходимости, то есть, если lim k → ∞ + b k ≠ 0 .

Пример 19

Проверить расходимость 1 7 , 2 7 2 , - 6 7 3 , 24 7 4 , 120 7 5 - 720 7 6 , . . . .

Модуль k -ого члена представлен как b k = k ! 7 k .

Исследуем ряд ∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k на сходимость по признаку Даламбера: lim k → + ∞ b k + 1 b k = lim k → + ∞ (k + 1) ! 7 k + 1 k ! 7 k = 1 7 · lim k → + ∞ (k + 1) = + ∞ .

∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k расходится так же, как и исходный вариант.

Пример 20

Является ли ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) сходящимся.

Рассмотрим на необходимое условие lim k → + ∞ b k = lim k → + ∞ k 2 + 1 ln (k + 1) = ∞ ∞ = lim k → + ∞ = k 2 + 1 " (ln (k + 1)) " = = lim k → + ∞ 2 k 1 k + 1 = lim k → + ∞ 2 k (k + 1) = + ∞ . Условие не выполнено, поэтому ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) ряд расходящийся. Предел был вычислен по правилу Лопиталя.

Признаки для условной сходимости

Признак Лейбница

Определение 12

Если величины членов знакочередующегося ряда убывают b 1 > b 2 > b 3 > . . . > . . . и предел модуля = 0 при k → + ∞ , то ряд ∑ k = 1 ∞ b k сходится.

Пример 17

Рассмотреть ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) на сходимость.

Ряд представлен как ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) . Нужное условие выполняется lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 . Рассмотрим ∑ k = 1 ∞ 1 k по второму признаку сравнения lim k → + ∞ 2 k + 1 5 k (k + 1) 1 k = lim k → + ∞ 2 k + 1 5 (k + 1) = 2 5

Получаем, что ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) расходится. Ряд ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) сходится по признаку Лейбница: последовательность 2 · 1 + 1 5 · 1 · 1 1 + 1 = 3 10 , 2 · 2 + 1 5 · 2 · (2 + 1) = 5 30 , 2 · 3 + 1 5 · 3 · 3 + 1 , . . . убывает и lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 .

Ряд условно сходится.

Признак Абеля-Дирихле

Определение 13

∑ k = 1 + ∞ u k · v k сходится в том случае, если { u k } не возрастает, а последовательность ∑ k = 1 + ∞ v k ограничена.

Пример 17

Исследуйте 1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . на сходимость.

Представим

1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . = 1 · 1 + 1 2 · (- 3) + 1 3 · 2 + 1 4 · 1 + 1 5 · (- 3) + 1 6 · = ∑ k = 1 ∞ u k · v k

где { u k } = 1 , 1 2 , 1 3 , . . . - невозрастающая, а последовательность { v k } = 1 , - 3 , 2 , 1 , - 3 , 2 , . . . ограничена { S k } = 1 , - 2 , 0 , 1 , - 2 , 0 , . . . . Ряд сходится.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter