Формула для производной сложной функции нескольких переменных. Доказательство формулы производной сложной функции. Производная сложной функции от двух переменных

1°. Случай одной независимой переменной . Если z=f(x,y) есть дифференцируемая функция аргументов х и у, которые в свою очередь являются дифференцируемыми функциями независимой переменной t : , то производная сложной функции может быть вычислена по формуле

Пример. Найти , если , где .

Решение. По формуле (1) имеем:

Пример . Найти частную производную и полную производную , если .

Решение. .

На основании формулы (2) получаем .

2°. Случай нескольких независимых переменных.

Пусть z = f (x ; y ) - функция двух переменных х и у, каждая из которых является функцией независимой переменной t : х = x (t ), у = y (t ). В этом случае функция z = f (x (t ); y (t )) является сложной функцией одной независимой переменной t; переменные х и у - промежуточные переменные.

Теорема . Если z == f (x ; у) - дифференцируемая в точке М(х;у) D функция и х = x (t ) и у =y (t ) - дифференцируемые функции независимой переменной t, то производная сложной функции z (t ) == f (x (t ); y (t )) вычисляется по формуле

Частный случай: z = f (x ; у), где у = у(х), т.е. z = f (x ; y (x )) - сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (3) имеем:

.

Последняя формула носит название формулы полной производной.

Общий случай: z = f (x ; y ), где х = x (u ; v ), y = y (u ; v ). Тогда z = f { x (u ; v ); y (u ; v )) - сложная функция независимых переменных и и v . Ее частные производные и можно найти, используя формулу (3) следующим образом. Зафиксировав v, заменяем в ней , соответствующими частными производными

Таким образом, производная сложной функции (z ) по каждой независимой переменной и v) равна сумме произведений частных производных этой функции (z) по ее промежуточным переменным (x и у) на их производные по соответствующей независимой переменной (u и v).

Во всех рассмотренных случаях справедлива формула

(свойство инвариантности полного дифференциала).

Пример. Найти и , если z =f (x ,y ), где x =uv , .

Решение. Применяя формулы (4) и (5), получим:

Пример. Показать, что функция удовлетворяет уравнению .

Решение. Функция зависит от х и у через промежуточный аргумент , поэтому

Подставив частные производные в левую часть уравнения, будем иметь:

Т. е. функция z удовлетворяет данному уравнению.

Производная в данном направлении и градиент функции

1°. Производная функции в данном направлении . Производной функции z=f (x,y) в данном направлении называется , где и - значения функции в точках и . Если функция z дифференцируема, то справедлива формула

где - углы между направлением l и соответствующими координатными осями. Производная в данном направлении характеризует скорость изменения функции в этом направлении.

Пример. Найти производную функции z = 2х 2 - Зу 2 в точке P (1; 0) в направлении, составляющем с осью ОХ угол в 120°.

Решение. Найдем частные производные данной функции и их значения в точке P .

Рассмотрим функцию от двух переменных:

Поскольку переменные $x$ и $y$ являются независимыми, для такой функции можно ввести понятие частной производной:

Частная производная функции $f$ в точке $M=\left({{x}_{0}};{{y}_{0}} \right)$ по переменной $x$ — это предел

\[{{{f}"}_{x}}=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f\left({{x}_{0}}+\Delta x;{{y}_{0}} \right)}{\Delta x}\]

Аналогично можно определить частную производную по переменной $y$ :

\[{{{f}"}_{y}}=\underset{\Delta y\to 0}{\mathop{\lim }}\,\frac{f\left({{x}_{0}};{{y}_{0}}+\Delta y \right)}{\Delta y}\]

Другими словами, чтобы найти частную производную функции нескольких переменных, нужно зафиксировать все остальные переменные, кроме искомой, а затем найти обычную производную по этой искомой переменной.

