Механическая работа человека. Формула работы. Механическая работа в физике

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A – работа, F – сила, s – пройденный путь.

ПОТЕНЦИА́Л (потенциальная функция), понятие, характеризующее широкий класс физических силовыхполей (электрических, гравитационных и т. п.) и вообще поля физических величин, представляемыхвекторами (поле скоростей жидкости и т. п.). В общем случае потенциал векторного поля a(x ,y ,z ) - такаяскалярная функция u (x ,y ,z ), что a=grad

35. Проводники в электрическом поле. Электроемкость. Проводники в электрическом поле. Проводники - это вещества, характеризующиеся наличием в них боль­шого количества свободных носителей зарядов, способ­ных перемещаться под действием электрического поля. К проводникам относятся металлы, электролиты, уголь. В металлах носителями свободных зарядов являются электроны внешних оболочек атомов, которые при взаи­модействии атомов полностью утрачивают связи со «своими» атомами и становятся собственностью всего проводника в целом. Свободные электроны участвуют в тепловом движении подобно молекулам газа и могут перемещаться по металлу в любом направлении. Электри́ческая ёмкость - характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками

36. Емкость плоского конденсатора.

Емкость плоского конденсатора.

Т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой емкости необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика.

37. Магнитное взаимодействие токов в вакууме. Закон Ампера. Закон Ампера. В 1820 году Ампер (французский ученый (1775-1836)) установил экспериментально закон, по которому можно рассчитать силу, действующую на элемент проводника длины с током .

где – вектор магнитной индукции,– вектор элемента длины проводника, проведенного в направлении тока.

Модуль силы , где– угол между направлением тока в проводнике и направлением индукции магнитного поля.Для прямолинейного проводника длиной с токомв однородном поле

Направление действующей силы может быть определено с помощью правила левой руки :

Если ладонь левой руки расположить так, чтобы нормальная (к току) составляющая магнитного поля входила в ладонь, а четыре вытянутых пальца направлены вдоль тока, то большой палец укажет направление, в котором действует сила Ампера.

38.Напряженность магнитного поля. Закон Био-Савара-Лапласа Напряжённость магни́тного по́ля (стандартное обозначение Н ) - векторная физическая величина , равная разности вектора магнитной индукции B и вектора намагниченности J .

В Международной системе единиц (СИ) : где-магнитная постоянная .

Закон БСЛ. Закон, определяющий магнитное поле отдельного элемента тока

39. Приложения закона Био-Савара-Лапласа. Для поля прямого тока

Для кругового витка.

И для соленоида

40. Индукция магнитного поля Магнитное поле характеризуется векторной величиной, которая носит название индукции магнитного поля (векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства). МИ. (В) это не сила, действующая на проводники, это величина, которая находится через данную силу по следующей формуле: B=F / (I*l) (Словестно: Модуль вектора МИ. (B) равен отношению модуля силы F, с которой магнитное поле действует на расположенный перпендикулярно магнитным линиям проводник с током, к силе тока в проводнике I и длине проводника l . Магнитная индукция зависит только от магнитного поля. В связи с этим индукцию можно считать количественной характеристикой магнитного поля. Она определяет, с какой силой(Сила Лоренца) магнитное поле действует назаряд, движущийся со скоростью. Измеряется МИ в теслах (1 Тл). При этом 1 Тл=1 Н/(А*м) . МИ имеет направление. Графически ее можно зарисовывать в виде линий. В однородном магнитном полелинии МИ параллельны, и вектор МИ будет направлен так же во всех точках. В случае неоднородного магнитного поля, например, поля вокруг проводника с током, вектор магнитной индукции будет меняться в каждой точке пространства вокруг проводника, а касательные к этому вектору создадут концентрические окружности вокруг проводника.

