Что такое состояние системы. «Теория систем и системный анализ. Биомедицинская значимость темы

Процесс (лат. processus – продвижение) – последовательная смена во времени явлений, событий, состояний, либо множество последовательных действий, направленных на достижение какого – либо конечного результата (цели).

Переменные (координаты) процесса – это наиболее существенные параметры, характеризующие состояние процесса и изменяющие свои значения во времени: { xi(t) } = X(t).

Состояние процесса в момент времени tk - это множество значений переменных в этот момент времени: {xi(tk)}, где tk ∈T, T – множество моментов времени

В каждый момент времени t∈T система S получает некоторое множество входных воздействий U(t) и порождает некоторую выходную величину Y(t). В общем случае значение выходной величины системы зависит как от текущего значения входного воздействия, так и от предыстории этого воздействия. (Например, система в момент воздействия была или в состоянии покоя, или же находилась в движении из–за действия предыдущих входных величин). Чтобы не различать эти два случая, лучше говорить, что текущее значение выходной величины y(t) системы S зависит от состояния системы. Состояние системы описывается системой уравнений

Состояние системы – это есть некоторая (внутренняя) характеристика системы {xi} , значение которой в настоящий момент времени определяет текущее значение выходной величины {Yj} и оказывает влияние на её будущее.

При этом знание состояния x(t₁) и отрезка входных воздействий ω=ω(t₁,t₂) должно быть необходимым и достаточным условием, позволяющим определить состояние x(t₂) = ϕ(t₂;t₁,x(t₁),ω) каждый раз, когда t₁

Пара (τ, x), где τ∈Т и x∈X называется событием /фазой/ системы.

Множество T х X – пространство событий /фазовое пространство/ системы.

Иногда фазовое пространство называется пространством состояний. Переходная функция состоянийϕ (её график в пространстве событий) называется несколькими эквивалентными терминами: движением, траекторией, орбитой, потоком, решением дифференциального уравнения, кривой решения и т.д. Говорят, что входное воздействие (или управление ω) переводит (переносит, изменяет, преобразует) состояние x(t 1) /или событие (t 1 , x)/ в состояние x(t 2) = j(t 2 ; t 1 , x(t 1), ω) /или в событие (t 2 ,ϕ(t 2 ; t 1 , x(t 1), ω)) /. Говоря о движении системы S , имеют в виду функцию состояния ϕ .

Системой тел или просто системой называется совокупность рассматриваемых тел. Примером системы может служить жидкость и находящийся в равновесии с ней пар. В частности, система может состоять из одного тела.

Всякая система может находиться в различных состояниях , отличающихся температурой, давлением, объемом и т. д. Подобные величины, характеризующие состояние системы, называются параметрами состояний .

Не всегда какой-либо параметр имеет определенное значение. Если, например, температура в разных точках тела неодинакова, то телу нельзя приписать определенное значение параметра Т. В этом случае состояние называется неравновесным . Если такое тело изолировать от других тел и предоставить самому себе, то температура примет одинаковое для всех точек значение Т – тело перейдет в равновесное состояние. Это значение Т не изменяется до тех пор, пока тело не будет выведено из равновесного состояния воздействием извне.

То же самое может иметь место и для других параметров, например для давления р. Если взять газ, заключенный в цилиндрическом сосуде, закрытом плотно пригнанным поршнем, и начать быстро вдвигать поршень, то под ним образуется газовая подушка, давление в которой будет больше, чем в остальном объеме газа. Следовательно, газ в этом случае не может быть охарактеризован определенным значением давления р и состояние его будет неравновесным. Однако если прекратить перемещение поршня, то давление в разных точках объема выровняется и газ перейдет в равновесное состояние.

Итак, равновесным состоянием системы называется такое состояние, при котором все параметры системы имеют определенные значения, остающиеся при неизменных внешних условиях постоянными сколь угодно долго.

Если по координатным осям откладывать значения каких-либо двух параметров, то любое равновесное состояние системы может быть изображено точкой на этом графике

(см., например, точку 1 на рис. 212). Неравновесное состояние не может быть изображено таким способом, потому что хотя бы один из параметров не будет иметь в неравновесном состоянии определенного значения.