Отсюда вытекает основной приём для вычисления таких производных: просто считайте, что все переменные, кроме данной, являются константой, после чего дифференцируйте функцию так, как дифференцировали бы «обычную» — с одной переменной. Например:

$\begin{align}& {{\left({{x}^{2}}+10xy \right)}_{x}}^{\prime }={{\left({{x}^{2}} \right)}^{\prime }}_{x}+10y\cdot {{\left(x \right)}^{\prime }}_{x}=2x+10y, \\& {{\left({{x}^{2}}+10xy \right)}_{y}}^{\prime }={{\left({{x}^{2}} \right)}^{\prime }}_{y}+10x\cdot {{\left(y \right)}^{\prime }}_{y}=0+10x=10x. \\\end{align}$

Очевидно, что частные производные по разным переменным дают разные ответы — это нормально. Куда важнее понимать, почему, скажем, в первом случае мы спокойно вынесли $10y$ из-под знака производной, а во втором — вовсе обнулили первое слагаемое. Всё это происходит из-за того, что все буквы, кроме переменной, по которой идёт дифференцирование, считаются константами: их можно выносить, «сжигать» и т.д.

Что такое «частная производная»?

Сегодня мы поговорим о функциях нескольких переменных и о частных производных от них. Во-первых, что такое функция нескольких переменных? До сих пор мы привыкли считать функцию как $y\left(x \right)$ или $t\left(x \right)$, или любую переменную и одну-единственную функцию от нее. Теперь же функция у нас будет одна, а переменных несколько. При изменении $y$ и $x$ значение функции будет меняться. Например, если $x$ увеличится в два раза, значение функции поменяется, при этом если $x$ поменяется, а $y$ не изменится, значение функции точно так же изменится.

Разумеется, функцию от нескольких переменных, точно так же как и от одной переменной, можно дифференцировать. Однако поскольку переменных несколько, то и дифференцировать можно по разным переменным. При этом возникают специфические правила, которых не было при дифференцировании одной переменной.

Прежде всего, когда мы считаем производную функции от какой-либо переменной, то обязаны указывать, по какой именно переменной мы считаем производную — это и называется частной производной. Например, у нас функция от двух переменных, и мы можем посчитать ее как по $x$, так и по $y$ — две частных производных у каждой из переменных.

Во-вторых, как только мы зафиксировали одну из переменных и начинаем считать частную производную именно по ней, то все остальные, входящие в эту функцию, считаются константами. Например, в $z\left(xy \right)$, если мы считаем частную производную по $x$, то везде, где мы встречаем $y$, мы считаем ее константой и обращаемся с ней именно как с константой. В частности при вычислении производной произведения мы можем выносить $y$ за скобку (у нас же константа), а при вычислении производной суммы, если у нас где-то получается производная от выражения, содержащего $y$ и не содержащего $x$, то производная этого выражения будет равна «нулю» как производная константы.

На первый взгляд может показаться, что я рассказываю о чем-то сложном, и многие ученики по началу путаются. Однако ничего сверхъестественного в частных производных нет, и сейчас мы убедимся в этом на примере конкретных задач.

Задачи с радикалами и многочленами

Задача № 1

Чтобы не терять время зря, с самого начала начнем с серьезных примеров.

Для начала напомню такую формулу:

Это стандартное табличное значение, которое мы знаем из стандартного курса.

В этом случае производная $z$ считается следующим образом:

\[{{{z}"}_{x}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}{{\left(\frac{y}{x} \right)}^{\prime }}_{x}\]

Давайте еще раз, поскольку под корнем стоит не $x$, а некое другое выражение, в данном случае $\frac{y}{x}$, то сначала мы воспользуемся стандартным табличным значением, а затем, поскольку под корнем стоит не $x$, а другое выражение, нам необходимо домножить нашу производную на еще одну из этого выражения по той же самой переменной. Давайте для начала посчитаем следующее:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=\frac{{{{{y}"}}_{x}}\cdot x-y\cdot {{{{x}"}}_{x}}}{{{x}^{2}}}=\frac{0\cdot x-y\cdot 1}{{{x}^{2}}}=-\frac{y}{{{x}^{2}}}\]