41. Движение частицы в магнитном поле. Сила Лоренца. а) - Если частица влетает в область однородного магнитного поля, причем вектор V перпендикулярен вектору B, то она движется по окружности радиуса R=mV/qB, поскольку сила Лоренца Fл=mV^2/R играет роль центростремительной силы. Период обращения равен T=2пиR/V=2пиm/qB и он не зависит от скорости частицы (Это справедливо только при V<<скорости света) - Если угол между векторами V и B не равен 0 и 90 градусов, то частица в однородном магнитном поле движется по винтовой линии. - Если вектор V параллелен B, то частица движется по прямой линии (Fл=0). б) Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.

Сила Л. определяется соотношением: Fл = q·V·B·sina (q - величина движущегося заряда; V - модуль его скорости; B - модуль вектора индукции магнитного поля; aльфа - угол между вектором V и вектором В) Сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно. Сила Лоренца перпендикулярна векторам В и v , и её направление определяется с помощью того же правила левой руки, что и направление силы Ампера: если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца F л.

Механическая работа это энергетическая характеристика движения физических тел, имеющая скалярный вид. Она равна модулю силы действующей на тело, умноженной на модуль перемещения вызванного этой силой и на косинус угла между ними.

Формула 1 - Механическая работа.


F - Сила, действующая на тело.

s - Перемещение тела.

cosa - Косинус угла между силой и перемещением.

Данная формула имеет общий вид. В случае если угол между прикладываемой силой и перемещением равен нулю, то косинус равен 1. Соответственно работа будет равна только произведению силы на перемещение. Проще говоря, если тело движется в направлении приложения силы, то механическая работа равна произведению силы на перемещение.

Второй частный случай, когда угол между силой, действующей на тело и его перемещением равен 90 градусов. В этом случае косинус 90 градусов равен нулю, соответственно работа будет равна нулю. И действительно, что происходит мы, прикладываем силу в одном направлении, а тело движется перпендикулярно ему. То есть тело движется явно не под действием нашей силы. Таким образом, работа нашей силы по перемещению тела равна нулю.

Рисунок 1 - Работа сил при перемещении тела.


В случае если на тело действует больше одной силы, то рассчитывают суммарную силу, действующую на тело. И далее ее подставляют в формулу как единственную силу. Тело под действием силы может перемещаться не только прямолинейно, но и по произвольной траектории. В этом случае работа вычисляется для малого участка перемещения, который можно считать прямолинейным и далее суммируется по всему пути.

Работа может быть как положительной, так и отрицательной. То есть если перемещение и сила совпадают по направлению, то работа положительна. А если сила приложена в одном направлении, а тело перемещается в другом, то работа будет отрицательна. Примером отрицательной работы может служить работа силы трения. Так как сила трения направлена встречно движению. Представьте себе, тело движется по плоскости. Сила, приложенная к телу, толкает его в определенном направлении. Эта сила совершает положительную работу по перемещению тела. Но при этом сила трения совершает отрицательную работу. Она тормозит перемещение тела и направлена навстречу его движению.

Рисунок 2 - Сила движения и трения.


Работа в механике измеряется в Джоулях. Один Джоуль это работа совершаемая силой в один Ньютон при перемещении тела на один метр. Кроме направления движения тела может меняться и величина прилагаемой силы. К примеру, при сжатии пружины, сила прилагаемой к ней будет увеличиваться пропорционально пройденному расстоянию. В этом случае работу вычисляют по формуле.

Формула 2 - Работа сжатия пружины.


k - жесткость пружины.

x - координата перемещения.

Мeханическая работа - это физическая величина - скалярная количественная мера действия силы (равнодействующей сил) на тело или сил на систему тел. Зависит от численной величины и направления силы (сил) и от перемещения тела (системы тел) .

Используемые обозначения

Работа обычно обозначается буквой A (от нем. A rbeit - работа, труд) или буквой W (от англ. w ork - работа, труд).

Определение

Работа силы, приложенной к материальной точке

Суммарная работа по перемещению одной материальной точки, совершаемая несколькими силами, приложенными к этой точке, определяется как работа равнодействующей этих сил (их векторной суммой). Поэтому дальше будем говорить об одной силе, приложенной к материальной точке.