Всякий процесс, т. е. переход системы из одного состояния в другое, связан с нарушением равновесия системы. Следовательно, при протекании в системе какого-либо процесса она проходит через последовательность неравновесных состояний. Обращаясь к уже рассмотренному процессу сжатия газа в сосуде, закрытом поршнем, можно заключить, что нарушение равновесия при вдвигании поршня тем значительнее, чем быстрее производится сжатие газа. Если вдвигать поршень очень медленно, то равновесие нарушается незначительно и давление в разных точках мало отличается от некоторого среднего значения р. В пределе, если сжатие газа происходит бесконечно медленно, газ в каждый момент времени будет характеризоваться определенным значением давления. Следовательно, в этом случае состояние газа в каждый момент времени является равновесным и бесконечно медленный процесс будет состоять из последовательности равновесных состояний.



Процесс , состоящий из непрерывной последовательности равновесных состояний, называется равновесным . Из сказанного следует, что равновесным может быть только бесконечно медленный процесс, поэтому равновесный процесс является абстракцией.

Равновесный процесс может быть изображен на графике соответствующей кривой (рис.). Неравновесные процессы условно изображаются пунктирными кривыми.

Понятия равновесного состояния и равновесного процесса играют большую роль в термодинамике. Все количественные выводы термодинамики строго применимы только к равновесным процессам.

Биомедицинская значимость темы

Термодинамика представляет собой раздел физической химии, изучающий любые макроскопические системы, изменения состояния которых связано с передачей энергии в форме теплоты и работы.

Химическая термодинамика является теоретической основой биоэнергетики – науки о превращениях энергии в живых организмах и специфических особенностях превращения одних видов энергии в другие в процессе жизнедеятельности. В живом организме существует тесная взаимосвязь между процессами обмена веществ и энергии. Обмен веществ является источником энергии всех жизненных процессов. Осуществление любых физиологических функций (движение, поддержание постоянства температуры тела, выделение пищеварительных соков, синтез в организме различных сложных веществ из более простых и т.п.) требует затраты энергии. Источником всех видов энергии в организме являются питательные вещества (белки, жиры, углеводы), потенциальная химическая энергия которых в процессе обмена веществ превращается в другие виды энергии. Основным путем освобождения химической энергии, необходимой для поддержания жизнедеятельности организма и осуществления физиологических функций, являются окислительные процессы.

Химическая термодинамика позволяет установить связь между энергетическими затратами при выполнении человеком определенной работы и калорийностью питательных веществ, дает возможность понять энергетическую сущность биосинтетических процессов, протекающих за счет энергии, высвобождаемой при окислении питательных веществ.

Знание стандартных термодинамических величин относительно небольшого числа соединений позволяет производить термохимические расчеты для энергетической характеристики различных биохимических процессов.

Применение термодинамических методов дает возможность количественно оценить энергетику структурных превращений белков, нуклеиновых кислот, липидов и биологических мембран.

В практической деятельности врача термодинамические методы наиболее широко используются для определения интенсивности основного обмена при различных физиологических и патологических состояниях организма, а также для определения калорийности пищевых продуктов.

Задачи химической термодинамики

1. Определение энергетических эффектов химических и физико–химических процессов.

2. Установление критериев самопроизвольного протекания химических и физико–химических процессов.

3. Установление критериев равновесного состояния термодинамических систем.

Основные понятия и определения

Термодинамическая система

Тело или группа тел, отделенных от окружающей среды реальной или воображаемой поверхностью раздела, называют термодинамической системой.


В зависимости от способности системы обмениваться с окружающей средой энергией и веществом различают изолированные, закрытые и открытые системы.

Изолированной системой называют систему, которая не обменивается с окружающей средой ни веществом, ни энергией.

Систему, которая обменивается с окружающей средой энергией и не обменивается веществом, называют закрытой .

Открытой системой называют систему, обменивающуюся с окружающей средой и веществом, и энергией.

Состояние системы, стандартное состояние

Состояние системы определяется совокупностью ее физических и химических свойств. Каждое состояние системы характеризуется определенными величинами этих свойств. Если эти свойства изменяются, то изменяется и состояние системы, если же свойства системы не изменяются со временем, то система находится в состоянии равновесия.