Возвращаемся к нашему выражению и записываем:

\[{{{z}"}_{x}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \left(-\frac{y}{{{x}^{2}}} \right)\]

В принципе, это все. Однако оставлять ее в таком виде неправильно: такую конструкцию неудобно использовать для дальнейших вычислений, поэтому давайте ее немного преобразуем:

\[\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \left(-\frac{y}{{{x}^{2}}} \right)=\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \frac{y}{{{x}^{2}}}=\]

\[=-\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \sqrt{\frac{{{y}^{2}}}{{{x}^{4}}}}=-\frac{1}{2}\sqrt{\frac{x\cdot {{y}^{2}}}{y\cdot {{x}^{4}}}}=-\frac{1}{2}\sqrt{\frac{y}{{{x}^{3}}}}\]

Ответ найден. Теперь займемся $y$:

\[{{{z}"}_{y}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot {{\left(\frac{y}{x} \right)}^{\prime }}_{y}\]

Выпишем отдельно:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{y}=\frac{{{{{y}"}}_{y}}\cdot x-y\cdot {{{{x}"}}_{y}}}{{{x}^{2}}}=\frac{1\cdot x-y\cdot 0}{{{x}^{2}}}=\frac{1}{x}\]

Теперь записываем:

\[{{{z}"}_{y}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot {{\left(\frac{y}{x} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \frac{1}{x}=\]

\[=\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \sqrt{\frac{1}{{{x}^{2}}}}=\frac{1}{2}\sqrt{\frac{x}{y\cdot {{x}^{2}}}}=\frac{1}{2\sqrt{xy}}\]

Все сделано.

Задача № 2

Этот пример одновременно и проще, и сложней, чем предыдущий. Сложнее, потому что здесь больше действий, а проще, потому что здесь нет корня и, кроме того, функция симметрична относительно $x$ и $y$, т.е. если мы поменяем $x$ и $y$ местами, формула от этого не изменится. Это замечание в дальнейшем упростит нам вычисление частной производной, т.е. достаточно посчитать одну из них, а во второй просто поменять местами $x$ и $y$.

Приступаем к делу:

\[{{{z}"}_{x}}={{\left(\frac{xy}{{{x}^{2}}+{{y}^{2}}+1} \right)}^{\prime }}_{x}=\frac{{{\left(xy \right)}^{\prime }}_{x}\left({{x}^{2}}+{{y}^{2}}+1 \right)-xy{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

Давайте посчитаем:

\[{{\left(xy \right)}^{\prime }}_{x}=y\cdot {{\left(x \right)}^{\prime }}=y\cdot 1=y\]

Однако многим ученикам такая запись непонятна, поэтому запишем вот так:

\[{{\left(xy \right)}^{\prime }}_{x}={{\left(x \right)}^{\prime }}_{x}\cdot y+x\cdot {{\left(y \right)}^{\prime }}_{x}=1\cdot y+x\cdot 0=y\]

Таким образом, мы еще раз убеждаемся в универсальности алгоритма частных производных: каким бы мы образом их не считали, если все правила применяются верно, ответ будет один и тот же.

Теперь давайте разберемся еще с одной частной производной из нашей большой формулы:

\[{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}={{\left({{x}^{2}} \right)}^{\prime }}_{x}+{{\left({{y}^{2}} \right)}^{\prime }}_{x}+{{{1}"}_{x}}=2x+0+0\]

Подставим полученные выражения в нашу формулу и получим:

\[\frac{{{\left(xy \right)}^{\prime }}_{x}\left({{x}^{2}}+{{y}^{2}}+1 \right)-xy{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\]

\[=\frac{y\cdot \left({{x}^{2}}+{{y}^{2}}+1 \right)-xy\cdot 2x}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\]

\[=\frac{y\left({{x}^{2}}+{{y}^{2}}+1-2{{x}^{2}} \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\frac{y\left({{y}^{2}}-{{x}^{2}}+1 \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

По $x$ посчитано. А чтобы посчитать $y$ от того же самого выражения, давайте не будем выполнять всю ту же последовательность действий, а воспользуемся симметрией нашего исходного выражения — мы просто заменим в нашем исходном выражении все $y$ на $x$ и наоборот:

\[{{{z}"}_{y}}=\frac{x\left({{x}^{2}}-{{y}^{2}}+1 \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

За счет симметрии мы посчитали это выражение гораздо быстрее.