При прямолинейном движении материальной точки и постоянном значении приложенной к ней силы , работа (этой силы) равна произведению проекции вектора силы на направление движения и длины вектора перемещения, совершённого точкой:

A = F s s = F s c o s (F , s) = F → ⋅ s → {\displaystyle A=F_{s}s=Fs\ \mathrm {cos} (F,s)={\vec {F}}\cdot {\vec {s}}} A = ∫ F → ⋅ d s → . {\displaystyle A=\int {\vec {F}}\cdot {\vec {ds}}.}

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из последовательных перемещений d s → , {\displaystyle {\vec {ds}},} если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат , интеграл определяется следующим образом:

A = ∫ r → 0 r → 1 F → (r →) ⋅ d r → {\displaystyle A=\int \limits _{{\vec {r}}_{0}}^{{\vec {r}}_{1}}{\vec {F}}\left({\vec {r}}\right)\cdot {\vec {dr}}} ,

где r → 0 {\displaystyle {\vec {r}}_{0}} и r → 1 {\displaystyle {\vec {r}}_{1}} - радиус-векторы начального и конечного положения тела соответственно.

  • Следствие. Если направление приложенной силы ортогонально перемещению тела или перемещение равно нулю, то работа (этой силы) равна нулю.

Работа сил, приложенных к системе материальных точек

Работа сил по перемещению системы материальных точек определяется как сумма работ этих сил по перемещению каждой точки (работы, совершённые над каждой точкой системы, суммируются в работу этих сил над системой).

Даже если тело не является системой дискретных точек, его можно разбить (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых можно считать материальной точкой, и вычислить работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл.

  • Эти определения могут быть использованы как для вычисления работы конкретной силы или класса сил, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.

Кинетическая энергия

E k = 1 2 m v 2 . {\displaystyle E_{k}={\frac {1}{2}}mv^{2}.}

Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Потенциальная энергия

Работа в термодинамике

В термодинамике работа, совершённая газом при расширении , рассчитывается как интеграл давления по объёму:

A 1 → 2 = ∫ V 1 V 2 P d V . {\displaystyle A_{1\rightarrow 2}=\int \limits _{V_{1}}^{V_{2}}PdV.}

Работа, совершённая над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объёма, но и к любому процессу (изображаемому любой кривой в плоскости PV ), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула прямо связана с механической работой. Действительно, попробуем написать механическую работу при расширении сосуда, учитывая, что сила давления газа будет направлена перпендикулярно каждой элементарной площадке, равна произведению давления P на площадь dS площадки, и тогда работа, совершаемая газом для смещения h одной такой элементарной площадки будет

d A = P d S h . {\displaystyle dA=PdSh.}

Видно, что это и есть произведение давления на приращение объёма вблизи данной элементарной площадкой. А просуммировав по всем dS , получим конечный результат, где будет уже полное приращение объёма, как и в главной формуле раздела.

Работа силы в теоретической механике

Рассмотрим несколько детальнее, чем это было сделано выше, построение определения энергии как риманова интеграла.

Пусть материальная точка M {\displaystyle M} движется по непрерывно дифференцируемой кривой G = { r = r (s) } {\displaystyle G=\{r=r(s)\}} , где s - переменная длина дуги, 0 ≤ s ≤ S {\displaystyle 0\leq s\leq S} , и на неё действует сила , направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под F (s) {\displaystyle F(s)} проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее). Величина F (ξ i) △ s i , △ s i = s i − s i − 1 , i = 1 , 2 , . . . , i τ {\displaystyle F(\xi _{i})\triangle s_{i},\triangle s_{i}=s_{i}-s_{i-1},i=1,2,...,i_{\tau }} , называется элементарной работой силы F {\displaystyle F} на участке и принимается за приближённое значение работы, которую производит сила F {\displaystyle F} , воздействующая на материальную точку, когда последняя проходит кривую G i {\displaystyle G_{i}} . Сумма всех элементарных работ является интегральной суммой Римана функции F (s) {\displaystyle F(s)} .