Для сравнения свойств термодинамических систем необходимо точно указать их состояние. С этой целью введено понятие – стандартное состояние, за которое для индивидуальной жидкости или твердого тела принимается такое физическое состояние, в котором они существуют при давлении в 1 атм (101315 Па) и данной температуре.

Для газов и паров стандартное состояние отвечает гипотетическому состоянию, в котором газ при давлении в 1 атм подчиняется законам идеальных газов, при данной температуре.

Величины, относящиеся к стандартному состоянию, пишутся с индексом «о» и нижним индексом указывается температура, чаще всего это 298К.

Уравнение состояния

Уравнение, устанавливающее функциональную зависимость между величинами свойств, определяющих состояние системы, называют уравнением состояния.

Если известно уравнение состояния системы, то для описания ее состояния не обязательно знать численные значения всех свойств системы. Так, например, уравнение Клапейрона–Менделеева является уравнением состояния идеального газа:

где Р – давление, V – объем, n – число молей идеального газа, Т – его абсолютная температура и R– универсальная газовая постоянная.

Из уравнения следует, что для определения состояния идеального газа достаточно знать численные значения любых трех из четырех величин Р,V,n,T.

Функции состояния

Свойства, величины которых при переходе системы из одного состояния в другое зависят только от начального и конечного состояния системы и не зависят от пути перехода, получили название функций состояния. К ним относятся, например, давление, объем, температура системы.

Процессы

Переход системы из одного состояния в другое называют процессом. В зависимости от условий протекания различают следующие виды процессов.

Круговой или циклический – процесс, в результате протекания которого, система возвращается в исходное состояние. По завершении кругового процесса изменения любой функции состояния системы равны нулю.

Изотермический – процесс, протекающий при постоянной температуре.

Изобарный – процесс, протекающий при постоянном давлении.

Изохорный – процесс, при котором объем системы остается постоянным.

Адиабатический – процесс, происходящий без теплообмена с окружающей средой.

Равновесный – процесс, рассматриваемый как непрерывный ряд равновесных состояний системы.

Неравновесный – процесс, при котором система проходит через неравновесные состояния.

Обратимый термодинамический процесс – процесс, после которого система и взаимодействующие с ней системы (окружающая среда) могут возвратиться в начальное состояние.

Необратимый термодинамический процесс – процесс, после которого система и взаимодействующие с ней системы (окружающая среда) не могут возвратиться в начальное состояние.

Более подробно последние понятия рассмотрены в разделе «Термодинамика химического равновесия».

Определение термодинамической системы

Термодинамической системой называют совокупность макрообъектов (тел, полей), которые обмениваются энергией друг с другом и внешними (по отношению к системе) объектами. Такую систему называют замкнутой (изолированной), если у нее нет ни какого обмена энергией с внешними телами. Если нет обмена только теплотой, то система адиабатический изолирована. Систему называют закрытой, если нет массообмена у нее с внешней средой.

Определение термодинамических параметров

Величины, которые характеризуют состояние термодинамической системы, называют термодинамическими параметрами. Два состояния системы считают разными, если у этих состояний отличается хотя бы один из параметров. Состояние системы называют стационарным, если параметры системы не изменяются во времени. Стационарное состояние системы равновесно, если система находится в стационарном состоянии не благодаря какому-либо внешнему процессу.

Термодинамические параметры имеют связи между собой. Поэтому для однозначного определения состояния термодинамической системы достаточно ограниченного числа термодинамических параметров. Основными параметрами состояния термодинамической системы являются: давление, температура, удельный объем ($V_u$) (или молярный${(\ V}_{\mu })$).

Определение давления

Давлением $(p)\ $называют физическую величину, равную:

где $F_n$ -- проекция силы на нормаль к участку тела $\triangle S$, $\triangle S\ $- площадь тела. Единица измерения давления в системе СИ паскаль -- $\frac{H}{м^2}$=Па.

Определение удельного объема

Удельным объемом $V_u$ называют величину, обратную плотности $\rho:\ $

Для однородного тела удельный объем:

где m -- масса тела.

Молярный объем $V_{\mu }$ равен:

Определение температуры

Температурой (t, или T) называют физическую величину, характеризующую степень нагретости тела. Различают несколько видов температуры (в зависимости от используемой шкалы измерения). В состоянии термодинамического равновесия все тела системы (все части системы) имеют равные температуры.