Нюансы решения

Для частных производных работают все стандартные формулы, которые мы используем для обычных, а именно, производная частного. При этом, однако, возникают свои специфические особенности: если мы считаем частную производную $x$, то когда мы получаем ее по $x$, то рассматриваем ее как константу, и поэтому ее производная будет равна «нулю».

Как и в случае с обычными производными, частную (одну и ту же) можно посчитать несколькими различными способами. Например, ту же конструкцию, которую мы только что посчитали, можно переписать следующим образом:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=y\cdot {{\left(\frac{1}{x} \right)}^{\prime }}_{x}=-y\frac{1}{{{x}^{2}}}\]

\[{{\left(xy \right)}^{\prime }}_{x}=y\cdot {{{x}"}_{x}}=y\cdot 1=y\]

Вместе с тем, с другой стороны, можно использовать формулу от производной суммы. Как мы знаем, она равна сумме производных. Например, запишем следующее:

\[{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}=2x+0+0=2x\]

Теперь, зная все это, давайте попробуем поработать с более серьезными выражениями, поскольку настоящие частные производные не ограничиваются одними лишь многочленами и корнями: там встречаются и тригонометрия, и логарифмы, и показательная функция. Сейчас этим и займемся.

Задачи с тригонометрическими функциями и логарифмами

Задача № 1

Запишем следующие стандартные формулы:

\[{{\left(\sqrt{x} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{x}}\]

\[{{\left(\cos x \right)}^{\prime }}_{x}=-\sin x\]

Вооружившись этими знаниями, попробуем решить:

\[{{{z}"}_{x}}={{\left(\sqrt{x}\cdot \cos \frac{x}{y} \right)}^{\prime }}_{x}={{\left(\sqrt{x} \right)}^{\prime }}_{x}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot {{\left(\cos \frac{x}{y} \right)}^{\prime }}_{x}=\]

Отдельно выпишем одну переменную:

\[{{\left(\cos \frac{x}{y} \right)}^{\prime }}_{x}=-\sin \frac{x}{y}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{x}=-\frac{1}{y}\cdot \sin \frac{x}{y}\]

Возвращаемся к нашей конструкции:

\[=\frac{1}{2\sqrt{x}}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot \left(-\frac{1}{y}\cdot \sin \frac{x}{y} \right)=\frac{1}{2\sqrt{x}}\cdot \cos \frac{x}{y}-\frac{\sqrt{x}}{y}\cdot \sin \frac{x}{y}\]

Все, по $x$ мы нашли, теперь давайте займемся вычислениями по $y$:

\[{{{z}"}_{y}}={{\left(\sqrt{x}\cdot \cos \frac{x}{y} \right)}^{\prime }}_{y}={{\left(\sqrt{x} \right)}^{\prime }}_{y}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot {{\left(\cos \frac{x}{y} \right)}^{\prime }}_{y}=\]

Опять же посчитаем одно выражение:

\[{{\left(\cos \frac{x}{y} \right)}^{\prime }}_{y}=-\sin \frac{x}{y}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{y}=-\sin \frac{x}{y}\cdot x\cdot \left(-\frac{1}{{{y}^{2}}} \right)\]

Возвращаемся к исходному выражению и продолжаем решение:

\[=0\cdot \cos \frac{x}{y}+\sqrt{x}\cdot \frac{x}{{{y}^{2}}}\sin \frac{x}{y}=\frac{x\sqrt{x}}{{{y}^{2}}}\cdot \sin \frac{x}{y}\]

Все сделано.