В соответствии с определением интеграла Римана , можем дать определение работе:

Предел, к которому стремится сумма ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle \sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} всех элементарных работ, когда мелкость | τ | {\displaystyle |\tau |} разбиения τ {\displaystyle \tau } стремится к нулю, называется работой силы F {\displaystyle F} вдоль кривой G {\displaystyle G} .

Таким образом, если обозначить эту работу буквой W {\displaystyle W} , то, в силу данного определения,

W = lim | τ | → 0 ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle W=\lim _{|\tau |\rightarrow 0}\sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} ,

следовательно,

W = ∫ 0 s F (s) d s {\displaystyle W=\int \limits _{0}^{s}F(s)ds} (1).

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра t {\displaystyle t} (например, времени) и если величина пройденного пути s = s (t) {\displaystyle s=s(t)} , a ≤ t ≤ b {\displaystyle a\leq t\leq b} является непрерывно дифференцируемой функцией, то из формулы (1) получим

W = ∫ a b F [ s (t) ] s ′ (t) d t . {\displaystyle W=\int \limits _{a}^{b}Fs"(t)dt.}

Размерность и единицы

Единицей измерения работы в

Вы знаете, что такое работа? Вне всякого сомнения. Что такое работа, знает каждый человек, при условии, что он рожден и живет на планете Земля. А что такое механическая работа?

Это понятие тоже известно большинству людей на планете, хотя некоторые отдельные личности и имеют довольно смутное представление об этом процессе. Но речь сейчас не о них. Еще меньшее число людей имеют представление, что такое механическая работа с точки зрения физики. В физике механическая работа - это не труд человека ради пропитания, это физическая величина, которая может быть совершенно никак не связана ни с человеком, ни с другим каким-нибудь живым существом. Как так? Сейчас разберемся.

Механическая работа в физике

Приведем два примера. В первом примере воды реки, столкнувшись с пропастью, шумно падают вниз в виде водопада. Второй пример - это человек, который держит на вытянутых руках тяжелый предмет, например, удерживает надломившуюся крышу над крыльцом дачного домика от падения, пока его жена и дети судорожно ищут, чем ее подпереть. В каком случае совершается механическая работа?

Определение механической работы

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A - работа,
F - сила,
s - пройденный путь.

Так что, несмотря на весь героизм уставшего держателя крыши, проделанная им работа равна нулю, а вот вода, падая под действием силы тяжести с высокого утеса, совершает самую, что ни на есть, механическую работу. То есть, если мы будем толкать тяжелый шкаф безуспешно, то проделанная нами работа с точки зрения физики будет равна нулю, несмотря на то, что мы прикладываем много сил. А вот если мы сдвинем шкаф на некоторое расстояние, то тогда мы проделаем работу, равную произведению приложенной силы на расстояние, на которое мы передвинули тело.

Единица работы - 1 Дж. Это работа, совершенная силой в 1 ньютон, по передвижению тела на расстояние в 1 м. Если направление приложенной силы совпадает с направлением движения тела, то данная сила совершает положительную работу. Пример - это когда мы толкаем какое-либо тело, и оно двигается. А в случае, когда сила приложена в противоположную движению тела сторону, например, сила трения , то данная сила совершает отрицательную работу. Если же приложенная сила никак не влияет на движение тела, то сила, совершаемая этой работой, равна нулю.

Если на тело действует сила, то эта сила совершает работу по перемещению этого тела. Прежде чем дать определение работе при криволинейном движении мате­риальной точки, рассмотрим частные случаи:

В этом случае механиче­ская работа A равна:

A = F s cos =
,

или A = Fcos × s = F S × s ,

где F S – проекция силы на перемеще­ние. В данном случае F s = const , и геометрический смысл работы A – это площадь прямо­угольника, построенного в координатах F S , , s .

Построим график проекции силы на направление перемещения F S как функции перемещения s. Полное перемещение представим как сумму n малых перемещений
. Для ма­лого i -ого перемещения
работа равна

или площади заштрихованной трапеции на рисунке.

Полная механическая работа по перемещению из точки 1 в точку 2 будет равна:


.

Величина, стоящая под интегралом будет представлять элементарную работу по бесконечно малому перемещению
:

­– элементарная работа.

Разбиваем траекторию движения материальной точки на бесконечно малые перемещения и работу силы по перемещению материальной точки из точки 1 в точку 2 определяем как криволинейный интеграл:

работа при криволинейном движении.

Пример 1: Работа силы тяжести
при криволинейном движении материальной точки.


.

Далее как постоянную величину можно вынести за знак интеграла, а интеграл согласно рисунку будет представлять полное перемещение . .

Если обозначить высоту точки 1 от поверхности Земли через , а высоту точки 2 через , то

Мы видим, что в данном случае работа определяется положением материальной точки в начальный и конечный момент времени и не зависит от формы траектории или пути. Работа силы тяжести по замкнутому пути равна нулю:
.

Силы, работа которых на замкнутом пути равна нулю, называется консервативными .

Пример 2 : Работа силы трения.

Это пример неконсервативной силы. Чтобы показать это достаточно рассмотреть элементарную работу силы трения:

,

т.е. работа силы трения всегда отрицательная величина и на замкнутом пути не может быть равной нулю. Работа, совершаемая в единицу времени, называется мощностью . Если за время
совершается работа
, то мощность равна

механическая мощность .

Взяв
в виде

,

получим для мощности выражение:

.

В СИ единицей работы является джоуль:
= 1 Дж = 1 Н1 м, а единицей мощности является ватт: 1 Вт = 1 Дж/с.

Механическая энергия.

Энергия является общей количественной мерой движения взаимодействия всех видов материи. Энергия не исчезает и не возникает из нечего: она лишь может переходить из одной формы в другую. Понятие энергии связывает воедино все явления в природе. В соответствии с различными формами движения материи рассматривают разные виды энергии – механическую, внутреннюю, электромагнитную, ядерную и др.

Понятия энергии и работы тесно связаны друг с другом. Известно, что работа совершается за счет запаса энергии и, наоборот, совершая работу, можно увеличить запас энергии в каком-либо устройстве. Другими словами работа – это количественная мера изменения энергии:

.

Энергия также как и работа в СИ измеряется в джоулях: [E ]=1 Дж.

Механическая энергия бывает двух видов – кинетическая и потенциальная.

Кинетическая энергия (или энергия движения) определяется массами и скоростями рассматриваемых тел. Рассмотрим материальную точку, движущуюся под действием силы . Работа этой силы увеличивает кинетическую энергию материальной точки
. Вычислим в этом случае малое приращение (дифференциал) кинетической энергии:

При вычислении
использован второй закон Ньютона
, а также
- модуль скорости материальной точки. Тогда
можно представить в виде:

-

- кинетическая энергия движущейся материальной точки .

Умножив и разделив это выражение на
, и учитывая, что
, получим

-

- связь между импульсом и кинетической энергией движущейся материальной точки .

Потенциальная энергия (или энергия положения тел) определяется действием на тело консервативных сил и зависит только от положения тела.

Мы видели, что работу силы тяжести
при криволинейном движении материальной точки
можно представить в виде разности значений функции
, взятых в точке 1 и в точке 2 :

.

Оказывается, что всегда, когда силы консервативны, работу этих сил на пути 1
2 можно представить в виде:

.

Функция , которая зависит только от положения тела – называется потенциальной энергией .

Тогда для элементарной работы получим

работа равна убыли потенциальной энергии .

Иначе можно сказать, что работа совершается за счёт запаса потенциальной энергии.

Величину , равную сумме кинетической и потенциальной энергий частицы, называют полной механической энергией тела:

полная механическая энергия тела .

В заключении заметим, что используя второй закон Ньютона
, дифференциал кинетической энергии
можно представить в виде:

.

Дифференциал потенциальной энергии
, как указывали выше, равен:

.

Таким образом, если сила – консервативная сила и отсутствуют другие внешние силы, то , т.е. в этом случае полная механическая энергия тела сохраняется.