В соответствии с правилом Гиббса состояние однородной (в физическом смысле) термодинамической системы полностью определяется двумя параметрами. Уравнение, которое связывает параметры термодинамической системы, называют уравнением состояния. Так, например, можно записать уравнение для внутренней энергии (в общем виде):

такое уравнение состояния называют калористическим. В этом уравнении ${(x}_1,\ x_2,\dots ,\ x_n)-\ $внешние параметры системы, В термодинамике уравнения состояния принимаются известными и не выводятся.

Макроскопические термодинамические параметры, описывающие систему целиком, имеют смысл средних значений (за большой промежуток времени) каких-то функций, характеризующих динамическое состояние системы.

Кроме параметров термодинамические системы описывают с помощью функций состояния (иногда об этих физических величинах говорят как о параметрах состояния термодинамической системы).

Определение функций состояния

Функции состояния -- это такие физические величины, изменение которых не зависит от вида (пути) перехода системы из состояния 1 в состояние 2.

Важнейшими функциями состояния в термодинамике являются: внутренняя энергия (U), энтальпия (H), энтропия (S).

Внутренняя энергия -- функция состояния системы, определена, как:

где $W$- полная энергия системы, $E_k$- кинетическая энергия макроскопического движения системы, $E^{vnesh}_p$- потенциальная энергия системы, которая является результатом, действия на систему внешних сил.

Внутренняя энергия идеального газа часто выражается следующим образом:

где i -- число степеней свободы молекулы, $\nu $ -- количество молей вещества, R -- газовая постоянная.

Энтальпия (теплосодержание) -- функция состояния системы, определяется как:

Энтальпия идеального газа зависит только от T и пропорциональна m:

где $C_p$ -- теплоемкость газа при изобарном процессе, $H_0=U_0$ -- энтальпия при $T=0K$.

Энтропия -- функция состояния системы. Дифференциал энтропии в обратимом процессе :

Термодинамические параметры можно разделить на экстенсивные, зависящие от массы системы (например, U, S, H) и интенсивные, соответственно, от массы не зависящие (например, T, $\rho \ $).

Пример 1

Задание: Найти изменение внутренней энергии идеального газа в процессе при постоянном давлении (p), если объем газа изменяется от$V_1\ до\ $ $V_2.$ Газ двухатомный (колебательные степени свободы не учитывать).

Бесконечно малое приращение внутренней энергии идеального газа задано формулой:

Из уравнения Менделеева-Клайперона выразим температуру (T), помним, что давление постоянно:

Подставим (1.2) в (1.1), получим:

Найдем изменение внутренней энергии газа:

\[\triangle U=\frac{i}{2}p\ \int\limits^{V_2}_{V_1}{dV=\frac{i}{2}p\left(V_2-V_1\right)}\ \left(1.3\right),\]

где i =5 по условию задачи, так как газ двухатомный.

Ответ: Изменение внутренней энергии газа в заданном процессе: $\triangle U=\frac{i}{2}p\left(V_2-V_1\right).$

Пример 2

Задание: Азот массы 1 кг нагрели на 100 К при постоянном объеме. Найти количество теплоты, полученное газом в заданном процессе. Работу газа, изменение внутренней энергии.

Сразу дадим ответ относительно работы газа. Так как процесс изохорный (изменения объема нет), то работа газа равна нулю.

Изменение внутренней энергии газа можно записать как:

\[\triangle U=\frac{i}{2}\nu R\triangle T\left(2.1\right),\]

\[\nu =\frac{m}{\mu }\left(2.2\right),\]

молярная масса азота находится с помощью таблицы Менделеева, она равна:

\[{\mu }_{N_2}=28\cdot {10}^{-3}\frac{кг}{моль}\]

Все данные в задаче в системе СИ, молекула азота состоит из двух атомов, число степеней свободы равно 5, поэтому проведем расчет:

\[\triangle U=\frac{i}{2}\frac{m}{\mu }R\triangle T=\frac{5}{2}\cdot \frac{1}{28\cdot {10}^{-3}}\cdot 8,31\cdot 100=7,42\cdot {10}^4\left(Дж\right).\]

По первому началу термодинамики для изохорного процесса получаем:

\[\triangle Q=\triangle U\left(2.3\right).\]

Можем записать ответ.