Задача № 2

Запишем необходимую нам формулу:

\[{{\left(\ln x \right)}^{\prime }}_{x}=\frac{1}{x}\]

Теперь посчитаем по $x$:

\[{{{z}"}_{x}}={{\left(\ln \left(x+\ln y \right) \right)}^{\prime }}_{x}=\frac{1}{x+\ln y}.{{\left(x+\ln y \right)}^{\prime }}_{x}=\]

\[=\frac{1}{x+\ln y}\cdot \left(1+0 \right)=\frac{1}{x+\ln y}\]

По $x$ найдено. Считаем по $y$:

\[{{{z}"}_{y}}={{\left(\ln \left(x+\ln y \right) \right)}^{\prime }}_{y}=\frac{1}{x+\ln y}.{{\left(x+\ln y \right)}^{\prime }}_{y}=\]

\[=\frac{1}{x+\ln y}\left(0+\frac{1}{y} \right)=\frac{1}{y\left(x+\ln y \right)}\]

Задача решена.

Нюансы решения

Итак, от какой бы функции мы не брали частную производную, правила остаются одними и теми же, независимо от того, работаем ли мы с тригонометрией, с корнями или с логарифмами.

Неизменными остаются классические правила работы со стандартными производными, а именно, производная суммы и разности, частного и сложной функции.

Последняя формула чаще всего и встречается при решении задач с частными производными. Мы встречаемся с ними практически везде. Ни одной задачи еще не было, чтобы там нам она не попадалась. Но какой бы мы формулой не воспользовались, нам все равно добавляется еще одно требование, а именно, особенность работы с частными производными. Как только мы фиксируем одну переменную, все остальные оказываются константами. В частности, если мы считаем частную производную выражения $\cos \frac{x}{y}$ по $y$, то именно $y$ и является переменной, а $x$ везде остается константой. То же самое работает и наоборот. Ее можно выносить за знак производной, а производная от самой константы будет равна «нулю».

Все это приводит к тому, что частные производные от одного и того же выражения, но по разным переменным могут выглядеть совершенно по-разному. Например, посмотрим такие выражения:

\[{{\left(x+\ln y \right)}^{\prime }}_{x}=1+0=1\]

\[{{\left(x+\ln y \right)}^{\prime }}_{y}=0+\frac{1}{y}=\frac{1}{y}\]

Задачи с показательными функциями и логарифмами

Задача № 1

Для начала запишем такую формулу:

\[{{\left({{e}^{x}} \right)}^{\prime }}_{x}={{e}^{x}}\]

Зная этот факт, а также производную сложной функции, давайте попробуем посчитать. Я сейчас решу двумя различными способами. Первый и самый очевидный — это производная произведения:

\[{{{z}"}_{x}}={{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x}} \right)}^{\prime }}_{x}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{x}=\]

Давайте решим отдельно следующее выражение:

\[{{\left(\frac{x}{y} \right)}^{\prime }}_{x}=\frac{{{{{x}"}}_{x}}\cdot y-x.{{{{y}"}}_{x}}}{{{y}^{2}}}=\frac{1\cdot y-x\cdot 0}{{{y}^{2}}}=\frac{y}{{{y}^{2}}}=\frac{1}{y}\]

Возвращаемся к нашей исходной конструкции и продолжаем решение:

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \frac{1}{y}={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\left(1+\frac{1}{y} \right)\]

Все, по $x$ посчитано.

Однако как я и обещал, сейчас постараемся посчитать эту же частную производную другим способом. Для этого заметим следующее:

\[{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}={{e}^{x+\frac{x}{y}}}\]

В этом запишем так:

\[{{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x+\frac{x}{y}}} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}\cdot {{\left(x+\frac{x}{y} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}\cdot \left(1+\frac{1}{y} \right)\]

В результате мы получили точно такой же ответ, однако объем вычислений оказался меньшим. Для этого достаточно было заметить, что при произведении показатели можно складывать.

Теперь посчитаем по $y$:

\[{{{z}"}_{y}}={{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{y}={{\left({{e}^{x}} \right)}^{\prime }}_{y}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{y}=\]

\[=0\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{y}=\]

Давайте решим одно выражение отдельно:

\[{{\left(\frac{x}{y} \right)}^{\prime }}_{y}=\frac{{{{{x}"}}_{y}}\cdot y-x\cdot {{{{y}"}}_{y}}}{{{y}^{2}}}=\frac{0-x\cdot 1}{{{y}^{2}}}=-\frac{1}{{{y}^{2}}}=-\frac{x}{{{y}^{2}}}\]

Продолжим решение нашей исходной конструкции:

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \left(-\frac{x}{{{y}^{2}}} \right)=-\frac{x}{{{y}^{2}}}\cdot {{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\]

Разумеется, эту же производную можно было бы посчитать вторым способом, ответ получился бы таким же.

Задача № 2

Посчитаем по $x$:

\[{{{z}"}_{x}}={{\left(x \right)}_{x}}\cdot \ln \left({{x}^{2}}+y \right)+x\cdot {{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\]

Давайте посчитаем одно выражение отдельно:

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{x}=\frac{2x}{{{x}^{2}}+y}\]

Продолжим решение исходной конструкции: $$

Вот такой ответ.

Осталось по аналогии найти по $y$:

\[{{{z}"}_{y}}={{\left(x \right)}^{\prime }}_{y}.\ln \left({{x}^{2}}+y \right)+x\cdot {{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{y}=\]

Одно выражение посчитаем как всегда отдельно:

\[{{\left({{x}^{2}}+y \right)}^{\prime }}_{y}={{\left({{x}^{2}} \right)}^{\prime }}_{y}+{{{y}"}_{y}}=0+1=1\]

Продолжаем решение основной конструкции:

Все посчитано. Как видите, в зависимости от того, какая переменная берется для дифференцирования, ответы получаются совершенно разные.

Нюансы решения

Вот яркий пример того, как производную одной и той же функции можно посчитать двумя различными способами. Вот смотрите:

\[{{{z}"}_{x}}=\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)={{\left({{e}^{x}} \right)}^{\prime }}_{x}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \frac{1}{y}={{e}^{x}}\cdot {{e}^{^{\frac{x}{y}}}}\left(1+\frac{1}{y} \right)\]

\[{{{z}"}_{x}}={{\left({{e}^{x}}.{{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x+\frac{x}{y}}} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}.{{\left(x+\frac{x}{y} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{^{\frac{x}{y}}}}\left(1+\frac{1}{y} \right)\]

При выборе разных путей, объем вычислений может быть разный, но ответ, если все выполнено верно, получится одним и тем же. Это касается как классических, так и частных производных. При этом еще раз напоминаю: в зависимости от того, по какой переменной идет взятие производной, т.е. дифференцирование, ответ может получиться совершенно разный. Посмотрите:

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot 2x\]

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{y}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{y}=\frac{1}{{{x}^{2}}+y}\cdot 1\]

В заключение для закрепления всего этого материала давайте попробуем посчитать еще два примера.

Задачи с тригонометрической функция и функцией с тремя переменными

Задача № 1

Давайте запишем такие формулы:

\[{{\left({{a}^{x}} \right)}^{\prime }}={{a}^{x}}\cdot \ln a\]

\[{{\left({{e}^{x}} \right)}^{\prime }}={{e}^{x}}\]

Давайте теперь решать наше выражение:

\[{{{z}"}_{x}}={{\left({{3}^{x\sin y}} \right)}^{\prime }}_{x}={{3}^{x.\sin y}}\cdot \ln 3\cdot {{\left(x\cdot \sin y \right)}^{\prime }}_{x}=\]

Отдельно посчитаем такую конструкцию:

\[{{\left(x\cdot \sin y \right)}^{\prime }}_{x}={{{x}"}_{x}}\cdot \sin y+x{{\left(\sin y \right)}^{\prime }}_{x}=1\cdot \sin y+x\cdot 0=\sin y\]

Продолжаем решать исходное выражение:

\[={{3}^{x\sin y}}\cdot \ln 3\cdot \sin y\]

Это окончательный ответ частной переменной по $x$. Теперь посчитаем по $y$:

\[{{{z}"}_{y}}={{\left({{3}^{x\sin y}} \right)}^{\prime }}_{y}={{3}^{x\sin y}}\cdot \ln 3\cdot {{\left(x\sin y \right)}^{\prime }}_{y}=\]

Решим одно выражение отдельно:

\[{{\left(x\cdot \sin y \right)}^{\prime }}_{y}={{{x}"}_{y}}\cdot \sin y+x{{\left(\sin y \right)}^{\prime }}_{y}=0\cdot \sin y+x\cdot \cos y=x\cdot \cos y\]

Решаем до конца нашу конструкцию:

\[={{3}^{x\cdot \sin y}}\cdot \ln 3\cdot x\cos y\]

Задача № 2

На первый взгляд этот пример может показаться достаточно сложным, потому что здесь три переменных. На самом деле, это одна из самых простых задач в сегодняшнем видеоуроке.

Находим по $x$:

\[{{{t}"}_{x}}={{\left(x{{e}^{y}}+y{{e}^{z}} \right)}^{\prime }}_{x}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{x}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{x}=\]

\[={{\left(x \right)}^{\prime }}_{x}\cdot {{e}^{y}}+x\cdot {{\left({{e}^{y}} \right)}^{\prime }}_{x}=1\cdot {{e}^{y}}+x\cdot o={{e}^{y}}\]

Теперь разберемся с $y$:

\[{{{t}"}_{y}}={{\left(x\cdot {{e}^{y}}+y\cdot {{e}^{z}} \right)}^{\prime }}_{y}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{y}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{y}=\]

\[=x\cdot {{\left({{e}^{y}} \right)}^{\prime }}_{y}+{{e}^{z}}\cdot {{\left(y \right)}^{\prime }}_{y}=x\cdot {{e}^{y}}+{{e}^{z}}\]

Мы нашли ответ.

Теперь остается найти по $z$:

\[{{{t}"}_{z}}={{\left(x\cdot {{e}^{y}}+{{y}^{z}} \right)}^{\prime }}_{z}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{z}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{z}=0+y\cdot {{\left({{e}^{z}} \right)}^{\prime }}_{z}=y\cdot {{e}^{z}}\]

Мы посчитали третью производную, на чем решение второй задачи полностью завершено.

Нюансы решения

Как видите, ничего сложного в этих двух примерах нет. Единственное, в чем мы убедились, так это в том, что производная сложной функции применяется часто и в зависимости от того, какую частную производную мы считаем, мы получаем разные ответы.

В последней задаче нам было предложено разобраться с функцией сразу от трех переменных. Ничего страшного в этом нет, однако в самом конце мы убедились, что все они друг от друга существенно отличаются.

Ключевые моменты

Окончательные выводы из сегодняшнего видеоурока следующие:

  1. Частные производные считаются так же, как и обычные, при этом, чтобы считать частную производную по одной переменной, все остальные переменные, входящие в данную функцию, мы принимаем за константы.
  2. При работе с частными производными мы используем все те же стандартные формулы, что и с обычными производными: сумму, разность, производную произведения и частного и, разумеется, производную сложной функции.

Конечно, просмотра одного этого видеоурока недостаточно, чтобы полностью разобраться в этой теме, поэтому прямо сейчас на моем сайте именно к этому видео есть комплект задач, посвященных именно сегодняшней теме — заходите, скачивайте, решайте эти задачи и сверяйтесь с ответом. И после этого никаких проблем с частными производными ни на экзаменах, ни на самостоятельных работах у вас не будет. Конечно, это далеко не последний урок по высшей математике, поэтому заходите на наш сайт, добавляйтесь ВКонтакте, подписывайтесь на YouTube, ставьте лайки и оставайтесь с нами!

Теорема. Пусть u = f (х, у) задана в области D и пусть х = х(t) и у = у(t) определены в области , причём, когда , то х и у принадлежат области D . Пусть функция u дифференцируема в точке M 0 (x 0 , y 0 , z 0), а функции х (t) и у (t) дифференцируемы в соответствующей точке t 0 , то сложная функция u = f [x (t ), y (t )]=F (t ) дифференцируема в точке t 0 и имеет место равенство:

.

Доказательство. Так как u дифференцируема по условию в точке (x 0 , y 0), то её полное приращение представляется в виде

Разделив это соотношение на , получим:

Перейдём к пределу при и получим формулу

.

Замечание 1. Если u = u (x, y ) и x = x , y = y (x ), то полная производная функции u по переменной х

или .

Последнее равенство можно использовать для доказательства правила дифференцирования функции одной переменной, заданной неявно в виде F (x , y ) = 0, где y = y (x ) (см. тему № 3 и пример 14).

Имеем: . Отсюда . (6.1)

Вернёмся к примеру 14 темы № 3:

;

.

Как видим, ответы совпали.

Замечание 2. Пусть u = f (х, у ), где х = х (t , v ), у = у (t , v ). Тогда u есть в конечном счёте сложная функция двух переменных t и v . Если теперь функция u дифференцируема в точке M 0 (x 0 , y 0), а функции х и у дифференцируемы в соответствующей точке (t 0 , v 0), то можно говорить о частных производных по t и v от сложной функции в точке (t 0 , v 0). Но если мы говорим о частной производной по t в указанной точке, то вторая переменная v считается постоянной и равной v 0 . Следовательно, речь идёт о производной только от сложной функции по t и, следовательно, мы можем воспользоваться выведенной формулой. Таким образом, получим:

и .

Пример 13. Найти полную производную функции u = x y , где x = sin t , y = cos t .

41. Экстремумы функции нескольких переменных.

Экстремум функции нескольких переменных. Необходимые и достаточные условия существования экстремума

Определение 7. Точка называется точкой минимума (максимума) функции, если существует такая окрестность точки, что для всех точек из этой окрестности выполняется неравенство, ().

Точки минимума и максимума функции называются точками экстремума, а значения функции в этих точках - экстремумами функции (минимумом и максимумом соответственно).

Заметим, что минимум и максимум функции имеют локальный характер, так как значение функции в точке сравнивается с ее значениями в точках, достаточно близких к.

Теорема 1 (необходимые условия экстремума). Если - точка экстремума дифференцируемой функции, то ее частные производные и в этой точке равны нулю: .

Точки, в которых частные производные первого порядка равны нулю, называются критическими или стационарными. В критических точках функция может иметь экстремум, а может и не иметь.

Теорема 2 (достаточное условие экстремума). Пусть функция: а) определена в некоторой окрестности критической точки, в которой и; б) имеет непрерывные частные производные второго порядка. Тогда, если, то функция в точке имеет экстремум: максимум, если А<0; минимум, если А>0; если, то функция в точке экстремума не имеет. В случае вопрос о наличии экстремума остается открытым.

При исследовании функции двух переменных на экстремум рекомендуется использовать следующую схему:

1. Найти частные производные первого порядка: и.

2. Решить систему уравнений и найти критические точки функции.

3. Найти частные производные второго порядка: , .

4. Вычислить значения частных производных второго порядка в каждой критической точке и, используя достаточные условия, сделать вывод о наличии экстремума.

5. Найти экстремумы функции.

Пример 6. Найти экстремумы функции.

Решение. 1. Находим частные производные и:

2. Для определения критических точек решаем систему уравнений

Из первого уравнения системы находим: . Подставляя найденное значение y во второе уравнение, получим

Находим значения y, соответствующие значениям. Подставляя значения в уравнение, получим: .

Таким образом, имеем две критические точки: и.

3. Находим частные производные второго порядка:

4. Вычисляем значения частных производных второго порядка в каждой критической точке. Для точки имеем:

то в точке экстремума нет.

и, следовательно,

Значит, в силу достаточного условия экстремума, в точке функция имеет минимум, так как в этой точке и.