Ответ: Изменение внутренней энергии в изохорном процессе при заданных условиях равно $7,42\cdot {10}^4$Дж, работа газа равна нулю, количество теплоты подводимое к газ равно $7,42\cdot {10}^4$Дж.

СОСТОЯНИЕ СИСТЕМЫ

в физике - определяется совокупностью значений характерных для данной системы физ. величин, наз. параметрами состояния. Напр., состояние механич. системы в каждый момент времени характеризуется значениями координат и импульсов всех материальных точек, образующих эту систему. Состояние электромагнитного поля характеризуется значениями напряжённостей электрич. и магнитного полей во всех точках поля в каждый момент времени.


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "СОСТОЯНИЕ СИСТЕМЫ" в других словарях:

    Состояние системы - характеристика системы на данный момент ее функционирования. Поскольку система описывается определенным комплексом существенных переменных и параметров, то для того, чтобы выразить С.с., нужно определить значения, принимаемые… … Экономико-математический словарь

    состояние системы - 3.2 состояние системы (system state): Специфическая комбинация состояний элементов. Примечание Несколько состояний системы могут быть объединены в одно состояние. Источник: ГОСТ Р 51901.15 2005: Менеджмент риска. Применение марковских методов… …

    состояние системы - State of System Состояние системы Характеристика системы на данный момент ее функционирования. Поскольку система описывается определенным комплексом существенных переменных и параметров, то для того, чтобы выразить состояние системы, нужно… … Толковый англо-русский словарь по нанотехнологии. - М.

    состояние системы - sistemos būsena statusas T sritis automatika atitikmenys: angl. state of system vok. Systemzustand, m rus. состояние системы, n pranc. état du système, m … Automatikos terminų žodynas

    состояние системы - sistemos būsena statusas T sritis chemija apibrėžtis Makroskopiniais parametrais apibūdinama sistemos būsena. atitikmenys: angl. state of system rus. состояние системы … Chemijos terminų aiškinamasis žodynas

    состояние системы - sistemos būsena statusas T sritis fizika atitikmenys: angl. state of system vok. Systemzustand, m rus. состояние системы, n pranc. état du système, m … Fizikos terminų žodynas

    Состояние системы летательного аппарата отказное - 14 Источник: ГОСТ 27332 87: Условия полета летательных аппаратов. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    Состояние системы летательного аппарата - 10. Состояние системы летательного аппарата Состояние системы Situation of the system Параметры работы системы летательного аппарата, определяемые характером ее включения и ее работоспособным или отказным состоянием, наличием неисправностей при… … Словарь-справочник терминов нормативно-технической документации

    отказное состояние системы летательного аппарата - отказное состояние системы Неработоспособное состояние системы летательного аппарата, характеризуемое рассматриваемым нарушением функции системы в целом, независимо от вызвавших его причин. [ГОСТ 27332 87] Тематики условия полета летательных… … Справочник технического переводчика

    Отказное состояние системы летательного аппарата - 14. Отказное состояние системы летательного аппарата Отказное состояние системы Failure situation (title= Поправка, ИУС 8 88). Неработоспособное состояние системы летательного аппарата, характеризуемое рассматриваемым нарушением функции системы … Словарь-справочник терминов нормативно-технической документации

Книги

  • Системы радиоуправления. Книга 1. Состояние и тенденции развития систем радиоуправления , Авторы коллективной монографии - известные ученые, ведущие разработчики и специалисты в области систем радиоуправления. В книге рассмотрены состояние и тенденцииразвития радиоэлектронных… Категория: Радиоэлектроника Серия: Научно-технические серии Издатель: Радиотехника , Производитель: Радиотехника ,
  • Системы радиоуправления. Выпуск 1. Состояние и тенденции развития систем радиоуправления , Верба В.С. , Авторы коллективной монографии - известные ученые, ведущие разработчики и специалисты в области систем радиоуправления. В книге рассмотрены состояние и тенденции развития радиоэлектронных… Категория: Радио. Радиотехника Серия: Издатель: